【浙教版】七年级数学上册期中试卷(含答案)
- 格式:docx
- 大小:88.91 KB
- 文档页数:16
浙教版七年级上学期数学期中考试试题(时间:100分钟 满分:120分) 一、选择题(共10题 每题3分 共30分)1.62-的相反数是( ) A. 652B .652- C. 176 D . 176- 2.我国最长的河流长江,全长约6300千米,用科学计数法表示为( )米.A .6.3×103B .6.3×104C .6.3×105D .6.3×106 3.近似数-0.06050的有效数字个数有( )A. 3个B. 4个C. 5个D. 6个4.下列结论不正确的是( )A. -8的立方根是-2B.81的平方根是±3C .8的算术平方根是4D .立方根等于平方根的数是0 5.下列计算正确的是( )A . 2x 2+2x 2=4x 2B .2a -a =2C .-3m -3m =0D .4ab 2-5ab 2=-ab 2 6.如图,数轴上有O ,A ,B ,C ,D 五点,根据图中各点所表示的数,表示数22+的点会落 在( )A .点O 和A 之间B .点A 和B 之间C .点B 和C 之间D .点C 和D 之间 7.已知长方形的宽为(3a -2b ),长是宽的2倍少b ,则这个长方形的周长是( ) A .18a -14b B .9a -6b C .9a -7b D .12a +12b 8.一个数a 在数轴上表示的点是A ,当点A 在数轴上平移了7个单位长度后到点B ,点A 与点 B 表示的数恰好互为相反数,则数a 是( )A .-3.5B .3.5C .-3.5或3.5D .-7或7 92210二、填空题(共10题 每题3分 共30分)第6题图11.单项式-5232y x π的次数是____________次,系数是____________. 12.数轴上一个点到-2的距离是3,那么这个点表示的数是____________.13.已知一个数的两个平方根分别是3a +2和a -10,则这个数的立方根是____________.14.已知多项式51617203223-+--y xy y x 的次数是a ,项数是b ,三次方的系数是c ,则(a +b )(-c )的平方根是________.15.在多项式A =-4x 2-3mxy +x 和多项式B =2nx 2-9xy -y 中m 、n 是常数,若3A -2B 中不含二次项,则n m =____________. 16.已知2+322322⨯=,3+833832⨯=,4 +15441542⨯=,5+24552452⨯=,…, 若12+mnm n ⨯=212符合前面式子的规律,则m +n =____________. 17.如图,化简:b a c b b a +-+--242的结果为 .18.如图是5×5的方格纸,若图中的每个小正方形的边长都是a ,则阴影部分的面积为. 19.已知三个互不相等有理数a ,b ,c ,既可以表示为1,a ,a +b 的形式,又可以表示为0,ab, b 的形式,则a 2019b 2020值是 . 20.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2019次输出的结果为 . 三、解答题(共7题 共60分) 21.(9分)计算下列各题:(1) +1613+--381322513-; (2) 32232233+----;(3) (-1)2019-8×2)211(+(4331-)÷(121-).22.(6分)把下列各数分别填在相应的括号内.第17题图第20题图第18题图-722, 6,0.57, 36,0,-45,-3.1415,5π-,-31,0.1010010001…(小数点后面两个1之间多一个0).正实数:{ …}; 无理数:{ …}; 非正数:{ …}.23.(10分)化简求值:(1)3a 2-3[4a -2(3a -a 2)],其中3+(a +2)2有最小值;(2) -3(x +y -xy )-2[-3xy +2(x -y )],其中2)3(27-++-xy x y =0.24.(8分)已知a 6(x -2)6+a 5(x -2)5+a 4(x -2)4+a 3(x -2)3+a 2(x -2)2+a 1(x -2)+a 0=4x ,求(1)a 0的值;(2)a 6+a 4+a 2的值;(3)a 5+a 3+a 1的值.25.(8分)出租车司机老李某天上午营运全是在东西走向的光明大道上进行的,规定向东为正,向西为负,这天上午他从光明电影院出发行程是(单位:km ):+10,-6,+14,-11,+9,-12,+5,-13,+15,-18.(1)将最后一名乘客送达目的地时,老李距光明电影院的距离是多少千米?在光明电影院的什么方向?(2)已知汽车耗油量为0.6L /km ,出车时,油箱有油70L ,若小张将最后一名乘客送达目的地,再返回光明电影院.问:老李这天下午是否需要加油?若要加油,至少要加多少油才能返回光明电影院?若不用加油,请说明理由.26.(9分)先阅读理解,再解决问题:…根据以上规律,解答下列各题:(3) =2019).27、(10分) 探索代数式a 2-2ab +b 2与代数式(a -b )2的关系.