高中数学测试卷(含答案)
- 格式:doc
- 大小:261.50 KB
- 文档页数:6
高中数学卷试题及答案一、选择题(每题3分,共30分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。
A. 0B. 2C. 4D. 62. 已知数列\( \{a_n\} \)的通项公式为\( a_n = 3n - 1 \),求\( a_5 \)的值。
A. 14B. 12C. 16D. 183. 圆的方程为\( (x-3)^2 + (y-4)^2 = 25 \),求圆心坐标。
A. (-3, 4)B. (3, 4)C. (4, 3)D. (4, -3)4. 已知\( \sin \theta = \frac{3}{5} \),求\( \cos \theta \)的值(假设\( \theta \)在第一象限)。
A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C.\( \frac{3}{5} \) D. 05. 若\( \log_{10}100 = 2 \),求\( \log_{10}1000 \)的值。
A. 3B. 4C. 5D. 66. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),且\( xy = 6 \),求\( x + y \)的值。
A. 3B. 6C. 9D. 127. 函数\( y = \sqrt{x} \)的定义域是:A. \( x \geq 0 \)B. \( x > 0 \)C. \( x \leq 0 \)D. \( x < 0 \)8. 已知\( \tan \alpha = 2 \),求\( \sin \alpha \)的值(假设\( \alpha \)在第一象限)。
A. \( \frac{2}{\sqrt{5}} \)B. \( \frac{1}{\sqrt{5}} \)C. \( \frac{2}{3} \)D. \( \frac{1}{2} \)9. 已知\( |a| < 1 \),求\( 1 - a \)的值的范围。
高中数学测试题及答案doc原创一、选择题(每题4分,共40分)1. 下列哪个选项不是实数集的子集?A. 有理数集B. 整数集C. 无理数集D. 复数集答案:D2. 若函数f(x)=2x+1,则f(-1)的值为:A. -1B. 1C. 3D. -3答案:A3. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:B4. 等差数列{an}的首项a1=3,公差d=2,那么a5的值为:A. 13B. 11C. 9D. 7答案:A5. 已知集合A={1,2,3},B={2,3,4},则A∩B的值为:A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B6. 函数y=x^2-4x+3的顶点坐标是:A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)答案:A7. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 13答案:C8. 已知数列{an}满足a1=1,an+1=2an+1,那么a3的值为:A. 7B. 5C. 3D. 1答案:A9. 函数y=1/x的图像关于:A. 原点对称B. y轴对称C. x轴对称D. 直线y=x对称答案:A10. 一个正方体的体积为27,那么它的表面积是:A. 54B. 108C. 216D. 486答案:A二、填空题(每题4分,共20分)1. 若sinα=3/5,且α为锐角,则cosα=______。
答案:4/52. 一个数列的前三项为1,2,4,从第四项开始,每一项是前三项的和,那么这个数列的第五项是______。
答案:73. 已知函数f(x)=x^3-3x+1,求f'(x)=______。
答案:3x^2-34. 一个圆的直径为10,那么它的周长是______。
答案:π*105. 一个等比数列的首项为2,公比为3,那么它的第五项是______。
答案:486三、解答题(每题10分,共40分)1. 已知函数f(x)=x^2-6x+8,求函数的顶点坐标和对称轴。
人教A版高中数学必修第一册全册测试卷(含答案)一、单选题
1.“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2.已知集合,则()
A.B.
C.D.
3.若集合,0,1,,则
A.B.C.D.
4.已知正数x,y满足:,则x+y的最小值为( )
A .B.C.6D.
5.函数,其中,记在区间,上的最小值为(a),则函数(a)的最大值为()
A.B.0C.1D.2
6.二次函数的图象如图所示,反比例函数与正比例函数在同一坐标系中的大致图象可能是()
A.B.
C.D.
7.设函数,则函数的定义域为()A.B.C.D.
8.函数的定义域为()A.B.C.D.
9.函数的图象大致为()
A.B.C.D.
10.设,则的大小关系是()A.B.C.D.
11.“”是“直线和直线互相垂直”的()A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件。
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。
已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。
5D .6 4。
下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。
设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。
2 B .3 C .9 D 。
187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。
高中数学试卷含答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数y =的定义域为 A .(],1-∞-B .(),1-∞-C .[)1,-+∞ D .()1,-+∞2.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .23.如果函数()sin 6f x x ωπ⎛⎫=+ ⎪⎝⎭()0ω>的最小正周期为2π,则ω的值为A .1B .2C .4D .84.在△ABC 中,60ABC ∠=,2AB =,3BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为A .16B .13C .12D .235.如图1A B .C .8 D .126.在平面直角坐标系中,若不等式组20,20,x y x y x t +-⎧⎪-+⎨⎪⎩≥≥≤表示的平面区域的面积为4,则实数t 的值为 A .1B .2C .3D .4 7.已知幂函数()22657my m m x -=-+在区间()0,+∞上单调递增,则实数m 的值为A .3B .2C .2或3D .2-或3-图1俯视侧(左)视8.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =,()0,2b =,则⨯a b 的值为 A .8-B .6-C .6D .89.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件10.已知圆O :222x y r +=,点()P a b ,(0ab ≠)是圆O 内一点,过点P 的圆O 的最短弦所在的直线为1l ,直线2l 的方程为20ax by r ++=,那么 A .12l l ∥,且2l 与圆O 相离B .12l l ⊥,且2l 与圆O 相切 C .12l l ∥,且2l 与圆O 相交D .12l l ⊥,且2l 与圆O 相离二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.若函数()()2ln 1f x x ax =++是偶函数,则实数a 的值为.12.已知集合{}13A x x =≤≤,{}3B x a x a =+≤≤,若A B ⊆,则实数a 的取值范围为. 13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,…,若按此规律继续下去,则5a =,若145n a =,则n =.(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为cm . 512 122图215.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB =.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+ ⎪⎝⎭.(1)求9f π⎛⎫⎪⎝⎭的值;(2)若234f απ⎛⎫+= ⎪⎝⎭,求cos2α的值. 17.(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)50,40,[)60,50,…,[]100,90后得到如图4的频率分布直方图.(1)求图中实数a 的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数; (3)若从数学成绩在[)40,50与[]90,100两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差 的绝对值不大于10的概率.18.(本小题满分14分)(分图如图5所示,在三棱锥ABC P -中,AB BC ==⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,2=PD . (1)求三棱锥ABC P -的体积; (2)证明△PBC 为直角三角形. 19.(本小题满分14分)已知等差数列{}n a 的公差0d ≠,它的前n 项和为n S ,若570S =,且2a ,7a ,22a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:1368n T <≤.20.(本小题满分14分)已知函数32()f x x ax b =-++(),a b ∈R . (1)求函数()f x 的单调递增区间;(2)若对任意[]3,4a ∈,函数()f x 在R 上都有三个零点,求实数b 的取值范围. 21.(本小题满分14分)已知椭圆2214y x +=的左、右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T .(1)求曲线C 的方程;(2)设点P 、T 的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且•→PA PB→≤15,求2212S S -的取值范围。
高中生数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.14159B. √2C. 0.33333D. 2/3答案:B2. 函数f(x)=x^2的图像关于哪条直线对称?A. x=0B. x=1C. y=xD. y=-x答案:A3. 集合{1,2,3}和{2,3,4}的交集是什么?A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 已知等差数列的前三项为2, 5, 8,求第四项。
A. 11B. 10C. 9D. 12答案:A5. 圆的面积公式是什么?A. A=πr^2B. A=2πrC. A=πd^2D. A=πd/2答案:A6. 函数y=3x+2的斜率是多少?A. 3B. 2C. 1/3D. 1/2答案:A7. 一个数的立方根是它本身,这个数可以是:A. 0B. 1C. -1D. 以上都是答案:D8. 一个三角形的三个内角之和是多少度?A. 90度B. 180度C. 360度D. 270度答案:B9. 等腰三角形的两个底角相等,这个说法是正确的吗?A. 正确B. 错误答案:A10. 一个数的绝对值是它本身,这个数可以是:A. 正数B. 负数C. 0D. 以上都是答案:D二、填空题(每题4分,共20分)1. 一个数的相反数是-5,那么这个数是______。
答案:52. 一个数的平方是25,那么这个数可以是______。
答案:±53. 一个数的绝对值是5,那么这个数可以是______。
答案:±54. 一个等差数列的前三项是3, 6, 9,那么这个数列的公差是______。
答案:35. 一个圆的半径是5,那么它的周长是______。
答案:2π×5 = 10π三、解答题(每题10分,共50分)1. 解方程:2x - 3 = 7。
答案:x = 52. 已知一个三角形的两边长分别为3和4,第三边长是5,求这个三角形的面积。
高中数学试卷(含答案)高中数学试卷(含答案)第一部分:选择题(共50分)1. 若实数a满足a² - 3a + k = 0有两个相等的实根,则k的取值范围是()A. k < 0B. k = 0C. k > 0D. k ≠ 3/2答案:C解析:对于二次方程a² - 3a + k = 0,判别式Δ = (-3)² - 4 × 1 × k需要满足Δ = 0。
解得k = 9/4,因此k > 0。
