例谈中学数学经典解题方法论文
- 格式:doc
- 大小:23.50 KB
- 文档页数:4
打破常规,巧妙解题在解答应用题时,应该注重变通性思维。
在分析题意时,如果能打破常规思维束缚,及时变换新的角度,进行分析思考,往往能探索出新的解题途径。
例1、一个高是10厘米的直圆柱,把它的底面分成若干个相等的扇形,再把圆柱切开拼成和它等底等高的正方体,求正方体与圆柱体表面积相差多少?分析与解答:此题如果按常规思路分析,需要先分别求出正方体和圆柱体的表面积,然后再求出表面积相差多少。
这样解答必然会陷入繁琐而复杂的计算中,如果打破常规思路的框框,换一个角度去思考,从圆柱体变为正方体的变化过程和变化结果去仔细对比分析,则会收到较好的效果。
因为圆柱体变为正方体后,正方体上下两个面正好是原来圆柱体的上下两个底面,正方体的前后两个侧面正好是原来圆柱体的侧面,而正方体左右两个侧面则是原来圆柱体没有的,因此只要求出正方体有左右两个侧面,问题就解决了。
因为这个圆柱高为10厘米,把它的底面分成若干个相等的扇形,再把圆柱切开拼成了一个和它等底等高的正方体,因此可得,这个正方体的六个面均是棱长是10厘米的正方形,从而可求出正方体与圆柱体表面积相差:10×10×2=200(平方厘米)。
例2、五年级学生去植树,如果按1名女生和2名男生为一组,则女生分完后还剩8名男生;如果按1名女生和3名男生为一组,则男生分完后还剩10名女生.问参加植树的男、女生各有多少人?分析与解答:因为按1名女生和 2名男生为一组,女生分完男生还多10人,因此可知,男生人数是女生人数的2倍多8人。
又因为按1名女生和3名男生为一组,男生分完后还剩10名女生,因此又可知,男生是女生的3倍少30(3×10)人。
因此可得,女生人数为:(8+ 3×10)÷(3 —2)= 38(人)。
男生人数则为:38×2 + 8 = 84(人)。
或:(38 -10)×3 = 84(人)。
例3、甲、乙和丙三人去旅行,行程为75千米,甲与丙乘车以每小时25千米的速度前进,而乙则以每小时5千米的速度步行,经过一段时间后,丙下车改步行,每小时也行5千米,而甲则驾车返回将乙载上后掉头继续前进,且与丙同时到达目的地,问此次旅行时间为几小时?分析与解答:假设甲和丙一直驾车到达目的地,所用时间为:75÷25 = 3(小时)。
初中数学学习方法论第一篇范文在学生的教育历程中,初中阶段是过渡的关键时期,尤其是在数学学科的学习上,这是一个从基础向深化过渡的阶段。
因此,选择正确的学习方法,对初中生来说至关重要。
本文将详细探讨初中数学学习方法论,以期帮助学生找到适合自己的学习策略。
1. 理解数学概念首先,学生需要理解数学的基本概念。
数学是一门逻辑性极强的学科,只有充分理解了概念,才能进一步进行公式的推导和题目的解答。
初中阶段,学生需要掌握的概念包括但不限于有理数、实数、代数、几何等。
2. 掌握数学公式在理解概念的基础上,学生需要掌握数学公式。
公式是数学的骨架,掌握公式,才能进行有效的计算和推导。
初中阶段,学生需要掌握的公式包括代数公式、三角公式、几何公式等。
3. 培养解题技巧数学是一门解决问题的学科,因此,培养解题技巧是学习数学的重要环节。
学生需要通过大量的练习,掌握各种题型的解题方法,提高解题效率。
4. 逻辑思维训练数学是一门极其强调逻辑的学科,因此,学生需要通过学习数学,培养和提高自己的逻辑思维能力。
这不仅有助于数学的学习,也有助于其他学科的学习,甚至对日常生活也有很大的帮助。
5. 反思与总结学习数学,不仅仅是做题和考试,更重要的是通过做题和考试,发现自己的不足,然后进行反思和总结,从而不断提高。
以上就是初中数学学习方法论的详细探讨。
希望每个学生都能找到适合自己的学习方法,提高数学学习效率,从而提高自己的综合素质。
以上就是本文的全部内容,希望对您有所帮助。
第二篇范文:初中学生学习方法技巧在教育过程中,教师的角色是引导学生,而学生则是学习的主体。
因此,在初中数学学习过程中,学生需要掌握一定的学习方法与技巧,以提高学习效率和综合素质。
本文将站在学生的角度,详细探讨初中学生数学学习方法与技巧。
1. 理解数学概念学生需要主动去理解数学的基本概念。
数学是一门逻辑性极强的学科,只有充分理解了概念,才能进一步进行公式的推导和题目的解答。
对部分中高考题分析及做题感悟——《中学数学解题研究论文》姓名:***专业:数学与应用数学(师范)学号:**************中高考题分析【中考篇】我们都知道,中考可谓是人生的第一个转折点,中考更是初中数学的指挥棒,研究分析中考试题对数学有着重要的指导意义。