(1)当a =5,b =-2时,分别计算两个代数式的值. (2)当a =21-,b =-31时,分别计算两个代数式的值.(3)你发现了什么规律?(4)利用你发现的规律计算:20182-4036×2019+20192.参考答案一、选择题(共10小题 每题3分 共30分)11、5 , 25π-12、-5或 1 13、4 14、±6 15、9 16、155 17、-4c 18、10.5a 2 19、-1 20、1 三、解答题(共7题 共60分) 21.解:(1)原式=+1649 +-382725169- =4723-+12=1241; (2)原式=)322()23(323+---- =32223323--+-- =23;(3)原式=-1-8×2)23(+(4331-)×(-12) =-1-18-4+9 =-14. 22.解:正实数:{_ 6,0.57, 36, 0.1010010001…______};无理数:{_6,-45, 5π-, 0.1010010001…______}; 非正数:{_-722, 0,-45,-3.1415,5π-,-31}.23、解:(1)∵3+(a +2)2有最小值,∴a +2=0, ∴a =-2,3a 2-3[4a -2(3a -a 2)] =3a 2-12a +6(3a -a 2) =3a 2-12a +18a -6a 2 =(3-6)a 2+(-12+18)a =-3a 2+6a , 当a =-2时,-3a 2+6a =-3(-2)2+6(-2)=-24;(2) ∵2)3(27-++-xy x y =0, ∴y -7x +2=0,xy -3=0, ∴y -7x =-2, xy =3,-3(x +y -xy )-2[-3xy +2(x -y )]=-3x -3y +3xy +6xy -4(x -y ) =-3x -3y +3xy +6xy -4x +4y =-7x +y +9xy当y -7x =-2, xy =3时,-7x +y +9xy =-2+27=25.24.解:(1)当x =2时,a 0=42=16;(2) 当x =3时,a 6+a 5+a 4+a 3+a 2+a 1+a 0=43=64①, 当x =1时,a 6-a 5+a 4-a 3+a 2-a 1+a 0=41=4②, ①+②得,2a 6+2a 4+2a 2+2a 0=68, ∴a 6+a 4+a 2+a 0=34,∴a 6+a 4+a 2+16=34, a 6+a 4+a 2=18;①-②得,2a 5+2a 3+2a 1=60, a 5+a 3+a 1=30.25. 解:(1) +10-6+14-11+9-12+5-13+15-18=-7(km ). 答:老李距光明电影院的距离是7km ,在光明电影院的西面.(2)|+10|+|-6|+|+14|+|-11|+|+9|+|-12|+|+5|+|-13|+|+15|+|-18|=113(km ). 113×0.6=67.8(L ),7×0.6=4.2(L ), 67.8+4.2=72(L )>70L , 72-70=2(L ).答:老李需要加油,至少要加2L 油才能返回光明电影院. 26.根据以上规律,解答下列各题:(3) =2019).解(3) =2019).原式=-1+(-2)+(-3)+…+(-n)当n =20192039190. 27、解:(1)当a =6,b =-2时, a 2-2ab +b 2=52-2×5×(-2)+(-2)2 =25+20+4=49,(a -b )2=[5-(-2)]2=72=49. (2)当a =21-,b =-31时,a 2-2ab +b 2=(21-)2-2×(21-)×(-31)+(-31)2=41-31+91=361, (a -b )2=2)31(21⎥⎦⎤⎢⎣⎡---=(61-)2=361.(3) a 2-2ab +b 2=(a -b )2. (4) 20182-4036×2019+20192 =20182-2×2018×2019+20192 =(2018-2019) 2=1.。
浙教版第一学期期中质量检测七年级数学试题卷考生须知:1、 全卷满分为100分,考试时间90分钟,试卷共4页,有五大题,25小题.2、 请用钢笔或圆珠笔答卷,并将姓名、考号分别填写在考卷的相应位置上. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、 精心选一选(10小题,每小题3分,共30分)1.有理数- 1 3的倒数( ) A . 1 3 B . - 1 3C . 3D . -3 2.下列计算正确的是( )A .(-3)-(-5)=-8B .=-9C .24=--D .±=933.用科学记数法表示106 000,其中正确的是( )A .1.06×105B .1.06×106C .106×103D .10.6×1044.一个数的立方根是它本身,则这个数是( )A 1B 0或1C -1或1D 1, 0或-15.实数0、2 、13-、π、0.1010010001……中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个6.估算227-的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间7.