2. 已知三阶行列式的展开式为|A| = a₁₂a₂₃a₃₁ + a₁₃a₂₁a₃₂ - a₁₁a₂₃a₃₂ - a₁₂a₂₁a₃₃ + a₁₃a₂₂a₃₁ - a₁₃a₂₂a₃₃,则|A|的值为()A. 0B. 1C. -1D. 2解析:根据行列式的展开式可得|A| = a₁₂a₂₃a₃₁ + a₁₃a₂₁a₃₂- a₁₁a₂₃a₃₂ - a₁₂a₂₁a₃₃ + a₁₃a₂₂a₃₁ - a₁₃a₂₂a₃₃。
由于这是一个三阶行列式,对于任意的i,aᵢᵢ出现了两次,所以|A| = 0。
3. 已知二次函数f(x) = ax² + bx + c的图像过点(2,1),且在x轴上有一个零点。
下列说法正确的是()A. a > 0且c > 0B. a < 0且c < 0C. a > 0且c < 0D. a < 0且c > 0答案:C解析:由已知条件得到方程f(2) = a(2)² + b(2) + c = 1,化简得4a +2b + c = 1。
又由于在x轴上有一个零点,即方程ax² + bx + c = 0有实根,所以b² - 4ac ≥ 0。
联立两个方程,解得a > 0且c < 0。
4. 若a + b = 2c,则下列选项中一定为正数的是()A. a + 2b - 3cB. 3a + 4b - 5cC. a - 4b + 3cD. 2a + 3b - 4c解析:利用已知条件a + b = 2c,可以将选项中的式子用a和b表示。
高中数学《数列》测试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.{a n }是首项为1,公差为3的等差数列,若a n =2 017,则序号n 等于( D ) A .667 B .668 C .669D .673[解析] 由题意可得,a n =a 1+(n -1)d =1+3(n -1)=3n -2, ∴2 017=3n -2,∴n =673.2.在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( B )A .2B .4C . 2D .2 2 [解析] 由已知得:a 1q 2=1,a 1q +a 1q 3=52,∴q +q 3q 2=52,q 2-52q +1=0,∴q =12或q =2(舍),∴a 1=4.3.等比数列x,3x +3,6x +6,…的第四项等于( A ) A .-24 B .0 C .12D .24[解析] 由等比数列的前三项为x,3x +3,6x +6,可得(3x +3)2=x (6x +6),解得x =-3或x =-1(此时3x +3=0,不合题意,舍去),故该等比数列的首项x =-3,公比q =3x +3x=2,所以第四项为[6×(-3)+6]×2=-24.4.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2等于( B ) A .-4 B .-6 C .-8D .-10[解析] 由题意,得a 23=a 1a 4,∴(a 1+2d )2=a 1(a 1+3d ), ∴(a 1+4)2=a 1(a 1+6), 解得a 1=-8.∴a 2=a 1+d =-8+2=-6.5.已知等差数列{a n }的公差d ≠0且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于( C )A .1514B .1213C .1316D .1516[解析] 由题意,得a 23=a 1a 9, ∴(a 1+2d )2=a 1(a 1+8d ), ∴a 1=d . ∴a 1+a 3+a 9a 2+a 4+a 10=3a 1+10d 3a 1+13d =13a 116a 1=1316.6.等比数列{a n }满足a 2+8a 5=0,设S n 是数列{1a n}的前n 项和,则S 5S 2=( A ) A .-11 B .-8 C .5D .11[解析] 由a 2+8a 5=0得a 1q +8a 1q 4=0,解得q =-12.易知{1a n}是等比数列,公比为-2,首项为1a 1,所以S 2=1a 1[1--22]1--2=-1a 1,S 5=1a 1[1--25]1--2=11a 1,所以S 5S 2=-11,故选A .7.设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N *),则a n =( C )A .3(3n-2n) B .3n +2nC .3nD .3·2n -1[解析] 由S n =32(a n -1)(n ∈N *)可得S n -1=32(a n -1-1)(n ≥2,n ∈N *),两式相减可得a n=32a n -32a n -1(n ≥2,n ∈N *),即a n =3a n -1(n ≥2,n ∈N *).又a 1=S 1=32(a 1-1),解得a 1=3,所以数列{a n }是以3为首项,3为公比的等比数列,则a n =3n.8.在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x +y +z 的值为( B )A .1B .2C .3D .4[解析] 由表格知,第三列为首项为4,公比为12的等比数列,∴x =1.根据每行成等差数得第四列前两个数字分别为5,52,故第四列所成的等比数列的公比为12,∴y =5×(12)3=58,同理z =6×(12)4=38,∴x +y +z =2.9.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上面的已知条件可求得该女子第4天所织布的天数为( D )A .815 B .1615 C .2031D .4031[解析] 设该女第n 天织布为a n 尺,且数列为公比q =2的等比数列,由题意,得a 11-251-2=5,解得a 1=531.故该女第4天所织布的尺数为a 4=a 1q 3=4031,故选D .10.已知等比数列{a n }中,a 1+a 3=10,a 4+a 6=54,则该数列的公比q 为( D )A .2B .1C .14D .12[解析] 由题意,得⎩⎪⎨⎪⎧a 11+q 2=10①a 41+q 2=54②,②①得q 3=18,∴q =12. 11.已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 3b 8b 10=( B )A .1B .8C .4D .2[解析] 设{a n }的公差为d ,则由条件式可得,(a 7-3d )-2a 27+3(a 7+d )=0, 解得a 7=2或a 7=0(舍去). ∴b 3b 8b 10=b 37=a 37=8.12.若{a n }是等差数列,首项a 1>0,a 1 007+a 1 008>0,a 1 007·a 1 008<0,则使前n 项和S n >0成立的最大自然数n 是( C )A .2 012B .2 013C .2 014D .2 015[解析] ∵a 1 007+a 1 008>0, ∴a 1+a 2 014>0,∴S 2 014=2 014a 1+a 2 0142>0,∵a 1 007·a 1 008<0,a 1>0, ∴a 1 007>0,a 1 008<0, ∴2a 1 008=a 1+a 2 015<0, ∴S 2 015=2 015a 1+a 2 0152<0,故选C .二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中横线上) 13.已知S n 是等比数列{a n }的前n 项和,a 5=-2,a 8=16,则S 6等于__218__.[解析] ∵{a n }为等比数列,∴a 8=a 5q 3,∴q 3=16-2=-8,∴q =-2.又a 5=a 1q 4,∴a 1=-216=-18,∴S 6=a 11-q61-q=-18[1--26]1+2=218. 14.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =__n 2+n +22__.[解析] ∵a n +1-a n =n +1, ∴a 2-a 1=2,a 3-a 2=3, a 4-a 3=4,…a n -a n -1=n (n ≥2).将上述n -1个式子相加得a n -a 1=2+3+4+…+n =2+nn -12,∴a n =2+2+nn -12=n 2+n +22(n ≥2).又a 1=2满足上式,∴a n =n 2+n +22.15.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则a 1+a 2+…+a 51=__676__.[解析] 利用分组求和法求解.当n 为正奇数时,a n +2-a n =0,又a 1=1,则所有奇数项都是1;当n 为正偶数时,a n +2-a n =2,又a 2=2,则所有偶数项是首项和公差都是2的等差数列,所以a 1+a 2+…+a 51=(a 1+a 3+…+a 51)+(a 2+a 4+…+a 50)=26a 1+25a 2+25×242×2=676. 16.在如下数表中,已知每行、每列中的数都成等差数列,那么位于表中的第n 行第n +1列的数是__n 2+n __.第1列 第2列 第3列 … 第1行 1 2 3 … 第2行 2 4 6 … 第3行 3 6 9 … ……………[解析] 设为{a n },则a 1=n ,d =2n -n =n ,所以a n +1=n +n ·n =n 2+n ,即第n 行第n +1列的数是n 2+n .三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n .[解析] 设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+2d a 1+6d =-16a 1+3d +a 1+5d =0,即⎩⎪⎨⎪⎧a 21+8da 1+12d 2=-16a 1=-4d ,解得⎩⎪⎨⎪⎧a 1=-8d =2,或⎩⎪⎨⎪⎧a 1=8d =-2.因此S n =-8n +n (n -1)=n (n -9), 或S n =8n -n (n -1)=-n (n -9).18.(本题满分12分)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n=2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.[解析] (1)当n =1时,T 1=2S 1-1, ∵T 1=S 1=a 1,所以a 1=2a 1-1,求得a 1=1.(2)当n ≥2时,S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1, ∴S n =2S n -1+2n -1 ① ∴S n +1=2S n +2n +1 ② ②-①得a n +1=2a n +2, ∴a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2). 求得a 1+2=3,a 2+2=6,则a 2+2a 1+2=2, ∴{a n +2}是以3为首项,2为公比的等比数列. ∴a n +2=3·2n -1,∴a n =3·2n -1-2,n ∈N *.19.(本题满分12分)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ; (2)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c .[解析] (1){a n }为等差数列, ∵a 3+a 4=a 2+a 5=22, 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两个根. 又公差d >0,∴a 3<a 4, ∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4.∴a n =4n -3.(2)由(1)知,S n =n ·1+n n -12·4=2n 2-n ,∴b n =S nn +c =2n 2-nn +c,∴b 1=11+c ,b 2=62+c ,b 3=153+c, ∵{b n }是等差数列,∴2b 2=b 1+b 3, ∴2c 2+c =0,∴c =-12(c =0舍去).20.(本题满分12分)已知数列{b n }是首项为1的等差数列,数列{a n }满足a n +1-3a n -1=0,且b 3+1=a 2,a 1=1.(1)求数列{a n }的通项公式;(2)令c n =a n ·b n ,求数列{c n }的前n 项和T n . [解析] (1)∵a n +1-3a n -1=0,∴a n +1=3a n +1, ∴a n +1+12=3(a n +12),又a 1+12=32.∴数列{a n +12}是首项为32,公比为3的等比数列.∴a n +12=32·3n -1=3n2,∴a n =3n-12.(2)由(1)知,b 3=a 2-1=3, 设等差数列{b n }的公差为d ,∴d =1, ∴b n =1+n -1=n ,∴c n =a n ·b n =n ·3n-12=n ·3n2-n2.∴T n =12(1×3+2×32+…+n ×3n )-12(1+2+3+…+n )=12(1×3+2×32+…+n ×3n)-n n +14.令S n =1×3+2×32+…+n ×3n① ∴3S n =1×32+…+(n -1)×3n +n ×3n +1②①-②得-2S n =3+32+…+3n -n ×3n +1=31-3n1-3-n ×3n +1=32(3n -1)-n ×3n +1 =3n +12-32-n ×3n +1=3n +1(12-n )-32,∴S n =3n +1(n 2-14)+34=2n -13n +1+34, ∴T n =2n -13n +1+38-n n +14.21.