研究最近几年的中考数学试题,把握中考命题的方向和脉搏对落实新课程标准,有效的组织数学课的教学和初三的备考复习,同样也有着重要的指导意义。
我对中考题的命题特点进行简单的分析,不难发现,试题注重对学生的基础知识、基本技能、基本思想方法的“三基”考查。
理论联系实际,关注人与自然、社会协调发展的现代意识,关注社会生活,大胆创新,密切联系最新的科技成果和社会热点。
结合大连、沈阳的五套中考题,有以下几个突出的特点:1、典型题。
即选题典型,难易程度,做到初步递进;2、针对性。
即选题精炼,能帮助学生走出题海,减轻学习负担,提高复习效率;3、新动性。
从多方面培养学生的能力与数学素养。
通过对比观察知道,在每年的第一类解答题中,必考的内容有实数的运算、代数式的化简求值、解不等式组、解方程或方程组、一元二次方程根的判别式或根与系数的关系、概率统计等;在每年的第二类解答题中,列方程解应用题、解直角三角形、求函数解析式、平面图形的简单论证和计算等是考查的重点;在每年的第三类解答题中,则是中考稳中求变的突破口,将基础性、应用性、实践性、开放性、探究性融入其中。
但总体来说,还是有规律可以捕捉的,如圆与三角形、圆与四边形中等积式和比例式的证明,几何与方程、函数的结合题,几何图形中的一些条件给定、探求结果的开放型题等都是近几年来保留的压轴题。
从知识点上看,在命题方向上,近几年没有太多的起伏;从内容上看,几何题中的面积、弧长、侧面积或圆中线段、角度计算或者与代数、相似三角形、三角函数的联系等,二次函数综合题仍是多数省市压轴题的首选内容,圆的内容也有所侧重,并且考试内容与考查方式的结合新颖。
探析初中几何问题的解题方法及要领随着教育与课程的不断改革,初中数学中的几何教学课程也发生了很大变化. 新课程将初中几何内容大致分为了图形认识、图形与变换、图形与坐标、图形与证明四大模板. 从研究方式上,也可将其分为实验几何与论证几何. 《数学课程标准》中指出,在几何问题的教学中,应帮助学生建立空间观念,培养学生的几何逻辑推理能力. 那么如何更好的落实新课程目标,培养学生的逻辑推理能力呢?笔者结合实践经验,对于论证几何教学进行了深入的思考,总结了一些论证几何教学的基本策略.一、将文字语言转化为符号语言几何教学中存在着不同形式的语言,大致有图形语言、文字语言和符号语言三种. 教师在教学过程中,首先要让学生理解掌握这三种不同的语言,继而还需培养学生将这三种语言相互间进行转化的能力. 不同语言在几何内容的学习中发挥着不同的作用. 图形语言一般较为直观,能够形象地向学生展示问题;而文字语言则是概括和抽象的,重点是对于图形或图形本身中蕴含的深层关系予以准确的描述,对几何的定义、定理、题目等予以精确的表述;符号语言则是对于语言文字的再次抽象,它具有简化作用,有更深的抽象性,也是最难掌握的一种,是逻辑推理必备的能力基础所在. 初中阶段的学习需要循序渐进,由简单推理再到符号表示进行推理. 教师在教学过程中应有意识地引导学生将文字语言转化为符号语言,培养学生将文字语言转化为特定符号的意识,训练学生转化的能力,从而为论证几何的学习打下良好的基础. 二、将题目所含条件转化为图形几何题目中,用各种不同符号把已知条件通过图形直观的表达出来,对于处理较复杂的几何问题有很大的帮助. 学生中普遍存在“看图忘条件”的现象,无法将题目与图形有机结合起来,教师需要培养学生画图的意识,这样方便将题目中的条件直观清晰地呈现出来,实现条件与图形的有机融合,帮助学生理清做题思路.例1 已知点E,F在BC上,BE=CF,AB=DC,∠B=∠C. 求证:∠A=∠D.分析如图1,将已知条件通过画图展现出来,这样可以将已知条件在图形中得以直观的表现,对于学生也是一种暗示和提醒,利于问题的有效解答.三、培养综合解决问题的能力综合化解决问题,即指导学生在分析问题时从已知条件出发,从结论入手,结合图形进行解答. 综合分析法是几何题目解题中通常会用到的逻辑思维方法. 其特点在于从已知推可知,逐步再推出未知,从未知看需知,逐步靠近已知. 在较为复杂的问题当中,需要良好地运用综合分析法,从已知出发,从结论入手,形成完整的体系,寻求最后解决问题的接洽点所在,进而达到解决问题的目的.例2如图2,分别以△ABC的边AB,AC为直角边向△ABC外部作等腰直角三角形BDA和等腰直角三角形CEA,点P,M,N分别为BC,BD,EC的中点. 