室内温度10℃,室外温度是-3℃,那么室内温度比室外温度高( )A -13℃B -7℃C 7℃D 13℃ 8.已知c b a ,,在数轴上的位置如图所示,则下列结论正确的是 ( ) A .0>-c aB .0<abcC .0<c abD .||||c a > 9.有下列说法:①任何无理数都是无限小数; ②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有2,3,5,7这4个; ④2π是分数,它是有理数. ⑤近似数7.30所表示的准确数a 的范围是:7.295≤a <7.305. 其中正确的个数是( ) c a o bA .1 B. 2 C. 3 D. 410.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作。
浙教版七年级数学上册期中考试试卷一、选择题(每小题3分,共30分)1.1.若海平面以上若海平面以上1045米,记做米,记做+1045+1045米,则海平面以下155米,记做( ) A.A.﹣﹣1200米 B. B.﹣﹣155米 C.155米 D.1200米2.2.下列实数中最大的是(下列实数中最大的是( )A.B.C.D.3.3.据统计,龙之梦动物世界在据统计,龙之梦动物世界在2019年“五一”小长假期间共接待游客约238000人次用科学记数法可将238000表示为(表示为( )A.238A.238××103B.23.8B.23.8××104C.2.38 C.2.38××105D.0.238D.0.238××106 4.4.如图所示,某工厂有三个住宅区,如图所示,某工厂有三个住宅区,如图所示,某工厂有三个住宅区,A A ,B ,C 各区分别住有职工30人,人,1515人,人,1010人,且这三点在一条大道上(且这三点在一条大道上(A A ,B ,C 三点在同一直线上),已知AB=300米,米,BC=600BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A.A.点点AB. B.点点BC.AB 之间D.BC 之间5.5.下列各式中正确的是(下列各式中正确的是( )A.B. C.D.6.6.在数轴上,点在数轴上,点A ,B 在原点O 的两侧,分别表示数a a ,, 2 2,将点,将点A 向右平移1个单位长度,得到点C .若CO=BO CO=BO,则,则a 的值为( )A.-3B.-2C.-1D.1 7.7.下列说法错误的是下列说法错误的是下列说法错误的是( ( ) A.0的平方根是0 B.4的平方根是±的平方根是±2 2 C. C.﹣﹣16的平方根是±的平方根是±4 D.24 D.2是4的平方根 8.8.若若a 2=(-5)2 ,, b 3=(-5)3 ,, 则a+b 的值是( ) A.0或-10或10 B.0或-10 C.-10 D.09. 9.若若=2 , =3 ,则a+b 之值为何?( ) A.13 B.17 C.24 D.40 10.10.已知有理数已知有理数a ,b ,c ,d 在数轴上对应的点如图所示,每相邻两个点之间的距离是1个单位长度个单位长度..若3a 3a==4b 4b﹣﹣3,则c ﹣2d 为(为( )A.A.﹣﹣3B.B.﹣﹣4C.C.﹣﹣5D.D.﹣﹣6二、填空题(每小题3分,共30分)11.11.数轴上有两个实数数轴上有两个实数 , ,且 >0, <0, + <0,则四个数 , ,, 的大小关系为的大小关系为________________________(用“<”号连接).(用“<”号连接).(用“<”号连接).12.12.若若 与 互为相反数,则 的值为的值为________. ________.13.13.数轴上表示数轴上表示 的点到原点的距离是的点到原点的距离是________________________..14.14.若若a ,b 为实数,且为实数,且|a+1|+ |a+1|+=0 =0,则,则,则(ab)(ab)2019的值是的值是________ ________ .15.15.若若x+3x+3==5﹣y ,a ,b 互为倒数,则代数式 (x+y)+5ab (x+y)+5ab==________. 16.16.若某个正数的平方根是若某个正数的平方根是a ﹣3和a+5a+5,则这个正数是,则这个正数是,则这个正数是________________________.. 17.17.写出一个比写出一个比5大且比6小的无理数小的无理数________. ________.18. 的相反数的立方根是的相反数的立方根是________. ________.19.19.若若,化简结果是结果是________________________..20.20.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到可以得到________________________条折痕。