(本题满分12分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).[解析] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2, 所以q 2+q -6=0. 又因为q >0, 解得q =2, 所以b n =2n.由b 3=a 4-a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.② 联立①②,解得a 1=1,d =3. 由此可得a n =3n -2.所以数列{a n }的通项公式a n =3n -2, 数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b n }的前n 项和为T n .由a 2n =6n -2,得T n =4×2+10×22+16×23+…+(6n -2)×2n ,2T n =4×22+10×23+16×24+…+(6n -8)×2n +(6n -2)×2n +1.上述两式相减,得-T n =4×2+6×22+6×23+…+6×2n -(6n -2)×2n +1=12×1-2n1-2-4-(6n -2)×2n +1=-(3n -4)2n +2-16,所以T n =(3n -4)2n +2+16.所以,数列{a 2n b n }的前n 项和为(3n -4)2n +2+16.22.(本题满分12分)设数列{a n }的前n 项和为S n ,点(n ,S n n)(n ∈N +)均在函数y =3x -2的图象上.(1)求数列{a n }的通项公式; (2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N +都成立的最小正整数m .[解析] (1)依题意得:S nn=3n -2,即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2×1=1=6×1-5=1,满足上式. 所以a n =6n -5(n ∈N +). (2)由(1)得b n =3a n a n +1=36n -5[6n +1-5]=12(16n -5-16n +1), 故T n =12[(1-17)+(17-113)+…+(16n -5-16n +1)]=12(1-16n +1).因此,使得12(1-16n +1)<m 20(n ∈N +)成立的m 必须且仅需满足12≤m 20,即m ≥10,故满足要求的最小正整数m 为10.。
苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(满分150分,时间120分钟)班级姓名评价一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f (x )2(3x +1)的定义域为()A.-13,+∞B.-∞,C.-13D.-13,12.设a =log 42.4,b =log 32.9,c =log 32.4,则a ,b ,c 的大小关系为()A.b >c >aB.b >a >cC.c >b >aD.a >c >b3.已知0<m <n <1,则指数函数①y =m x 和②y =n x 的图象为()A.B. C. D.4.已知函数f (x )=log 3(x -1),若f (a )=2,则实数a 的值为()A.3B.8C.9D.105.函数y 2+2的增区间为()A.(-∞,0)B.(-∞,-1]C.[-1,+∞)D.[-2,+∞)6.不论a 为何值,函数y =(a -1)2x-2恒过一定点,则这个定点为()A.1,B.1C.-1,D.-17.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致是()A. B. C. D.8.春末夏初,南京玄武湖公园荷花池中的荷花枝繁叶茂,已知每天新长出的荷叶覆盖水面的面积是前一天的两倍,若荷叶20天可以完全长满荷花池水面,则当荷叶刚好覆盖水面面积18时,荷叶已生长了()A.4天B.15天C.17天D.18天二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列函数中定义域和值域相同的是()A.y = 23B.y = 15C.y =-xD.y =3x10.已知函数f (x )=log 3( -2), >2,3 -1, ≤2,则下列各式正确的是()A.f (5)=1B.f (f (5))=1C.f (3)=9D.f (f (3))=1311.设函数f (x )=(3-2 ) -1, ≤1,, >1,其中a >0且a ≠1,下列关于函数f (x )的说法正确的是()A.若a =2,则f (log 23)=3B.若f (x )在R 上是增函数,则1<a <32C.若f (0)=-1,则a =32D.函数f (x )为R 上的奇函数12.已知函数f (x )=lo g 12x ,下列四个命题正确的是()A.函数f (|x |)为偶函数B.若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1C.函数f (-x 2+2x )在(1,3)上为增函数D.若0<a <1,则|f (1+a )|<|f (1-a )|三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分,第二个空3分.13.若幂函数y =f (x 2,则f .14.设函数f (x )=lg x ,若f (2x )<f (2),则实数x 的取值范围是.15.函数f (x )=a 2-x-1(a >0,a ≠1)恒过定点,当0<a <1时,f (x 2)的增区间为.16.已知函数f (x )=x 2+log 2|x |,则不等式f (x -1)-f (1)<0的解集为.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)比较下列各组数的大小:(1)1.8,2.2;(2)0.70.8,0.80.7.18.(12分)已知关于x 的方程5x=15- 有负根,求实数a 的取值范围.19.(12分)已知函数f (x )=log a (-x 2+2x +3)(其中a >0且a ≠1)的值域为[-2,+∞).(1)求实数a 的值;(2)求函数f (x )的单调区间.20.(12分)已知函数f (x )=(a 2-a +1)x a +1为幂函数,且为奇函数.(1)求实数a 的值;(2)求函数g (x )=f (x )+1-2 ( )在0.21.(12分)设函数f (x )=lg (ax )·lg2.(1)当a =0.1时,求f (1000)的值;(2)若f (10)=10,求实数a 的值;(3)若对一切正实数x 恒有f (x )≤98,求实数a 的取值范围.22.(12分)为了预防流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y (单位:mg )与t 时间(单位:h )成正比,药物释放完毕后,y 与t之间的函数关系式为y 2+0.9 +(a 为常数),其图象如图所示,根据图中提供的信息回答下列问题:(1)从药物释放开始,求每立方米空气中的含药量y 与时间t 之间的函数关系式.(2)据测定,当空气中每立方米的含药量降低到116mg 以下时,学生方可进入教室,那么从药物释放开始至少需要经过多少小时,学生才可以回到教室?(第22题)参考答案1.D2.A3.C4.D5.B6.C7.A8.C9.BC 10.ABD 11.AB 12.ABD 13.-214.(0,1)15.(2,0)[0,+∞)16.(0,1)∪(1,2)17.(1)1.82.2(2)0.70.8<0.80.718.方程5x=15- 有负根,即0<15-<1,解得a <4,即a ∈(-∞,4)19.(1)a =12(2)函数f (x )的减区间为(-1,1],增区间为[1,3)20.(1)a =0(2)g (x )=x +1-2 ,x ∈0t =1-2 ,t ∈[0,1],则g (t )=t +1- 22=-12(t -1)2+1,所以12≤g (t )≤121.(1)f (1000)=-14(2)f (10)=lg (10a )·lg 100=(1+lg a )(lg a -2)=(lg a )2-lg a -2=10,即(lg a )2-lg a -12=0,解得lg a =4或-3,即a =104或10-3(3)因为对一切正实数x 恒有f (x )≤98,所以lg (ax )·lg 2≤98在(0,+∞)上恒成立,即(lg a +lg x )(lg a -2lg x )≤98,即2(lg x )2+lg a ·lg x -(lg a )2+98≥0在(0,+∞)上恒成立.因为x >0,所以lg x ∈R .由二次函数的性质可知,Δ=(lg a )2-8-(lg )2+,所以(lg a )2≤1,则-1≤lg a ≤1,所以110≤a ≤1022.(1)当0≤t ≤1时,设y =kt ,将点(0.1,1)代入得k =10,所以y =10t ,再将点(0.1,1)代入y 2+0.9 +,得a =-0.1,所以y 0≤ ≤1,2+0.9 -0.1, >1(2)2+0.9 -0.1≤116,所以( 2+0.9 -0.1),所以5(t 2+0.9t -0.1)≥4,所以10t 2+9t -9≥0,所以t ≥35或t ≤-32(舍去),所以学生要在0.6h 后才可以进入教室。
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}2log 4A x x =<,{}22B x x =-<<,则()R A B ⋂=( ) A .(]2,0- B .[)0,2 C .()0,2D .[)2,0-2.已知集合{}22A x x =-≥,集合{2,3,4,5}B =,那么集合A B =( ) A .[2,5] B .(3,5] C .{4,5}D .{2,3,4,5}3.已知集合{}03A x x =<<,2|43B x x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .233x x ⎧⎫≤<⎨⎬⎩⎭B .2|43x x ⎧⎫<≤⎨⎬⎩⎭C .{}04x x <≤D .{}03x x <<4.已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =( )A .{}0,1B .{}0,1,2C .{}1,2,3D .{}1,2,3,45.已知集合{}14,Z A x x x =-<<∈,{}110B x x =<<,则集合A B 中元素的个数为( ) A .2B .3C .4D .5 6.已知全集{}1,2,3,4,5U =,集合{}1,2,3A =,{}3,4B =,则集合{}4=( ) A .()UA BB .()()U UA BC .()U A B ⋂D .()U A B7.已知集合{}1,0,1,2A =-,{}03B x x =≤≤,则A B =( ) A .{}1 B .{}2 C .{}1,2D .{}0,1,28.设集合{}A x y x ==,(){}2,B x y y x ==,则AB =( )A .{}0B .(){}1,1C .{}0,1D .∅9.设集合{}A x x a =>,()(){}120B x x x =-->,若A B ⊆,则实数a 的取值范围是( ). A .(),1-∞ B .(],1-∞ C .()2,+∞D .[)2,+∞10.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()UA B =( ) A .{}1B .{}3C .{}2,4D .{}1,2,4,511.已知集合{}1,0,1,2M =-,{}21xN x =>,则()R M N ⋂=( )A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-12.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合[)2,4A =,[]3,5B =,则()R A B =( ) A .(]4,5B .[]4,5C .()[),23,-∞⋃+∞D .(][),23,-∞⋃+∞14.已知集合{|2}x A y y ==,集合{}3B x x =≥,则RA B =( )A .(),3-∞B .()0,3C .[]1,3D .[)1,315.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,3二、填空题16.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______.17.设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.18.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________.19.已知集合{}2|210A x ax x =+-=,若集合A 中只有一个元素,则实数a 的取值的集合是______20.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0}; ④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.21.