求证:PM=PN.分析若从已知条件出发,“△BDA和△CEA是等腰直角三角形”,即可轻易的推出结论,AB=AD,AC=AE,再根据做题思路,即可得出△ADC≌△ABE,从而可以得到△ADC和△ABE的对应边相等、对应角相等. 若从结论“PM=PN”入手,从未知看需知. 则思路可以如下:已知PM和PN分别是△BDC和△CBE的中位线,所以只需证CD=BE. 从已知条件出发我们可以得到CD=BE,从结论入手我们需要CD=BE,这样相当于我们找到了题目的接洽点所在,问题也就迎刃而解了.综合分析法不仅帮助学生高效率地解答几何题目,从而帮助学生掌握基本的数学思维,利于学生综合思维能力的培养,提高学生解决问题的能力和水平.四、灵活进行图形变换新课程中的初中数学增添了图形变换的内容,如平移、旋转、轴对称等. 灵活进行图形变换即是将图形变换作为一种解题思路方法,通过图形变换为学生解决几何问题打开一扇窗.例3如图3,正方形ABCD中,E在BC边上移动,∠EAF=45°,AF交CD于F,连接EF. 求证:EF=BE+DF.分析这道题目需要增添辅助线来助于解答,因此对于大部分学生来说是比较难的. 增添辅助线是几何教学中的重要内容,该题中要证EF=BE+DF,就需要将分散的线段BE,DF集中起来,若运用旋转变换法,将△ADF绕点A顺时针旋转90°,如图4,即可将BE和DF转到同一直线上,得到线段BE与DF的和,继而可将三条线段EF,BE,DF构造到一对全等三角形中. 这样就轻易地得到了辅助线法证明思路:延长CB到M,使BM=DF,连接AM,如图5,得到ME=BE+DF,这时只需要证明△AEM≌△AEF就可解决问题了.教师在几何教学中,需要有意识地教导学生图形变换的方法,让学生掌握好平移、旋转和轴对称等相关知识,并能够运用这些知识探索解题思路、发现解题方法. 同时,这样利于学生的空间想象力的培养.以上是笔者关于论证几何问题中提出的一些做题思路和方法. 总而言之,论证几何教学是几何教学内容的核心,是重点也是难点,需要对其进行研究和思考,发掘有效的教学策略,提高论证几何教学的效率,重视培养学生的逻辑思维能力和综合思考能力.。
本科生毕业论文(设计)册学院数学与信息科学学院专业数学与应用数学班级 2006级A班学生孔祥东指导教师麻常利河北师范大学本科毕业论文(设计)任务书编号:数信学院2010届613论文(设计)题目:浅谈中学数学解题方法院系:数信与信息科学学院专业:数学与应用数学班级: 06A班学生姓名:孔祥东学号: 2006012613 指导教师:职称:1、论文(设计)研究目标及主要任务深入研究中学(特别是高中)的数学问题,探寻用更短的时间解决更多的中学数学问题,以及掌握处理大多数中学数学问题的通法通解。
2、论文(设计)的主要内容本文针对中学的几种典型的数学方法进行了研究和总结,并以示范性典例和再现性典例的形式加以归纳和再现,以典型题来阐述各数学方法的精妙。
3、论文(设计)的基础条件及研究路线半年来对中学数学试题的广泛研究,尤其是北京地区高考题的研究,加之对众多教辅资料的研读与分析,结合自己的心得和体会加以研究和归纳。
4、主要参考文献[1] 郑毓信、肖柏荣、熊萍数学思维与数学方法论 [M]. 成都:四川教育出版社[2] 陆书环、傅海伦数学教学论[M]. 北京:科学出版社[3] 张雄、李得虎数学方法论与解题研究 [M]. 北京:高等教育出版社[4] 周房安.数学选择题解答策略[J].广东教育,2006,(04).62~63.[5] 傅钦志.高考解题中的优先策略[J].高中数理化,2004,(02).1~2.指导教师签名:系主任(教研室主任)签名:年月日年月日学院审查意见:教学院长签名:年月日河北师范大学本科生毕业论文(设计)开题报告书数学与信息科学学院数学与应用数学专业 2010 届本科生毕业论文设计浅谈中学数学解题方法作者姓名指导教师所在学院数学与信息科学学院专业(系)数学教育班级(届) 06级A班完成日期 2010 年 5 月 6 日目录中文摘要、关键词 (2)引言 (3)一、配方法 (3)二、换元法 (3)三、待定系数法 (3)四、定义法 (3)五、数学归纳法 (3)六、参数法 (3)七、反证法 (3)参考文献…………………………………………………………()英文摘要、关键词………………………………………………()附录………………………………………………………………()摘要:在与北京地区十余位高中毕业班学生的接触后,结合我自身的经验,我发现当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学方法融会贯通时,才能提出新看法、巧解法。