浙教版七年级(上)期中数学试卷一、选择题(每小题2分,共24分)1.(2分)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为()A.﹣5吨B.+5吨C.﹣3吨D.+3吨2.(2分)下列化简正确的是()A.8x﹣7y=xy B.a2b﹣2ab2=﹣ab2C.9a2b﹣4ba2=5a2b D.5m﹣4m=13.(2分)一周时间有604800秒,604800用科学记数法表示为()A.6048×102 B.6.048×105C.6.048×106D.0.6048×106 4.(2分)2x﹣(3x2+4x)的化简结果是()A.9x2B.24x4C.3x2+6x D.﹣3x2﹣2x 5.(2分)下列说法正确的是()A.√81的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应6.(2分)如图,组成正方形网格的小正方形边长为1,那么点A表示的数为()A.√10B.√11C.√12D.√137.(2分)有20筐白菜,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如表:与标准质量的差(单位:千克)﹣3﹣2﹣0.50 2.5筐数1428则这20筐白菜的总重量为()A.710千克B.608千克C.615千克D.596千克8.(2分)如果代数式x ﹣2y ﹣2的值为﹣1,那么代数式6﹣2x +4y 的值为( ) A .0B .2C .﹣2D .49.(2分)由下表可得√7精确到百分位的近似数是( )2.62<7<2.722.6<√7<2.72.642<7<2.652 2.64<√7<2.65 2.6452<7<2.6462 2.645<√7<2.646…… …… A .2.64B .2.65C .2.7D .2.64610.(2分)按如图所示的运算程序,能使输出的结果为3的是( )A .x =1,y =2B .x =﹣2,y =﹣2C .x =3,y =1D .x =﹣1,y =﹣111.(2分)张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a >b ).根据市场行情,他将这两种小商品都以a+b 2元的价格出售.在这次买卖中,张师傅的盈亏状况为( )A .赚了(25a +25b )元B .亏了(20a +30b )元C .赚了(5a ﹣5b )元D .亏了(5a ﹣5b )元12.(2分)一个自然数若能表示为两个自然数的平方差,则称这个自然数为“智慧数”,比如99=102﹣12,故99是一个智慧数.在下列各数中,不属于“智慧数”的是( ) A .15B .16C .17D .18二、填空题(每题4分,共24分) 13.(4分)比较大小: (1)2 |−52|; (2)﹣7 0;(3)−23 −34; (4)﹣|﹣2.7| ﹣223.14.(4分)和式23−112−113+4中第3个加数是 ,该和式的运算结果是 .15.(4分)把下列各数填入相应的横线上: ﹣2,2π,−35,0,﹣3.7,√16,0.35,√93整数: ; 正有理数: ; 无理数: ; 负分数: . 16.(4分)−3xy 37的系数是 ,次数是 ;4a 3﹣a 2b 2−43ab 是 次项式. 17.(4分)如图,数轴的单位长度为1,当点B 为原点时,若存在一点M 到A 的距离是点M 到D 的距离的2倍,则点M 所表示的数是 .18.(4分)如图是由从1开始的连续自然数组成,则第8行第8个数是 ,第n 行第一个数可表示为 .三、解答题(第19题12分,第20~23题各6分,第24~25题8分,共52分) 19.(12分)(1)﹣5﹣(﹣4)+7﹣8(2)312÷(﹣35)×15(3)﹣24−√36+6÷(−23)×√−83(4)(﹣5)×(﹣325)+(﹣7)×325−12×(﹣325)20.(6分)化简: (1)2x +1﹣7x ﹣2(2)3(x 2−12y 2)−12(4x 2﹣3y 2)21.(6分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来: 312,﹣2.5,|﹣2|,0,√−83,(﹣1)2.22.(6分)已知|a ﹣1|+(b +2)2=0,求多项式3ab ﹣15b 2+5a 2﹣6ba +15a 2﹣2b 2的值.23.(6分)一个正方体的体积是125cm 3,现将它锯成8块同样大小的正方体小木块. (1)求每个小正方体的棱长.(2)现有一张面积为36cm 2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.24.(8分)“湖田十月清霜堕,晚稻初香蟹如虎”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A 、B 两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A 家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B 家的规定如下表: 数量范围(千克)0~50 部分50以上~150部分 150以上~250部分 250以上 部分 价 格(元)零售价的95%零售价的85%零售价的75%零售价的70%(1)如果他批发80千克太湖蟹,则他在A、B两家批发分别需要多少元?