设全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6},则ST =__.22.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.23.若非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,则M P =________.24.已知集合{}2280P x x x =-->,{}Q x x a =≥,若P Q Q ⋂=,则实数a 的取值范围是___________.25.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________.三、解答题26.(1)已知全集{}|510,Z U x x x =-≤≤∈,集合M ={|07,Z x x x ≤≤∈},N ={|24,Z x x x -<∈≤},求()U N M (分别用描述法和列举法表示结果);(2)已知全集{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,若集合{}2,4,6,8UA B =,求集合B ;(3)已知集合2{|210,R,R}P x ax ax a x =++=∈∈,当集合P 只有一个元素时,求实数a 的值,并求出这个元素.27.设集合{}2230A x x x =--<,集合{}22B x a x a =-<<+.(1)若2a =,求()RA B ⋃;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.28.已知函数()f x =A ,{|}B x x a =<. (1)求集合A ;(2)若“x ∈A ”是“x ∈B ”的充分条件,求a 的取值范围.29.设M 为100个连续正整数的集合,已知其中2的倍数有50个,3的倍数有33个,6的倍数有16个,如何利用这些数据求出M 中不能被3整除的奇数的个数?30.用描述法写出下面这些区间的含义:[]2,7-;[),a b ;()123,+∞;(],9-∞-.【参考答案】一、单选题 1.A 【解析】 【分析】求解对数不等式得到集合A ,进而结合补集和交集的概念即可求出结果. 【详解】因为{}016A x x =<<,所以(){}R 20A B x x ⋂=-<≤, 故选:A. 2.C 【解析】 【分析】解出不等式22x -≥,然后根据集合的交集运算可得答案. 【详解】因为{}{}224A x x x x =-≥=≥,{2,3,4,5}B =, 所以{4,5}A B =, 故选:C 3.A 【解析】 【分析】在数轴上分别作出集合A ,集合B ,再由交集的概念取相交部分. 【详解】因为{}03A x x =<<,2|43B x x ⎧⎫=≤≤⎨⎬⎩⎭,所以2|33A B x x ⎧⎫=≤<⎨⎬⎩⎭.故答案为:A. 4.C 【解析】 【分析】化简集合A ,根据集合B 中元素的性质求出集合B. 【详解】{}24[2,2]A x x =≤=-,{}*1B x x N x A =∈-∈且,{1,2,3}B ∴=, 故选:C 5.A 【解析】 【分析】利用集合交运算求A B ,即可确定元素个数. 【详解】由题设,{0,1,2,3}A =,又{|110}B x x =<<, 所以{2,3}A B =,共有2个元素. 故选:A 6.C 【解析】 【分析】利用交集,并集和补集运算法则进行计算,选出正确答案. 【详解】{}1,2,3,4A B =,(){}5UA B ⋃=,A 错误;()(){}{}{}4,51,2,51,2,4,5UUA B ==,B 错误;(){}{}{}4,53,44U A B ⋂==,C 正确; (){}{}{}1,2,51,2,31,2UA B ==,D 错误.故选:C 7.D 【解析】 【分析】依题意需要找到集合A 和集合B 中的公共元素, 即是集合A 中在03x ≤≤范围内的元素. 【详解】由题意知,对于集合B :03x ≤≤, ∴在集合A 中只有0、1、2满足条件,{}012A B ∴=,,故选:D . 8.D 【解析】 【分析】通过集合中点集与数集的概念,再运用集合的交集运算即可得解. 【详解】由题设可得A 为数集,B 为点集,故A B ⋂=∅. 故选:D 9.D 【解析】 【分析】求解一元二次不等式解得集合B ,根据集合的包含关系,列出a 的不等关系,即可求得结果. 【详解】()(){}120{2B x x x x x =-->=或1}x <,因为A B ⊆,故可得2a ≥,即实数a 的取值范围是[)2,+∞. 故选:D. 10.D 【解析】 【分析】利用交集和补集的定义可求得结果. 【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5UA B ⋂=.故选:D. 11.D 【解析】 【分析】 先求出RN ,再结合交集定义即可求解.【详解】 由{}{}R210x N x x x =≤=≤,得()R M N ⋂={}1,0-故选:D 12.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 13.B 【解析】 【分析】先求出集合A 的补集,再由交集运算可得答案. 【详解】集合[)2,4A =,[]3,5B =,则()()[),24,R A =-∞⋃+∞ 所以()[]4,5R A B ⋂=, 故选:B. 14.D 【解析】 【分析】根据指数函数的性质,求得集合{|1}A x x =≥,再结合集合的运算法则,即可求解. 【详解】由题意,可得集合{|2}{|1}xA y y y y ===≥,即集合{|1}A x x =≥,又由集合{}3B x x =≥,可得{}R 3B x x =<, 所以{}R 13[1,3)A B x x ⋂=≤<=. 故选:D. 15.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A .二、填空题 16.3【解析】 【分析】由题意可知集合B 是集合A 的子集,进而求出答案. 【详解】由B A ⊆知集合B 是集合A 的子集, 所以33A a ∈⇒=, 故答案为:3.17.[1,3]【解析】 【分析】根据交集的定义求解即可. 【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 .18.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.19.{}0,1-【解析】 【分析】分0a =和0a ≠两种情况保证方程2210ax x 只有一个解或重根,求出a 的值即可. 【详解】当0a =时,2210ax x 只有一个解12x =, 则集合2{|210}A x ax x =+-=有且只有一个元素,符合题意; 当0a ≠时,若集合A 中只有一个元素, 则一元二次方程2210ax x 有二重根, 即440a ∆=+=,即 1.a =-综上,0a =或1-,故实数a 的取值的集合为{}0,1.- 故答案为:{}0,1.- 20.①③⑥ 【解析】 【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解. 【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确; 对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确; 对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确. 故答案为:①③⑥.21.{}2,4,7,8【解析】 【分析】由已知得可以求得S 和T ,再由交集运算即可解决. 【详解】∵全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6}, ∴{}=2,4,6,7,8S ,{}=1,2,4,5,7,8T , ∴{}2,4,7,8S T =. 故答案为:{}2,4,7,8.22.1472【解析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:147223.P【解析】 【分析】推导出M N ⊆,N P ⊆,由此能求出M P P =.【详解】解:非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,M N ∴⊆,N P ⊆,MP P ∴=.故答案为:P .24.()4,+∞【解析】 【分析】求出集合P ,根据P Q Q ⋂=,得Q P ⊆,列出不等式即可得解. 【详解】解:{}{22804P x x x x x =-->=>或}2x <-,因为P Q Q ⋂=,所以Q P ⊆, 所以4a >. 故答案为:()4,+∞. 25.{x |2<x <3} 【解析】 【分析】解二次不等式可得集合B ,再求交集即可.∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}. 故答案为:{x |2<x <3}三、解答题26.(1){}|47,Z x x x ≤≤∈,{}4,5,6,7;(2){}0,1,3,5,7,9,10;(3)1a =,元素为1-. 【解析】 【分析】(1)根据补集和交集的定义直接计算作答. (2)利用补集的定义直接计算作答. (3)利用元素与集合的关系推理计算作答. 【详解】(1)由{}|510,Z U x x x =-≤≤∈,N ={|24,Z x x x -<∈≤}, 得:{|52U N x x =-≤<-或410,Z}x x ≤≤∈,而{|07,Z}M x x x =≤≤∈, 所以{}()|47,Z U N M x x x =≤≤∈{}4,5,6,7=. (2)由{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,{}2,4,6,8UA B =,得{2,4,6,8}UB =,所以{}()0,1,3,5,7,9,10U U B B ==. (3)当0a =时,P =∅,不符合题意,当0a ≠时,因集合P 只有一个元素,则方程2210ax ax ++=有等根,2440a a ∆=-=, 此时1a =,集合P 中的元素为1-, 所以1a =,这个元素是1-. 27.(1){1x x ≤-或}4x ≥ (2)01a <≤ 【解析】 【分析】(1)当2a =时,求出集合A 、B ,利用并集和补集的定义可求得集合()RA B ⋃;(2)根据已知条件可得出B A 且B ≠∅,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. (1) 解:{}{}223013A x x x x x =--<=-<<,当2a =时,{}04B x x =<<,故{}14A B x x ⋃=-<<, 因此,(){R1A B x x ⋃=≤-或}4x ≥.(2)解:因为p 是q 成立的必要不充分条件,则B A 且B ≠∅,所以,212223a a a a -≥-⎧⎪-<+⎨⎪+≤⎩,解得01a <≤, 当1a =时,{}13B x x =<< A ,合乎题意.因此,01a <≤.28.(1)A ={x |-2<x ≤3};(2)3a >.【解析】【分析】(1)由算术平方根的被开方数大于等于0,分式的分母不等于0可求得集合A ; (2)由已知得A ⊆B ,由此可得a 的取值范围.(1)解:函数()f x =3020x x -≥⎧⎨+>⎩, 解得23x -<≤,即A ={x |-2<x ≤3}.(2)解:因为A ={x |-2<x ≤3},B ={x |x <a },且“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B , 所以3a >.29.33【解析】【分析】分析集合之间的关系,由()()()()card A B card A card B card A B ⋃=+-⋂可得.【详解】记{|2,,}A x x n x M n N ==∈∈,{|3,,}B x x n x M n N ==∈∈,则{|21,,}M A x x n x M n N ==-∈∈,{|3,,}M B x x n x M n N =≠∈∈, {|A B x x ⋂=是能被3整除的偶数,}x M ∈, ()(){|M M A B x x =是不能被3整除的奇数,}x M ∈由题知()50,()33,()16card A card B card A B ===, 因为()()()M M MA B A B =,()()()()50331667card A B card A card B card A B =+-=+-=所以M 中不能被3整除的奇数有100-67=33个.30.{}27x x -≤≤;{}x a x b ≤<;{}123x x >;{}9x x ≤-.【解析】【分析】将区间转化为集合,用描述法写出答案.【详解】[]2,7-用描述法表示为:{}27x x -≤≤;[),a b 用描述法表示为:{}x a x b ≤<;()123,+∞用描述法表示为:{}123x x >;(],9-∞-用描述法表示为:{}9x x ≤-.。
可编辑修改精选全文完整版新课程标准考试数学试题一、填空题(本大题共10道小题,每小题3分,共30分)1、数学是研究(空间形式和数量关系)的科学,是刻画自然规律和社会规律的科学语言和有效工具。
2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。