初中数学解题技巧探究第一篇范文在初中数学教学中,解题技巧的培养是提高学生数学素养的关键。
本文从以下几个方面对初中数学解题技巧进行探究:理解题意、分析问题、设计算法、演绎推理、检验结果。
一、理解题意理解题意是解题的第一步,要求学生仔细阅读题目,把握题目的本质要求。
在实际操作中,学生应关注以下几点:1.理解题目中的关键词,如“相等”、“不等”、“最大值”、“最小值”等。
2.明确题目的已知条件和求解目标。
3.注意题目中的限制条件和特殊要求。
二、分析问题分析问题是解题的核心环节,要求学生运用所学知识对问题进行深入分析,找出问题的内在联系。
具体步骤如下:1.梳理已知条件,找出未知量。
2.分析已知条件与未知量之间的关系,建立数学模型。
3.确定解题思路,选择合适的解题方法。
三、设计算法设计算法是根据分析结果,选择合适的数学方法进行求解。
在这一环节,学生应掌握以下几点:1.熟悉各种数学运算,如加、减、乘、除、乘方、开方等。
2.了解解方程、不等式的方法,如代入法、消元法、图像法等。
3.学会运用数学公式、定理、性质解决实际问题。
四、演绎推理演绎推理是数学解题的重要环节,要求学生遵循逻辑规律,进行严密的推理。
在实际操作中,学生应关注以下几点:1.遵循三段论推理,确保推理过程的正确性。
2.注意推理过程中的逻辑严密性,避免出现跳跃性思维。
3.学会运用反证法、归纳法等推理方法。
五、检验结果检验结果是解题的最后一步,要求学生对解题过程和结果进行回顾,确保解答的正确性。
具体步骤如下:1.检查计算过程,是否存在错误或遗漏。
2.分析解题结果是否符合题目的要求。
3.检查答案是否合理,如数值是否过大或过小,符号是否正确等。
综上所述,初中数学解题技巧的培养应注重以下几点:1.加强基础知识的储备,提高学生的数学素养。
2.培养学生分析问题、解决问题的能力。
3.注重逻辑思维训练,提高学生的演绎推理能力。
4.培养学生检查答案的习惯,提高解题的准确性。
初三重要数学考题的解题方法解析论文初三重要数学考题的解题方法解析论文近年来,随着新课程改革的不断深入,初中数学重要考题更具有综合性与全面性,注重对初中学生的全面考查。
初三是初中学生升学考试前的重要时期,应加强对数学知识的综合知识的应用能力,可以说,初中数学初中重要考题一直是学生的难点问题。
初三学生在系统学习过初一、初二、初三的课程后,对初中数学知识的结构有了大致的了解,重要考题是知识与方法综合性的体现,主要考查学生对各个知识点的综合运用能力。
对于初中数学教师与学生来说,初中数学重要考题一直都是重点关注的方面。
在数学教学中,如何让学生能够综合运用各个知识点,一直是初中数学教师的难点问题。
一、初中数学初中重要考题的发展趋势教师作为在数学课堂教学中的重要引导者,应为学生创设一个有趣、轻松、愉悦、和谐的教学氛围,并在课前备课工作中认真挑选重要的初中考题,对其知识点进行细分,将重要考题讲解作为提高教学效率的重要环节。
此外,初三也是巩固学生数学基础知识的重要时段。
随着新课程改革的不断深入,初中数学尤其是初三重要考题的题型也越来越灵活。
总的来说,初中数学重要考题主要发展趋势分为:第一,考察学生通过建立坐标系实现数形结合,正确处理代数与几何的关系;第二,通过构造函数与方程式,考察学生对抛物线或直线知识的理解与灵活运用能力;第三,考察学生综合运用几何与代数的思想。
考虑到初中数学重要考题是对学生思维能力的一种全方位检测,而不是单纯的知识考察,并且其解题方法与涉及的知识点也较为全面、广泛。
因此,初中数学教师应了解并掌握初中数学重要考题的发展趋势,不断探索更为有效地解题思路与方法,以促进学生的全面发展。
二、初三重要数学考题的解题方法解析1.存在性问题可以说,存在性问题是近年来必考的重要考题,主要包括点的存在、线的存在、直线的存在以及平行、垂直、相等的存在等。
如在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B (3,-2√3/3)三点。