(2)如果他批发x千克太湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B两家批发所需的费用;(3)现在他要批发195千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.25.(8分)在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC =1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x的值.四、附加题(第26,27题各5分,共10分)26.已知|x+y﹣3|=﹣2x﹣2y,求(x+y)3的值.27.如图,它是由A、B、E、F四个正方形,C、D两个长方形拼成的大长方形,已知正方形F的边长为6,求拼成的大长方形周长.2019-2020学年浙江省宁波市海曙区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共24分)1.(2分)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为()A.﹣5吨B.+5吨C.﹣3吨D.+3吨【解答】解:“正”和“负”相对,如果+3吨表示运入仓库的大米吨数,即正数表示运入仓库,负数应表示运出仓库,故运出5吨大米表示为﹣5吨.故选:A.2.(2分)下列化简正确的是()A.8x﹣7y=xy B.a2b﹣2ab2=﹣ab2C.9a2b﹣4ba2=5a2b D.5m﹣4m=1【解答】解:A.8x与﹣7y不是同类项,所以不能合并,故本选项不合题意;B.a2b与2ab2不是同类项,所以不能合并,故本选项不合题意;C.9a2b﹣4ba2=5a2b,正确,故本选项符合题意;D.5m﹣4m=m,故本选项不合题意.故选:C.3.(2分)一周时间有604800秒,604800用科学记数法表示为()A.6048×102 B.6.048×105C.6.048×106D.0.6048×106【解答】解:数字604800用科学记数法表示为6.048×105.故选:B.4.(2分)2x﹣(3x2+4x)的化简结果是()A.9x2B.24x4C.3x2+6x D.﹣3x2﹣2x【解答】解:原式=2x﹣3x2﹣4x=﹣3x2﹣2x,故选:D.5.(2分)下列说法正确的是()A.√81的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应【解答】解:A、√81=9,9的平方根为±3,不符合题意;B、(﹣1)2010=1,不是最小的自然数,不符合题意;C、两个无理数的和不一定是无理数,例如−√2+√2=0,不符合题意;D、实数与数轴上的点一一对应,符合题意,故选:D.6.(2分)如图,组成正方形网格的小正方形边长为1,那么点A表示的数为()A.√10B.√11C.√12D.√13【解答】解:由勾股定理得,点A表示的数=√32+12=√10,故选:A.7.(2分)有20筐白菜,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如表:与标准质量的差(单位:千克)﹣3﹣2﹣0.50 2.5筐数1428则这20筐白菜的总重量为()A.710千克B.608千克C.615千克D.596千克【解答】解:(﹣3)×1+(﹣2)×4+(﹣0.5)×2+2.5×8=(﹣3)+(﹣8)+(﹣1)+20=8 (千克),30×20+8=608(千克).答:这20筐白菜的总重量608千克,故选:B.8.(2分)如果代数式x﹣2y﹣2的值为﹣1,那么代数式6﹣2x+4y的值为()A.0B.2C.﹣2D.4【解答】解:当x﹣2y﹣2=﹣1时,6﹣2x+4y=2﹣2(x ﹣2y ﹣2) =2﹣2×(﹣1) =4 故选:D .9.(2分)由下表可得√7精确到百分位的近似数是( )2.62<7<2.722.6<√7<2.72.642<7<2.652 2.64<√7<2.65 2.6452<7<2.6462 2.645<√7<2.646…… …… A .2.64B .2.65C .2.7D .2.646【解答】解:∵2.645<√7<2.646,∴由下表可得√7精确到百分位的近似数是2.65. 故选:B .10.(2分)按如图所示的运算程序,能使输出的结果为3的是( )A .x =1,y =2B .x =﹣2,y =﹣2C .x =3,y =1D .x =﹣1,y =﹣1【解答】解:A 、把x =1,y =2代入得:1+4=5,不符合题意; B 、把x =﹣2,y =﹣2代入得:4+4=8,不符合题意; C 、把x =3,y =1代入得:9+2=11,不符合题意; D 、把x =﹣1,y =﹣1代入得:1+2=3,符合题意, 故选:D .11.(2分)张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a >b ).根据市场行情,他将这两种小商品都以a+b 2元的价格出售.在这次买卖中,张师傅的盈亏状况为( )A .赚了(25a +25b )元B .亏了(20a +30b )元C .赚了(5a ﹣5b )元D .