3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。
4、高中数学课程应注重提高学生的数学(思维)能力。
5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。
6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。
7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。
8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。
9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与(三角函数)的一种工具。
10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。
二、判断题(本大题共5道小题,每小题2分,共10分)1、高中数学课程每个模块1学分,每个专题2学分。
(错,改:高中数学课程每个模块2学分,每个专题1学分。
)2、函数关系和相关关系都是确定性关系。
(错,改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。
)3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。
(对)4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。
(对)5、教师应成为学生进行数学探究的领导者。
(错,改:教师应成为学生进行数学探究的组织者、指导者和合作者。
)三、简答题(本大题共4道小题,每小题7分,共28分)1、高中数学课程的总目标是什么?答:使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
高中数学三角函数测试卷(答案解析版)高中数学三角函数测试卷(答案解析版)一、选择题1. 假设α是锐角,sinα=0.6,那么sin(90°-α)的值是多少?解析:根据三角函数的互余关系,sin(90°-α) = cosα = √(1 - sin²α) = √(1 - 0.6²) = 0.8。
答案:0.82. 已知tanα = 3/4,sinα的值为多少?解析:由tanα = sinα/cosα可得sinα = tanα × cosα = 3/4 × 4/5 = 3/5。
答案:3/53. 已知sinα = 1/2,cosβ = 3/5,α和β都是锐角,则sin(α+β)的值是多少?解析:根据两角和的公式,sin(α+β) = sinα × cosβ + cosα × sinβ = (1/2) × (3/5) + √(1 - (1/2)²) × √(1 - (3/5)²) = 3/10 + √(3/10 × 7/10) = 3/10 + √(21/100) = 3/10 + 3√21/10√10 = (3 + 3√21)/10。
答案:(3 + 3√21)/10二、填空题4. 在锐角三角形ABC中,已知∠A=30°,BC=6,AC=10,则AB 等于多少?解析:根据正弦定理,AB/AC = sin∠B/sin∠A,代入已知条件得到AB/10 = sin∠B/sin30°,即AB = 10×sin∠B/sin30°。
由∠B + ∠C = 90°可得∠B = 90° - ∠A - ∠C = 90° - 30° - 60° = 0°。
因此,AB =10×sin0°/sin30° = 0/0 = 0。
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}1,2A =,{}2,3,4B =,则A B =( )A .{}2B .{}3C .{}1,3D .{}1,22.已知集合{}260A x R x x =∈+-<,集合1133x B x R -⎧⎫=∈≥⎨⎬⎩⎭,则A B =( ) A .{}32x x -<<B .{}02x x <≤C .{}02x x ≤<D .{}3x x >-3.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N 4.已知集合{|04,}P x x x Z =<<∈,且M P ⊆,则M 可以是( ) A .{1,2} B .{2,4} C .{0,2} D .{3,4} 5.设集合{}1A x x =>,{}2B x x =≤,则A B =( )A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R6.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1-- C .{}1,2 D .{}1,1,2- 7.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8} B .{2,3,6,8} C .{2} D .{2,6,8} 8.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 9.设集合{}2,3,4,5A =,{}3,4,6B =,则A B =( ).A .{}2B .{}2,3C .{}3,4D .{}2,3,410.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3 B .[]3,3- C .(]1,3 D .[]3,1-11.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z ∣∣,则S T ( )A .{23}x x -<<∣B .{1,0,1,2}-C .{52}xx -<<∣ D .{2,1,0,1,2}-- 12.已知集合{}1,0,1,2M =-,{}21x N x =>,则()R M N ⋂=( ) A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-13.已知集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则()R A B ⋂=( )A .∅B .{}1,2-C .{}2,4-D .{}2,1,4--14.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,315.给出下列关系:①13∈R ;Q ;③-3∉Z ;④∉N ,其中正确的个数为( )A .1B .2C .3D .4二、填空题16.设{1,2}{1,2,3,4}A =,则满足条件的集合A 共有________个.17.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.18.已知(){},21A x y y x ==+,(){},3B x y y x ==+,则A B =___________.19.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.20.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____. 21.已知全集为R ,集合()1,A =+∞,则A =__________.22.若集合{}|23A x x =-<<,{}|2B x x =>,则A B =______.23.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.24.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,a M N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.25.若集合{}3A x x =>,集合{}B x x a =≥,且B A ,则实数a 的取值范围是______. 三、解答题26.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+< (1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.在①{}{}21,22,1,0a a a a ⊆-+-;②关于x 的不等式13ax b <+≤的解集是{}34x x <≤这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分.(1)已知______,求关于x 的不等式230ax x a -->的解集A ;(2)在(1)的条件下,若非空集合{}22B x k x k =<≤+,A B A ⋃=,求实数k 的取值范围.28.已知集合{}17U x x =≤≤,{}25A x x =≤<,{}37B x x =<≤.(1)求A B ;(2)求()U A B .29.设全集{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣.求U A ,()U A B ⋂,A B ,()U A B30.已知集合{}4222x A x =<≤,{}122B x a x a =-<≤+(1)当0a =,求A B ;(2)若A B =∅,求a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】根据集合的交集运算,即可求得答案.【详解】集合{}1,2A =,{}2,3,4B =,则{2}A B =,故选:A2.C【解析】【分析】本题首先通过解不等式260x x +-<得出{}32A x x =-<<,然后通过解不等式1133x -≥得出{}0B x x =≥,最后通过交集的相关性质即可得出结果.【详解】260x x +-<,()()320x x +-<,32x -<<,{}32A x x =-<<,1133x -≥,11x -≥-,0x ≥,{}0B x x =≥, 则{}02A B x x ⋂=≤<,故选:C.3.D【解析】【分析】利用()()()U U u M N M N ⋂=⋃,判断相互之间的关系.【详解】 ()()()U U u M N M N ⋂=⋃,M N N ⋃=,()u u M N N ⋃=.故选D.4.A【解析】【分析】化简集合P ,根据集合的包含关系确定M .【详解】因为{|04,}={1,2,3}P x x x Z =<<∈,又M P ⊆,所以任取x M ∈,则{1,2,3}x ∈, 所以M 可能为{2,3},A 对,又 0M ∉,4M ∉,∴ M 不可能为{2,4},{0,2},{3,4},B ,C ,D 错,故选:A.5.B【解析】【分析】根据交集的定义计算可得;【详解】 解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤;故选:B6.C【解析】【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解.【详解】 因为2cos 3y x π=的最小正周期263T ππ==且1cos 32π=, 21coscos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41coscos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos 13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,, 所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<, 所以{}1,2A B =,故选:C7.A【解析】【分析】由已知,先有集合U 和集合A 求解出U A ,再根据集合B 求解出()U A B ⋂即可. 【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8U A =,又因为{}2,6,8B =,所以(){}6,8U A B =.故选:A.8.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.9.C【解析】【分析】依据交集定义即可求得A B【详解】{}{}{}2,3,4,53,4,63,4A B ⋂=⋂=故选:C10.A【解析】【分析】利用集合交集定义计算即可【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A11.B【解析】【分析】求解一元二次不等式解得集合T ,再求S T 即可.【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-.故选:B.12.D【解析】【分析】先求出R N ,再结合交集定义即可求解.【详解】 由{}{}R 210x N x x x =≤=≤,得()R M N ⋂={}1,0- 故选:D13.D【解析】 【分析】利用补集定义求出A R ,利用交集定义能求出()AB R . 【详解】解:集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则R {|1A x x =≤-或2}x >,(){}R 2,1,4A B ∴⋂=--.故选:D14.A【解析】【分析】依据交集定义去求A B 即可.【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=,故选:A .15.B【解析】【分析】根据数集的定义,即可得答案;【详解】13是实数,①②错误;-3是整数,③④正确.