圆柱分度凸轮机构的设计及凸轮的数控加工
- 格式:pdf
- 大小:182.91 KB
- 文档页数:4
机械基础凸轮机构教案第一章:凸轮机构概述1.1 凸轮机构的定义凸轮机构是由凸轮、从动件和机架组成的机械传动机构。
凸轮是具有曲线轮廓或凹槽的旋转构件,用于转换转动运动为线性或其他形式的运动。
1.2 凸轮的分类按形状分类:盘形凸轮、移动凸轮、圆柱凸轮等。
按工作原理分类:正凸轮、逆凸轮、复合凸轮等。
1.3 凸轮机构的特点和应用特点:简单、紧凑、易于控制和调节。
应用:印刷机械、包装机械、机床、汽车等。
第二章:凸轮的轮廓设计2.1 凸轮轮廓的基本参数基圆半径:凸轮与从动件接触点的圆的半径。
顶圆半径:凸轮最高点或最低点的圆的半径。
工作圆半径:凸轮轮廓的最小圆的半径。
2.2 凸轮轮廓的计算按运动规律计算:正弦、余弦、直线等运动规律。
按压力角计算:凸轮轮廓的压力角与基圆压力角的关系。
2.3 凸轮轮廓的设计方法按运动要求设计:确定凸轮的升程、降程和回程。
按力学要求设计:计算凸轮的强度和刚度。
按加工要求设计:选择合适的加工方法和刀具。
第三章:凸轮机构的从动件设计3.1 从动件的分类和特点按形状分类:摆动从动件、直线从动件、滚子从动件等。
按驱动方式分类:曲柄摇杆机构、摆线机构、蜗轮蜗杆机构等。
3.2 从动件的设计要点确定从动件的运动规律和运动要求。
选择合适的从动件形状和尺寸,满足力学和运动要求。
考虑从动件与凸轮的接触条件和磨损情况。
3.3 从动件的设计实例以摆动从动件为例,介绍其设计步骤和注意事项。
分析不同形状和尺寸的从动件对凸轮机构性能的影响。
第四章:凸轮机构的动力特性4.1 凸轮机构的压力角和啮合角压力角:凸轮和从动件接触点处的压力角。
啮合角:凸轮和从动件啮合点处的啮合角。
4.2 凸轮机构的动态特性冲击和振动:凸轮和从动件的接触冲击和振动。
传动误差:凸轮和从动件的啮合误差。
4.3 凸轮机构的动力分析和优化分析凸轮机构的动力特性对整个机械系统的影响。
优化凸轮的形状和参数,减小冲击和振动,提高传动效率。
第五章:凸轮机构的应用实例5.1 印刷机械中的凸轮机构介绍印刷机械中凸轮机构的作用和应用。
圆柱凸轮机构设计结构计算本章介绍凸轮机构的类型、特点、应用及盘形凸轮的设计。
凸轮是一种具有曲线轮廓或凹槽的构件,它通过与从动件的高副接触,在运动时可以使从动件获得连续或不连续的任意预期运动。
在第4章介绍中,我们已经看到。
凸轮机构在各种机械中有大量的应用。
即使在现代化程度很高的自动机械中,凸轮机构的作用也是不可替代的。
凸轮机构由凸轮、从动件和机架三部分组成,结构简单、紧凑,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任意的运动规律。
在自动机械中,凸轮机构常与其它机构组合使用,充分发挥各自的优势,扬长避短。
由于凸轮机构是高副机构,易于磨损;磨损后会影响运动规律的准确性,因此只适用于传递动力不大的场合。
图12-1为自动机床中的横向进给机构,当凸轮等速回转一周时,凸轮的曲线外廓推动从动件带动刀架完成以下动作:车刀快速接近工件,等速进刀切削,切削结束刀具快速退回,停留一段时间再进行下一个运动循环。
图12-1 图12-2图12-2为糖果包装剪切机构,它采用了凸轮—连杆机构,槽凸轮1绕定轴B转动,摇杆2与机架铰接于A点。
构件5和6与构件2组成转动副D和C,与构件3和4(剪刀)组成转动副E和F。
构件3和4绕定轴K转动。
凸轮1转动时,通过构件2、5、和6,使剪刀打开或关闭。
图12-3为机械手及进出糖机构。
送糖盘7从输送带10上取得糖块,并与钳糖机械手反向同步放置至进料工位Ⅰ,经顶糖、折边后,产品被机械手送至工位Ⅱ后落下或由拨糖杆推下。
机械手开闭由机械手开合凸轮(图中虚线)1控制,该凸轮的轮廓线是由两个半径不同的圆弧组成,机械手的夹紧主要靠弹簧力。
图12-6图12-4所示为由两个凸轮组合的顶糖、接糖机构,通过平面槽凸轮机构将糖顶起,由圆柱凸轮机构控制接糖杆的动作,完成接糖工作。
图12-5所示的机构中,应用了四个凸轮机构的配合动作来完成电阻压帽工序。
内燃机中的阀门启闭机构(图12-6),缝纫机的挑线机构(图12-7)等,都是凸轮机构具体应用的实例。
设计凸轮机构的步骤1.引言1.1 概述概述部分的内容如下:引言部分是文章的开端,旨在向读者介绍关于设计凸轮机构步骤的基本概念和重要性。