亏了(5a ﹣5b )元【解答】解:根据题意可知: 总进价为20a +30b ,总售价为a+b 2×(20+30)=25a +25b∴25a +25b ﹣(20a +30b )=5a ﹣5b , ∵a >b ,∴5a ﹣5b >0,那么售价>进价, ∴他赚了. 故选:C .12.(2分)一个自然数若能表示为两个自然数的平方差,则称这个自然数为“智慧数”,比如99=102﹣12,故99是一个智慧数.在下列各数中,不属于“智慧数”的是( ) A .15B .16C .17D .18【解答】解:A 、15=42﹣12; B 、16=52﹣32; C 、15=92﹣82,;D 、18不能表示为两个非零自然数的平方差. 故选:D .二、填空题(每题4分,共24分) 13.(4分)比较大小: (1)2 < |−52|; (2)﹣7 < 0; (3)−23 > −34; (4)﹣|﹣2.7| < ﹣223.【解答】解:(1)2<|−52|; (2)﹣7<0; (3)−23>−34; (4)﹣|﹣2.7|<﹣223.故答案为:(1)<;(2)<;(3)>;(4)< 14.(4分)和式23−112−113+4中第3个加数是 −113,该和式的运算结果是116.【解答】解:和式23−112−113+4中第3个加数是−113,23−112−113+4=23−113−112+4 =−23−32+4 =−136+4 =116故答案为:−113,116.15.(4分)把下列各数填入相应的横线上: ﹣2,2π,−35,0,﹣3.7,√16,0.35,√93整数: ﹣2、0、√16 ;正有理数: 2π、√16、0.35、√93; 无理数: −35、﹣3.7 ; 负分数: −35、﹣3.7 .【解答】解:整数:﹣2、0、√16; 正有理数:2π、√16、0.35、√93; 无理数:2π、√93; 负分数:−35、﹣3.7;故答案为:﹣2、0、√16;2π、√16、0.35、√93;−35、﹣3.7;−35、﹣3.7 16.(4分)−3xy 37的系数是 −37 ,次数是 4 ;4a 3﹣a 2b 2−43ab 是 四 次项式. 【解答】解:−3xy 37的系数是−37,次数是4;4a 3﹣a 2b 2−43ab 是四次项式. 故答案为:−37,4,四.17.(4分)如图,数轴的单位长度为1,当点B 为原点时,若存在一点M 到A 的距离是点M 到D 的距离的2倍,则点M 所表示的数是 2或10 .【解答】解:设M 的坐标为x .当M 在A 的左侧时,﹣2﹣x =2(4﹣x ),解得x =10(舍去)当M 在AD 之间时,x +2=2(4﹣x ),解得x =2当M 在点D 右侧时,x +2=2(x ﹣4),解得x =10故①点M 在AD 之间时,点M 的数是2;②点M 在D 点右边时点M 表示数为10. 故答案为:2或1018.(4分)如图是由从1开始的连续自然数组成,则第8行第8个数是 57 ,第n 行第一个数可表示为 n 2﹣2n +2 .【解答】解:由题意得:每行数的个数为1,3,5,…的奇数列,最后一个数是该行数的平方,∴第7行的最后一个数是72,∴表中第8行的第一个数是72+1=50,∴8行第8个数是57;∵第n ﹣1行最后一个数为:(n ﹣1)2,∴第n 行第一个数可表示为:(n ﹣1)2+1=n 2﹣2n +2;故答案为:57;n 2﹣2n +2.三、解答题(第19题12分,第20~23题各6分,第24~25题8分,共52分)19.(12分)(1)﹣5﹣(﹣4)+7﹣8(2)312÷(﹣35)×15(3)﹣24−√36+6÷(−23)×√−83(4)(﹣5)×(﹣325)+(﹣7)×325−12×(﹣325) 【解答】解:(1)原式=﹣5+4+7﹣8=﹣2;(2)原式=−72×135×15=−150; (3)原式=﹣16﹣6×(−32)×(﹣2)=﹣16﹣6+18=﹣4;(4)原式=175×(5﹣7+12)=175×10=34.20.(6分)化简:(1)2x +1﹣7x ﹣2(2)3(x 2−12y 2)−12(4x 2﹣3y 2)【解答】解:(1)原式=﹣5x ﹣1;(2)原式=3x 2−32y 2﹣2x 2+32y 2=x 2.21.(6分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来: 312,﹣2.5,|﹣2|,0,√−83,(﹣1)2. 【解答】解:数轴如下:按从小到大的顺序用“<”连接起来:﹣2.5<√−83<0<(﹣1)2<|﹣2|<312. 22.(6分)已知|a ﹣1|+(b +2)2=0,求多项式3ab ﹣15b 2+5a 2﹣6ba +15a 2﹣2b 2的值.【解答】解:由题意得,a ﹣1=0,b +2=0,解得,a =1,b =﹣2,原式=(3﹣6)ab +(﹣15﹣2)b 2+(5+15)a 2=﹣3ab ﹣17b 2+20a 2当a =1,b =﹣2时,原式=﹣3×1×(﹣2)﹣17×(﹣2)2+20×12=﹣42.23.(6分)一个正方体的体积是125cm 3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36cm 2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.