所以正确的个数为2.故选:B.二、填空题16.4【解析】【分析】根据并集的定义,列举集合A .【详解】由并集定义可知,集合A 中有元素3和4,所以满足条件的集合{}{}{}{}3,4,1,3,4,2,3,4,1,2,3,4A =共4个.故答案为:417.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,618.(){}2,5【解析】【分析】由方程组可求得交点坐标,由此可得交集.【详解】由213y x y x =+⎧⎨=+⎩得:25x y =⎧⎨=⎩,(){}2,5A B ∴=. 故答案为:(){}2,5.19.{}1,3【解析】【分析】由交集定义直接得到结果.【详解】由交集定义知:{}1,3A B =.故答案为:{}1,320.±1【解析】【分析】分析出集合A 有1个元素,对a 讨论方程解的情况即可.【详解】因为集合(){}21420A x a x x =-+-=有且仅有两个子集, 所以集合A 有1个元素.当a =1时,{}1|4202A x x ⎧⎫=-==⎨⎬⎩⎭,符合题意; 当a ≠1时,要使集合A 只有一个元素,只需()()244120a ∆=--⨯-=,解得:1a =-;综上所述: 实数a 的值是1或-1.故答案为:±1.21.(],1-∞【解析】【分析】直接利用补集的定义求解即可【详解】因为全集为R ,集合()1,A =+∞, 所以A =(],1-∞,故答案为:(],1-∞22.{}|23x x <<##()2,3【解析】【分析】由交集运算可直接求解.【详解】因为{}|23A x x =-<<,{}|2B x x =>,则{}|23A B x x =<<.故答案为:{}|23x x <<23.a B ∈【解析】【分析】根据元素与集合关系即可判断.【详解】因为2a =,满足123-<<,所以a B ∈.故答案为:a B ∈.24.232##11.5 【解析】【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论.【详解】{1P =,2},{|P P x x a b ∴+==+,a P ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2, ∴元素之和为323234122++++=, 故答案为:232. 25.3a >【解析】【分析】解不等式求得结合A ,根据B A 列不等式来求得a 的取值范围.【详解】3x >⇔3x <-或3x >,所以{|3A x x =<-或}3x >.由于B A ,所以3a >.故答案为:3a >三、解答题26.(1)(]3,2-(2)()3,0.-【解析】【分析】(1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-27.(1)条件选择见解析,12A x x ⎧=<-⎨⎩或}2x > (2)[)5,1,22∞⎛⎫--⋃ ⎪⎝⎭ 【解析】【分析】(1)若选①,分2122a a =-+和11a =-,求得a ,再利用一元二次不等式的解法求解; 若选②,根据不等式13ax b <+≤的解集为{}34x x <≤,求得a ,b ,再利用一元二次不等式的解法求解;(2)由A B A ⋃=,得到B A ⊆求解;(1)解:若选①,若2122a a =-+,解得1a =,不符合条件.若11a =-,解得2a =,则2222a a -+=符合条件.将2a =代入不等式230ax x a -->并整理得()()2210x x -+>,解得2x >或12x <-,故12A x x ⎧=<-⎨⎩或}2x >. 若选②,因为不等式13ax b <+≤的解集为{}34x x <≤,所以3143a b a b +=⎧⎨+=⎩,解得25a b =⎧⎨=-⎩. 将2a =代入不等式整理得()()2210x x -+>,解得2x >或12x <-.故12A x x ⎧=<-⎨⎩或}2x >. (2)∵A B A ⋃=,∴B A ⊆,又∵B ≠∅, ∴22122k k k +>⎧⎪⎨+<-⎪⎩或2222k k k +>⎧⎨≥⎩, ∴52k <-或12k ≤<, ∴[)5,1,22k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 28.(1){}35x x << (2){12x x ≤<或}37x <≤【解析】【分析】根据集合间的运算直接得解.(1) 由{}25A x x =≤<,{}37B x x =<≤,得{}35A B x x ⋂=<<;(2) 由{}17U x x =≤≤,{}25A x x =≤<,得{12U A x x =≤<或}57x ≤≤, 故(){12U A B x x ⋃=≤<或}37x <≤.29.{22U A x x =-≤≤∣或10}x ≥,(){2}U A B =,{28}A B x x ⋂=<≤∣,(){22U A B x x ⋂=-≤≤∣或8}x >【解析】【分析】依据补集定义求得U A ,再依据交集定义求得()U A B ⋂;依据交集定义求得A B ,再依据补集定义求得()U A B . 【详解】{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣,则{22U A x x =-≤≤∣或10}x ≥,则(){2}U A B = {28}A B x x ⋂=<≤∣,则(){22U A B x x ⋂=-≤≤∣或8}x > 30.(1){12}A B xx ⋂=<≤∣ (2)1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦ 【解析】【分析】(1)首先求出集合,A B ,然后根据集合的交集运算可得答案; (2)分B =∅、B ≠∅两种情况讨论求解即可.(1)因为0a =,所以{12}B xx =-<≤∣ 因为{}4222{14}x A x x x =<≤=<≤∣, 所以{12}A B xx ⋂=<≤∣. (2)当B =∅,即122a a -≥+,3a ≤-时,符合题意当B ≠∅时可得12214a a a -<+⎧⎨-≥⎩或122221a a a -<+⎧⎨+≤⎩, 解得5a ≥或132a -<≤-. 综上,a 的取值范围为1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦.。
数学必修一测试题一、选择题(本大题共14小题,共70.0分)1.已知集合A={x|x<1},B={x|3x<1},则()2.如图所示,I为全集,M,P,S为I的子集,则图中阴影部分所表示的集合为()3.为为4.函数的图象是()5.命题“若x2<1,则-1<x<1”的逆否命题是()A. 若x2≥1,则x≥1或x≤-1B. 若-1<x<1,则x2<1C. 若x>1或x<-1,则x2>1D. 若x≥1或x≤-1,则x2≥16.一个扇形的面积为3π,弧长为2π,则这个扇形中心角为()7.若实数a,b满足a>b>1,m=log a(log a b),m,n,l的大小关系为()A. m>l>nB. l>n>mC. n>l>mD. l>m>n8.函数y=A sin(ωx+φ)(A>0,|φ|<π如图所示,则()A. y=2sin(2xB. y=2sin(2x)C. y=2sin(x)D. y=2sin(x9.已知函数f(x)=4x2+kx-1在区间[1,2]上是单调函数,则实数k的取值范围是()10.A,B,C的对边分别为a,b,c,已知sin B+sin A(sin C-cos C)=0,a=2,c=C=()11.要得到函数的图象,只需将函数的图象上所有的A. 横坐标伸长到原来的2B. 横坐标伸长到原来的2C.D.12.在区间上的最大值与最小值之和为10,则aB. 313.对函数( )A.B. 函数y=sin2xC. f(x)D. f(x)的一个对称中心14.已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1-x)的解集是()A. +∞)B. (-∞C. (-∞,0)∪(0D. (0二、填空题(本大题共6小题,共30.0分)15.将函数f(x)(2x-11个单位长度,得到函数g(x)的图象,则函数g(x)具有性质______.(填入所有正确性质的序号)x②图象关于y轴对称;③最小正周期为π;0)对称;⑤在(0)上单调递减.16.等比数列{a n}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=______.17.已知f(x)是定义在R上的偶函数,并满足f(x+2)1≤x<2时,f(6.5)=______.18.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.19.______ 条件填“充分不必要”、“必要不充分”、“充分必要”或“既不充分也不必要”之一20.某班进行集体活动,为活跃气氛,班主任要求班上60名同学从唱歌、跳舞、讲故事三个节目中至少选择一个节目为大家表演,已知报名参加唱歌、跳舞、讲故事的人数分别为40,20,30,同时参加唱歌和讲故事的有15人,同时参加唱歌和跳舞的有10人,则同时只参加跳舞和讲故事的人数为______.三、解答题(本大题共6小题,共72.0分)21.如图,为加强社区绿化建设,欲将原有矩形小花坛ABCD适当扩建成一个较大的矩形花坛AMPN.要求B点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米.若设DN=x,则DN为多少时,矩形花坛AMPN的面积最小?并求出最小值.22.(Ⅰ)函数f(x)的最小正周期为______;(将结果直接填写在答题卡的相应位置上)(Ⅱ)求函数f(x23.已知命题p a>0)表示双曲线,命题q示焦点在y轴上的椭圆.(1)若命题q为真命题,求m的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.24.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.25.如图为函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|x∈R)的部分图象.(1)求函数解析式;(2)求函数f(x)的单调递增区间;(3)若方程f(x)=m m的取值范围.26.如图,在平面四边形ABCD中,AD=1,CD=2,AC(Ⅰ)求cos∠CAD的值;(Ⅱ)若cos∠BAD∠CBA求BC的长.答案和解析1.【答案】A【解析】【分析】本题考查交集和并集的求法,考查指数不等式的解法,属于基础题.先求出集合B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},所以A正确,D错误,A∪B={x|x<1},所以B和C都错误,故选A.2.【答案】C【解析】【分析】本题主要考查Venn图的识别和判断,正确理解阴影部分与已知中三个集合的关系,是解答的关键.根据Venn图分析阴影部分与集合M,P,S的关系,进而可得答案.【解答】解:由已知中的Venn图可得:阴影部分的元素属于M,属于P,但不属于S,故阴影部分表示的集合为(M∩P)∩(C I S),故选C.3.【答案】B【解析】【分析】本题考查导函数的图象的应用,函数的极值点的判断,考查计算能力,属于基础题. 利用导函数的图象判断极值点,推出结果即可.【解答】,函数是减函数,x∈(-3,1)时,,函数是增函数,的极小值点,故排除A,又x∈(1,2.5)时,所以x=1为f(x)的极大值点,故B正确,C和D,故选B.4.【答案】A【解析】【分析】本题考查函数的作法以及图象变换,属于基础题.先判断出函数y=lg(x+1)的图象可由函数y=lg x的图象左移一个单位而得到,再根据函数图像即可推出结论.【解答】解:由于函数y=lg(x+1)的图象可由函数y=lg x的图象左移一个单位而得到,函数y=lg x的图象与x轴的交点是(1,0),故函数y=lg(x+1)的图象与x轴的交点是(0,0),即函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),考察四个选项中的图象只有A选项符合题意,故选A .5.【答案】D【解析】解:原命题的条件是““若x2<1”,结论为“-1<x<1”,则其逆否命题是:若x≥1或x≤-1,则x2≥1.故选:D.根据逆否命题的定义,直接写出答案即可,要注意“且”形式的命题的否定.解题时,要注意原命题的结论“-1<x<1”,是复合命题“且”的形式,否定时,要用“或”形式的符合命题.6.【答案】D【解析】解:设这个扇形中心角的弧度数是θ,半径等于r,则由题意得θr=2π,r2=3π,解得r=3,故选:D.由扇形面积公式得θr=2πr2=3π,先解出r值,即可得到θ值.本题考查扇形的面积公式,弧长公式的应用,得到θr=2πr2=3π,是解题的关键,属于基础题.7.【答案】B【解析】【分析】推导出0=log a1<log a b<log a a=1,由此利用对数函数的单调性能比较m,n,l的大小.本题考查三个数的大小的比较,考查对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【解答】解:∵实数a,b满足a>b>1,m=log a(log a b∴0=log a1<log a b<log a a=1,∴m=log a(log a b)<log a1=0,01,ba∴m,n,l的大小关系为l>n>m.故选:B.8.【答案】A【解析】【分析】本题考查由y=A sin(ωx+φ)的部分图象确定其解析式,确定各个参数的值是解答的关键,属于基础题.根据已知中的函数y=A sin(ωx+φ)的部分图象,求出满足条件的A,ω,φ值,可得答案.。