琼州学院浅谈中学数学解题研究学院理工学院专业数学与应用数学班级 12级学生王永确学号 ******** 指导教师陈德钦目录中文摘要、关键词 (2)引言 (3)一、配方法 (3)二、换元法 (3)三、待定系数法 (3)四、定义法 (3)五、数学归纳法 (3)六、参数法 (3)参考文献…………………………………………………………()英文摘要、关键词………………………………………………()附录………………………………………………………………()摘要:随着素质教育的推进,在学习中学数学方法时,常会遇到一些比较复杂的问题,如果用直接求解的方式来解答,往往会使问题变得更加复杂,于是我们提出了数学常用解题方法和技巧,,同时也证实了掌握数学解题方法和技巧是十分必要的。
数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。
数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。
可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学方法和数学思想的认识和运用,数学素质的综合体现就是“能力”。
为了让读者能够更系统地了解中学数学常用的解题方法和技巧,本文通过理论阐述和例题分析就中学数学常用的解题方法和技巧进行详细的以下介绍:本文浅陋介绍高考中常用的数学基本解题方法:配方法、换元法、待定系数法、数学归纳法等等。
在每节的内容中,先是对方法或者问题进行综合性的叙述,再以例题的形式出现进行详细的解答和分析,对方法和问题进行示范,每个例中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。
关键词:解题方法和技巧数学解题思想配方法换元法待定系数法数学归纳法1、配方法配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。
这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。
南京师范大学泰州学院毕业论文(设计)(一六届)题目:浅谈中学数学解题思想和方法院(系、部):数学科学与应用学院专业:数学与应用数学姓名:覃洪沙学号08120216指导教师:贾艳鸿南京师范大学泰州学院教务处制摘要:随着社会经济的不断发展,教育事业的不断推进,数学成为一门必修的学科。
本文就是针对数学学习过程中常遇到的问题研究常见的数学解题思想和方法:方程和函数的思想、转化思想、数形结合思想、分类和整合思想、配方法、换元法、待定系数法、定义法等。
研究这些数学解题思想和方法,首先要对其的发展起源有一定的了解以及进行简单的概述;其次在每一节内容对这些数学解题思想、方法进行简单的叙述;最后利用例题再现的形式对每种解题思想和方法进行详细的解答和分析。
关键词:解题思想和方法;方程和函数思想;转化思想;配方法;换元法Abstract:With the continuous development of social economy,the continuous development of education,mathematics has become a compulsory subject.This article is in view of mathematics learning often encountered in the process of common mathematical problem solving ideas and methods:function and equation thought,transforming ideas, combined with thought,classification and integrated thinking,method, change element method,method of undetermined coefficient,definition method.These mathematical problem solving ideas and methods of research,first of all to the origin and development have certain understanding and for a simple overview;second in each section of the content and method of the thought of mathematical problem