【解答】解:((1)√12583=52,所以立方体棱长为52cm ;(2)最多可放4个.设长方形宽为x ,可得:4x 2=36,x 2=9,∵x >0,∴x =3,12÷52=245, 横排可放4个,竖排只能放1个,4×1=4个.所以最多可放4个.24.(8分)“湖田十月清霜堕,晚稻初香蟹如虎”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A 、B 两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A 家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B 家的规定如下表:数量范围(千克) 0~50部分50以上~150 部分 150以上~250 部分 250以上 部分 价 格(元) 零售价的95% 零售价的85% 零售价的75% 零售价的70%(1)如果他批发80千克太湖蟹,则他在A 、B 两家批发分别需要多少元?(2)如果他批发x 千克太湖蟹(150<x <200),请你分别用含字母x 的式子表示他在A 、B 两家批发所需的费用;(3)现在他要批发195千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【解答】解:(1)由题意,得:A :80×60×92%=4416元,B :50×60×95%+30×60×85%=4380元.(2)由题意,得A :60×90%x =54x ,B :50×60×95%+100×60×85%+(x ﹣150)×60×75%=45x +1200.(3)当x=195时,A:54×195=10530,B:45×195+1200=9975,∴10530>9975,∴B家优惠.25.(8分)在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC =1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x的值.【解答】解:(1)①点A,D,C所对应的数分别为:﹣2,3,4;p=﹣2+3+4=5;(2)由题意,A,B,C,D表示的数分别为:﹣6﹣x,﹣4﹣x,﹣1﹣x,﹣x,﹣6﹣x﹣4﹣x﹣1﹣x﹣x=﹣71,﹣4x=﹣60,x=15.四、附加题(第26,27题各5分,共10分)26.已知|x+y﹣3|=﹣2x﹣2y,求(x+y)3的值.【解答】解:∵|x+y﹣3|=﹣2x﹣2y=﹣2(x+y)≥0,∴x+y≤0,﹣(x+y)+3=﹣2(x+y),x+y=﹣3,(x+y)3=(﹣3)3=﹣27.27.如图,它是由A、B、E、F四个正方形,C、D两个长方形拼成的大长方形,已知正方形F的边长为6,求拼成的大长方形周长.【解答】解:设A正方形边长为a,E正方形边长为x则正方形F的边长为a+x,大长方形长为2x+3a,宽为2x+a 则大长方形周长为8x+8a,因为a+x=6,所以8x+8a=8(a+x)=48.。
浙江省杭州市萧山区戴村片七年级(上)期中数学试卷一、仔细选一选(10个小题,每题3分,共30分)1.(3分)﹣2018的倒数是()A.2018 B.﹣2018 C.D.﹣2.(3分)实数a在数轴上对应的点如图所示,则a,﹣a,1的大小关系正确的是()A.a<﹣a<1 B.﹣a<a<1 C.1<﹣a<a D.a<1<﹣a3.(3分)下列运算正确的是()A.=±3 B.(﹣2)3=8 C.﹣22=﹣4 D.﹣|﹣3|=34.(3分)用18米长的铝合金做成一个长方形的窗框(如图),设长方形窗框的横条长度为x米,则长方形窗框的面积为()A.x(18﹣x)平方米B.x(9﹣x)平方米C.平方米D.平方米5.(3分)下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确有()个.A.1 B.2 C.3 D.46.(3分)下列各式计算结果为正数的是()A.(﹣3)×(﹣5)×(﹣7)B.(﹣5)101C.﹣32D.(﹣5)3×(﹣2)7.(3分)若|x|=1,|y|=4,且xy<0,则x﹣y的值等于()A.﹣3或5 B.3或﹣5 C.﹣3或3 D.﹣5或58.(3分)当a=3,b=﹣1时,代数式0.5(a﹣2b)的值是()A.1 B.0.5 C.﹣2.5 D.2.59.(3分)如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P 应落在线段()A.AO上B.OB上C.BC上D.CD上10.(3分)在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:①任何无理数都是无限不循环小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.其中正确的个数是()A.1 B.2 C.3 D.4二、认真填一填(6个小题,每题4分,共24分)11.(4分)的平方根是,的立方根是12.(4分)用代数式表示a、b两数的平方和与a,b乘积的差.13.(4分)已知:数轴上一个点到﹣2的距离为5,则这个点表示的数是.14.