高中数学试题卷及答案一、选择题(每题5分,共30分)1. 下列哪个选项是不等式x^2 - 4 > 0的解集?A. x < -2 或 x > 2B. x < 2 或 x > -2C. x < -2 或 x > 2D. x ≤ -2 或x ≥ 22. 函数f(x) = 2x + 3的反函数是:A. f^(-1)(x) = (x - 3) / 2B. f^(-1)(x) = (x + 3) / 2C. f^(-1)(x) = 2x - 3D. f^(-1)(x) = (x - 3) / 23. 已知圆的方程为x^2 + y^2 - 6x - 8y + 24 = 0,圆心坐标为:A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)4. 直线x + 2y + 3 = 0与直线2x - y - 4 = 0的交点坐标是:A. (1, -1)B. (-1, 1)C. (-1, -1)D. (1, 1)5. 一个等差数列的前三项依次为2,5,8,那么第10项是:A. 17B. 19C. 21D. 236. 已知函数f(x) = x^2 - 4x + 3,求f(2)的值:A. -1B. 1C. 3D. 5二、填空题(每题5分,共20分)7. 计算(3x - 2)(x + 1)的结果为______。
8. 已知等比数列的前三项为2,6,18,则第四项为______。
9. 函数y = 3x - 2的图像与x轴交点的横坐标为______。
10. 一个圆的半径为5,圆心在原点,该圆的面积为______。
三、解答题(每题10分,共50分)11. 解方程:2x^2 - 5x + 2 = 0。
12. 已知函数f(x) = x^3 - 3x^2 + 2,求导数f'(x)。
13. 证明:对于任意实数a和b,等式a^2 + b^2 ≥ 2ab成立。
14. 计算定积分:∫(0到1) (3x^2 - 2x + 1) dx。
必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7C. 6D. 5MNAMNBNMCMND10.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
高中数学必修2测试题附答案数学必修2一、选择题1、下列命题为真命题的是()A.平行于同一平面的两条直线平行;解析:平行于同一平面的两条直线一定平行,为真命题,选A。
2、下列命题中错误的是:()A.如果α⊥β,那么α内一定存在直线平行于平面β;解析:如果直线α垂直于平面β,则α内不存在直线平行于平面β,选A。
3、右图的正方体ABCD-A’B’C’D’中,异面直线AA’与BC所成的角是()解析:异面直线AA’与BC所成的角为直角,选D。
4、右图的正方体ABCD-A’B’C’D’中,AB二面角D’-AB-D的大小是()解析:AB二面角D’-AB-D为60度,选C。
5、直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()解析:将y=0代入5x-2y-10=0,得到x=2,即直线在x轴上的截距为2;将x=0代入5x-2y-10=0,得到y=-5,即直线在y轴上的截距为-5,选B。
6、直线2x-y=7与直线3x+2y-7=0的交点是()解析:将2x-y=7和3x+2y-7=0联立,解得交点为(3,-1),选A。
7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是()解析:3x-4y+6=0的斜率为3/4,与其垂直的直线斜率为-4/3,过点P(4,-1),代入点斜式方程y+1=-4/3(x-4),化简得到4x+3y-13=0,选A。
8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:()解析:正方体的全面积为6a,每个面积为a,每个面的对角线长为正方体的对角线长,即球的直径。
因此球的直径为正方体的对角线长,即a的开根号乘以根号3.球的表面积为4πr^2,即4π(0.5a√3)^2=3πa^2,选C。
9、圆x^2+y^2-4x-2y-5=0的圆心坐标是:()解析:将x^2-4x和y^2-2y分别配方得到(x-2)^2-4+(y-1)^2-1=0,即(x-2)^2+(y-1)^2=5,圆心坐标为(2,1),选B。
高中数学测试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. y = x^2B. y = x^3C. y = sin(x)D. y = cos(x)答案:B2. 一个等差数列的首项为3,公差为2,求第10项的值。
A. 23B. 25C. 27D. 29答案:A3. 已知函数f(x) = ax^2 + bx + c,其中a, b, c为常数,且f(1) = 2,f(-1) = 0,f(2) = 8,求a的值。
A. 1B. 2C. 3D. 4答案:B4. 一个圆的直径为10cm,求其面积。
A. 25π cm^2B. 50π cm^2C. 100π cm^2D. 200π cm^2答案:B5. 一个直角三角形的两条直角边长分别为3cm和4cm,求斜边的长度。
A. 5cmB. 6cmC. 7cmD. 8cm答案:A6. 已知集合A={1, 2, 3},集合B={2, 3, 4},求A∩B。
A. {1, 2, 3}B. {2, 3}C. {2, 3, 4}D. {1, 2, 3, 4}答案:B7. 抛物线y = x^2 - 4x + 3的顶点坐标是?A. (2, 1)B. (2, -1)C. (-2, 1)D. (-2, -1)答案:A8. 函数y = 2x + 1的反函数是?A. y = (x - 1) / 2B. y = (x + 1) / 2C. y = 2x - 1D. y = -2x + 1答案:A9. 已知一个等比数列的前三项分别为2, 6, 18,求第四项。
A. 54B. 48C. 36D. 24答案:A10. 一个正方体的体积是27cm^3,求其边长。
A. 3cmB. 6cmC. 9cmD. 12cm答案:A二、填空题(每题4分,共20分)11. 计算:(3x^2 - 2x + 1) - (2x^2 + 3x - 4) = _______。
答案:x^2 - 5x + 512. 一个数列的前四项为1, 3, 6, 10,求第五项。
高中数学综合检测题一(必修3、选修2-1)参考答案BBACB BDACC CC 4813x 216+y 28=1 600三、解答题17.解 (1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种,从中选出两名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F )共4种,选出的两名教师性别相同的概率为P =49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F )共15种. 从中选出两名教师来自同一学校的结果有:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F )共6种, 选出的两名教师来自同一学校的概率为P =615=25.18.解 (1)频率分布表:(2)(3)答对下述两条中的一条即可:(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数共有28天,占当月天数的1415.说明该市空气质量基本良好.(ii)轻微污染有2天,占当月天数的115.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.19.证明 (1)因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD . 从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD . 所以BD ⊥平面P AD ,故P A ⊥BD .(2)解 如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴,建立空间直角坐标系D -xyz , 则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0, 1).AB →=(-1,3,0),PB →=(0,3,-1),BC →=(-1,0, 0).设平面P AB 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·PB →=0.即⎩⎨⎧-x +3y =0,3y -z =0.因此可取n =(3,1,3).设平面PBC 的法向量为m ,则⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0.可取m =(0,-1,-3).cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.20.解 (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ), 由已知得⎩⎪⎨⎪⎧x P=x ,y P =54y .∵P 在圆上, ∴x 2+(54y )2=25,即轨迹C 的方程为x 225+y 216=1. (2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1,即x 2-3x -8=0.∴x 1=3-412,x 2=3+412.∴线段AB 的长度为|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+1625)(x 1-x 2)2=4125×41=415. 21.(1)证明 因为四边形ABCD 是菱形,所以AC ⊥BD . 又因为P A ⊥平面ABCD ,所以P A ⊥BD ,所以BD ⊥平面P AC . (2)解 设AC ∩BD =O , 因为∠BAD =60°,P A =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系O -xyz ,则P (0,-3,2), A (0,-3,0),B (1,0,0),C (0,3,0). 所以PB →=(1,3,-2),AC →=(0,23,0).设PB 与AC 所成角为θ,则cos θ=|PB →·AC →|PB →||AC →||=622×23=64.(3)解 由(2)知BC →=(-1,3,0).设P (0,-3,t )(t >0),则BP →=(-1,-3,t ). 设平面PBC 的法向量m =(x ,y ,z ), 则BC →·m =0,BP →·m =0.所以⎩⎨⎧-x +3y =0,-x -3y +tz =0.令y =3,则x =3,z =6t .所以m =(3,3,6t ).同理,平面PDC 的法向量n =(-3,3,6t).因为平面PBC ⊥平面PDC ,所以m·n =0,即-6+36t 2=0,解得t = 6.所以P A = 6.22.解 (1)由⎩⎪⎨⎪⎧y =x +bx 2=4y 得x 2-4x -4b =0(*),因为直线l 与抛物线C 相切,所以Δ=(-4)2-4×(-4b )=0,解得b =-1. (2)由(1)可知b =-1,故方程(*)为x 2-4x +4=0,解得x =2, 代入x 2=4y ,得y =1,故点A (2,1).因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 就等于圆心A 到抛物线的准线y =-1的距离,即r =|1-(-1)|=2, 所以圆A 的方程为(x -2)2+(y -1)2=4.高中数学综合检测题二(必修3、选修2-1)参考答案DBDAA ADCAD DA 101312 5三、解答题17.解 本题考查概率统计的基础知识和方法,考查运算能力,分析问题、解决问题的能力. (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为:x =8+8+9+104=354; 方差为:s 2=14×[⎝⎛⎭⎫8-3542+⎝⎛⎭⎫8-3542+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542]=1116. (2)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),用C 表示“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2).故所求概率为P (C )=416=14.18.解 (1)由频率分布表得a +0.2+0.45+b +c =1,即a +b +c =0.35. 因为抽取的20件日用品中,等级系数为4的恰有3件,所以b =320=0.15,等级系数为5的恰有2件,所以c =220=0.1,从而a =0.35-b -c =0.1.所以a =0.1,b =0.15,c =0.1.(2)从日用品x 1,x 2,x 3,y 1,y 2中任取两件,所有可能的结果为:{x 1,x 2},{x 1,x 3},{x 1,y 1},{x 1,y 2},{x 2,x 3},{x 2,y 1},{x 2,y 2},{x 3,y 1},{x 3,y 2},{y 1,y 2}.