solving of simple narrative;the final rendering using examples in the form of on every kind of problem solving thinking thought and methodology detailed explanation and analysis.Key words:problem-solving ideas and methods of the ideological function of the ideological function of the method of changing the method of changing the method of undetermined coefficient method目录1绪论 (3)1.1数学解题思想的起源及发展史 (3)1.2研究数学解题思想和方法的目的与意义 (3)2中学数学解题思想的介绍 (4)2.1函数和方程思想 (4)2.2转化思想 (4)2.3分类与整合思想 (6)2.4数形结合思想 (6)3中学数学解题的基本方法 (9)3.1配方法 (9)3.2换元法 (10)3.3待定系数法 (10)3.4定义法 (11)3.5数学归纳法 (12)3.6参数法 (13)3.7反证法 (15)4总结和启示 (16)谢辞 (17)参考文献 (18)1绪论1.1数学解题思想的起源及发展史在我国古代,就已经出现用十进制数字的方法表示大数;到秦朝和汉朝时期,十进制表示形式已经发展到完满的时期。
例谈中学数学经典解题方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
例1.二次三项式x2-4x-1写成a(x+m)2+n的形式为
解:原式=x2-4x+4-5=(x-2)2-5.
点评:配方法的难点是配方,要求学生必须熟练掌握公式“a2±2ab+b2”,判断什么是:“a”或“b”或“ab”,怎样从a2、2ab 这两项去找出“b”,或从a2、b2这两项去找出2ab”,或从2ab去找出a2和b2”.同学们要熟练掌握这些基本方法,从而做到心中有数,配方有路可循.
2、因式分解法
有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
例2.5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)
说明:系数不一样一样可以做分组分解,和上面一样,把5ax
和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
例3.解方程组:(x+5)+(y-4)=8;(x+5)-(y-4)=4。
解:令x+5=m,y-4=n,原方程可写为:m+n=8,m-n=4。
解得m=6,n=2。
所以x+5=6,y-4=2所以x=1,y=6。
特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
4、判别式法与韦达定理
一元二次方程ax2bxc=0(a、b、c属于r,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
例4.关的一元二次方程x2-2(k+1)x+k2-1=0有实数根,则的取值范围是______
解:方程有实数根,但具体不知道有多少个根,所以有b2-4ac ≥0
解得 a=1,b=-2(k+1),c=k2-1
∴b2-4ac=[-2(k+1)]2-4×1×(k2-1)=8k+8
因为方程有实数根,∴b2-4ac≥0,即:8k+8≥0,∴k≥-1
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
例5.已知函数y= 的最大值为7,最小值为-1,求此函数式。
【分析】求函数的表达式,实际上就是确定系数m、n的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”。
此题也可由解集(-1,7)而设(y+1)(y-7)≤0,即y2-6y-7≤0,然后与不等式①比较系数而得:,解出m、n而求得函数式y。
另外,还有以下方法,由于版面有限不再例举。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。