设计凸轮机构是指在机械传动中用于转化运动的一种重要装置,广泛应用于各种机械设备中,如发动机、制造机械、自动化机械等。
凸轮机构的设计直接关系到机械传动的性能和效率,因此在机械设计中具有重要的地位。
本文将介绍设计凸轮机构的具体步骤,帮助读者了解如何更好地应用凸轮机构设计各类机械装置。
首先,我们将介绍凸轮机构的基本原理和功能,为后续内容的理解奠定基础。
然后,我们将详细讲解设计凸轮机构的步骤,包括凸轮曲线的选择、凸轮的参数计算、凸轮机构的布局设计等内容。
在每个步骤中,我们都将提供详细的方法和注意事项,帮助读者更好地理解和掌握凸轮机构的设计过程。
通过本文的学习,读者将能够系统地掌握设计凸轮机构的方法和技巧,提高机械设备的传动效率和性能。
同时,文章还将展望未来凸轮机构设计领域的发展趋势,激发读者的思考和创新意识。
在下文中,我们将详细介绍凸轮机构的设计步骤,希望读者能够通过本文的学习,对凸轮机构的设计有更深入和全面的了解。
1.2 文章结构文章结构部分的内容可以包括以下内容:在设计凸轮机构之前,了解凸轮机构的基本概念及其作用是非常重要的。
凸轮机构可以将圆周运动转化为直线或间歇运动,广泛应用于各个领域的机械设计中。
本文将介绍设计凸轮机构的步骤,以帮助读者了解如何有效地进行设计过程。
文章主要分为三个部分:引言、正文和结论。
引言部分将首先概述凸轮机构的作用和重要性。
凸轮机构作为一种重要的机械传动装置,在现代机械设计中起着不可替代的作用。
随后,将介绍本文的结构和内容安排,以帮助读者快速了解文章的组织结构和各个部分的内容。
正文部分将详细介绍设计凸轮机构的步骤。
首先,步骤一将介绍凸轮机构的设计前准备工作,包括确定凸轮的基本参数、选择凸轮的类型和形状等。
然后,步骤二将详细讲解凸轮机构的设计过程,包括凸轮的轮廓设计、凸轮与从动件的配合设计等。
第六讲凸轮机构及其设计(一)凸轮机构的应用和分类一、凸轮机构1.组成:凸轮,推杆,机架。
2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。
缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。
二、凸轮机构的分类1.按凸轮的形状分:盘形凸轮圆柱凸轮2.按推杆的形状分尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。
易遭磨损,只适用于作用力不大和速度较低的场合滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。
不能与凹槽的凸轮轮廓时时处处保持接触。
平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。
不能与凹槽的凸轮轮廓时时处处保持接触。
3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。
(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。
4.根据凸轮与推杆接触方法不同分:(1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。
①等宽凸轮机构②等径凸轮机构③共轭凸轮(二)推杆的运动规律一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r为半径所作的圆称为凸轮的基圆,r称为基圆半径。
推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。
推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。
回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。
休止:推杆处于静止不动的阶段。
推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角二、推杆常用的运动规律1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。