记事件A 表示“从日用品x 1,x 2,x 3,y 1,y 2中任取两件,其等级系数相等”,则A 包含的基本事件为:{x 1,x 2},{x 1,x 3},{x 2,x 3},{y 1,y 2},共4个. 又基本事件的总数为10,故所求的概率P (A )=410=0.4.19. (1)证明 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°. 所以∠EGF =90°, △ABC ∽△EFG .由于AB =2EF ,因此BC =2FG . 连接AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点, 则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM , 所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE , 所以GM ∥平面ABFE .(2)解 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直. 分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1), 所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1). 设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1,则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m|·|n|=12.因此二面角A - BF - C 的大小为60°.20.解 (1)点P (x 0,y 0)(x 0≠±a )在双曲线x 2a 2-y 2b 2=1(a >0,b >0)上,有x 02a 2-y 02b 2=1.由题意又有y 0x 0-a ·y 0x 0+a =15,即x 02-5y 02=a 2,可得a 2=5b 2,c 2=a 2+b 2=6b 2,则e =c a =305.(2)联立⎩⎪⎨⎪⎧x 2-5y 2=5b 2,y =x -c ,得4x 2-10cx +35b 2=0,设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=5c 2,x 1x 2=35b24. ①设OC →=(x 3,y 3),OC →=λOA →+OB →,即⎩⎪⎨⎪⎧x 3=λx 1+x 2,y 3=λy 1+y 2, 又C 为双曲线上一点,即x 32-5y 32=5b 2, 有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2,化简得λ2(x 12-5y 12)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2,②又A (x 1,y 1),B (x 2,y 2)在双曲线上,所以x 12-5y 12=5b 2,x 22-5y 22=5b 2. 由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2, 由②式得λ2+4λ=0,解出λ=0,或λ=-4.21.解 如图,以D 为坐标原点,线段DA 的长为单位长, 射线DA 为x 轴的正半轴建立空间直角坐标系D -xyz .(1)证明 依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).所以PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,故PQ ⊥平面DCQ . 又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)依题意有B (1,0,1),CB →=(1,0,0),BP →=(-1,2,-1). 设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎪⎨⎪⎧n ·CB →=0,n ·BP →=0,即⎩⎪⎨⎪⎧x =0,-x +2y -z =0.因此可取n =(0,-1,-2).设m 是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP →=0,m ·PQ →=0.可取m =(1,1,1),所以cos 〈m ,n 〉=-155.故二面角Q -BP - C 的余弦值为-155.22. 解(1).21∴.2102-32.,4321∴4322222211的离心率为解得,联立整理得:且由题知,C e e e c b a c a b F F MF ==++==•=(2)7277271423-23-442222211111122====+===+=+====•=b a b a c b a ace NF MF c e a NF ec a MF c c N M m MF m N F ab MF ,.,.,,::)(,:.,,.,.所以,联立解得,且由焦半径公式可得两点横坐标分别为可得由两直角三角形相似,由题可知设,即知,由三角形中位线知识可友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。
高中数学测试题及答案一、选择题1. 若函数f(x) = 2x^3 - 3x + k 是奇函数,则常数k的值为:a) -2 b) -3 c) 2 d) 3答案:d) 32. 设集合A = {x | x是实数,2 ≤ x ≤ 5},则集合A的元素个数为:a) 1 b) 2 c) 3 d) 4答案:d) 43. 设函数f(x) = log2(x + 1),则f(7) - f(3)的值为:a) 1 b) 2 c) 3 d) 4答案:b) 24. 已知三边长为12cm、20cm和16cm的三角形ABC,若∠C为锐角,则sin∠A + sin∠B的值为:a) 1 b) 1/2 c) 3/2 d) 2答案:b) 1/25. 已知函数f(x) = x^3 + 2x^2 + ax + 2a + 1在x = 1处取得极值为5,则常数a的值为:a) 2 b) 4 c) 1 d) -1答案:c) 1二、填空题1. 函数f(x) = 2x^3 + 3x^2 - 10的次数为______.答案:32. 等差数列1,3,5,7的前n项和为________.答案:2n^2 - n3. 设a和b是实数,若4a - b = 2,则a = _______.答案:(b + 2) / 44. 若log2(x + 1) = 3,则x = _______.答案:75. 以(-2, 1)和(2, 5)为端点的直线的斜率为______.答案:2三、解答题1. 已知等比数列的首项为a,公比为r,前n项和为S_n。
试证明:当r ≠ 1时,S_n = a * (1 - r^n) / (1 - r)。
解答:首先,我们知道等比数列的通项公式为:a_n = a * r^(n - 1)。
那么,前n项和S_n = a + ar + ar^2 + ... + ar^(n-1)。
我们可以将S_n乘以公比r,得到r * S_n = ar + ar^2 + ar^3 + ... + ar^n。
一、选择题 (每小题5分,共60分)
1.下列几何体各自的三视图中,有且仅有两个视图相同的是( )
A .①②
B .①③
C .①④
D .②④ 2.函数f (x )=e x
-1x
的零点所在的区间是( )
A .(0,12 )
B .( 1
2,1)
C .(1,3
2 )
D .( 3
2
,2 )
3.函数||2)(x x f -= 的值域是
( )
A .]1,0(
B .)1,0(
C .),0(+∞
D .R
4.集合}1,log |
{3>==x x y y A ,}0,3|{>==x y y B x
,则=⋂B A ( )
A .}31
0|{<<y y B .}0|{>y y C . }13
1
|
{<<y y D .}1|{>y y
5.当10<<a 时,在同一坐标系中,函数x y a y a x log ==-与的图象是( )
6. 图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d
的关系是( )
A. 0<a<b<1<d<c
B. 0<b<a<1<c<d
C. 0<d<c<1<a<b
D. 0<c<d<1<a<b
7. 如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
A .
B .
C .
D.
8.梯形ABCD 中AB//CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( )
A .平行
B .平行或异面
C .平行或相交
D .异面或相交
9.已知13
log 2a =, 1
2
1log 3b =, 0.3
1()2
c =, 则( ). A .a b c << B .a
c b << C .b c
a << D .
b a
c <<
10.函数f (x )=| x 2
-6x +8 |-k 只有两个零点,则( )
A .k =0
B .k >1
C .0≤k <1
D .k >1,或k =0
11. 若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则 这个棱柱的体积为( )
A. 324
B. 336
C. 332
D. 348 12. 已知
三个顶点在同一个球面上,90,2BAC
AB AC ∠===,若球心到 平面
ABC 距离为1,则该球体积为( )
A. 23π
B. 43π
C. 63π
D. 83π
二、填空题(每小题5分,共20分)
13.若函数()y f x =是函数(01)x
y a a a =>≠且的反函数,且()y f x =的图象过点(2,1),则
()f x =______________
14.已知某个几何体的三视图如图(正视图中的弧线是半圆),图中标出的尺(单位:㎝), 可得
这个几何体表面是 cm 2。
15. 一个三角形用斜二测画法画出来是一个边长为1的正三角形,则此三角形的面积
是
16. 某工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使
杂质含量减少1
3,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)
三、解答题:共6小题,共70分,解答应写出文字说明,证明过程或演算步骤 17、(满分10分)在正方体ABCD -A 1B 1C 1D 1中,
(1) 求 A 1B 与B 1D 1所成的角; (2) 证明:平面CB 1D 1 // 平面A 1BD.
18、(满分12分)已知:如右图,四棱锥S-ABCD 底面为平行四边形,E 、F 分别为边AD 、 SB 中点,
(1)求证:EF ∥平面SDC 。
(2)AB=SC=1,EF 2
3
,求EF 与SC 所成角的大小.
19、(满分12分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正
视图和侧视图在下面画出(单位:cm ).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;
20、(满分12分)如图:四面体A -BCD 被一平面所截,截面EFGH 是一个矩形,
(1)求证:CD//平面EFGH ; (2)求异面直线AB 、CD 所成的角。
21、(满分12分) 已知函数()log (1)a f x x =+, ()log (1)a g x x =-,其中(01)a a >≠且,
设()()()h x f x g x =-.
(1)求函数()h x 的定义域,判断()h x 的奇偶性,并说明理由; (2)若(3)2f =,求使()0h x >成立的x 的集合.
高一数学参考答案
一、选择题(每小题5分,共60分)
二、填空题(每小题5分,共20分) 13.x y 2log = 14.π34+ 15.
2
6
16. 8 三、解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(10分) (1)︒60 (2)连接C C D B 1
1
和
18.(12分)
,BC G FG EG FG SC EG DC FG SC FG SDC SC SDC FG SDC EG FG EG G EGF SDC EF EGF EF SDC
⊄⊂⊂取中点,连接则有∥,∥,∵∥,平面,平面∴∥平面同理∥平面SDC 又∵∩=∴平面∥平面又∵平面∴∥平面
(2)90
19.(12分)
(1)
(2)
21.(12分)
解:(1)由对数的意义,分别得1+x>0,1-x>0,即x>-1,x<1. ∴函数f(x)的定义域为(-1,+∞),函数g(x)的定义域为(-∞,1),∴函数h(x)的定义域为(-1,1).……3分
∵对任意的x∈(-1,1),-x∈(-1,1),
h(-x)=f(-x)-g(-x)
=log a(1-x)-log a(1+x)
=g(x)-f(x)=-h(x),
∴h(x)是奇函数.……3分
(2)由f(3)=2,得a=2.
此时h(x)=log2(1+x)-log2(1-x),
由h(x)>0即log2(1+x)-log2(1-x)>0,
∴log2(1+x)>log2(1-x).
由1+x>1-x>0,解得0<x<1.
故使h(x)>0成立的x的集合是{x|0<x<1}.。