(4分)若x,y为实数,且|x﹣2|+=0,则(x+y)2017的值为15.(4分)精确到万位,并用科学记数法表示5 197 500≈,||=.16.(4分)如图所示,数轴上点A表示的数是﹣1,O是原点,以AO为边作正方形AOBC,以A 为圆心、AB长为半径画弧交数轴于P1、P2两点,则点P1表示的数是,点P2表示的数是.三.全面答一答(7个小题,共66分)17.(6分)把下列各数填在相应的横线上﹣8,π,﹣|﹣2|,,,﹣0.9,5.4,,0,﹣3.,1.2020020002…(每两个2之间多一个0)整数;负分数;无理数.18.(12分)计算下列各题:(1)﹣12×()(2)﹣10﹣6÷(﹣2)(3)﹣32﹣|﹣4|+(﹣5)2×(4)÷﹣19.(8分)出租车司机老姚某天上午营运全是在东西走向的解放路上进行.如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+6,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+8,﹣9,﹣12.(1)将第几名乘客送到目的地时,老姚刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老姚距上午出发点多远?在出发点的东面还是西面?(3)若汽车耗油量为0.075L/km,这天上午老姚的出租车耗油多少L?20.(8分)已知|a|=5,b2=4,(1)求a+b的值;(2)若ab<0,求2a﹣3b的值.21.(10分)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)如果的小数部分为a,的整数部分为b,求a+b的值;(2)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.22.(10分)我国是世界上淡水资源匮乏的国家之一,为了节约用水,不少城市做出了对用水大户限制用水的规定:某城市规定每一个用水大户,月用水量不超过规定标准a顿时,按每吨1.6元的价格收费;如果超过了标准,超过部分每吨加收0.4元的附加费用.(1)若某用户在3月份用水x(x>a)吨,则该用户应交水费多少元?(2)若规定标准用水量为100吨,某用户在4月份用水150吨,则该用户应交水费多少元?23.(12分)观察图1,每个小正方形的边均为1.可以得到每个小正方形的面积为1.(1)图中阴影部分的面积是多少?阴影部分正方形的边长是多少?(2)估计边长的值在哪两个相邻整数之间?(3)请你利用图1在数轴上用刻度尺和圆规表示阴影部分正方形边长所表示的数.(4)请你利用图2在5×5的方格内作出边长为的正方形.浙江省杭州市萧山区戴村片七年级(上)期中数学试卷参考答案与试题解析一、仔细选一选(10个小题,每题3分,共30分)1.(3分)﹣2018的倒数是()A.2018 B.﹣2018 C.D.﹣【分析】根据倒数的意义,可得答案.【解答】解:﹣2018的倒数是﹣,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)实数a在数轴上对应的点如图所示,则a,﹣a,1的大小关系正确的是()A.a<﹣a<1 B.﹣a<a<1 C.1<﹣a<a D.a<1<﹣a【分析】本题首先运用数形结合的思想确定a的正负情况,然后根据相反数意义即可解题.【解答】解:由数轴上a的位置可知a<0,|a|>1;设a=﹣2,则﹣a=2,∵﹣2<1<2∴a<1<﹣a,故选项A,B,C错误,选项D正确.故选:D.【点评】此题主要考查了比较实数的大小,解答此题的关键是根据数轴上a的位置估算出a的值,设出符合条件的数值,再比较大小即可.3.(3分)下列运算正确的是()A.=±3 B.(﹣2)3=8 C.﹣22=﹣4 D.﹣|﹣3|=3【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=2,不符合题意;B、原式=﹣8,不符合题意;C、原式=﹣4,符合题意;D、原式=﹣3,不符合题意,故选:C.【点评】此题考查了算术平方根,相反数,以及绝对值,熟练掌握各自的性质是解本题的关键.4.(3分)用18米长的铝合金做成一个长方形的窗框(如图),设长方形窗框的横条长度为x米,则长方形窗框的面积为()A.x(18﹣x)平方米B.x(9﹣x)平方米C.平方米D.平方米【分析】由铝合金的总长18米减去三个横框得到两竖框的长度,再除以2得到竖框的长度,然后利用窗框的面积=横条长度×竖条长度即可列出代数式.【解答】解:窗框的另一边是米,根据长方形的面积公式,得:窗框的面积是x()平方米.故选:D.【点评】此题考查了代数式的列法,以及矩形的性质,解决问题的关键是读懂题意,找到所求的量的等量关系.特别注意窗框的横条有3条.5.(3分)下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确有()个.A.1 B.2 C.3 D.4【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①负数没有立方根,错误;②一个实数的立方根不是正数就是负数或0,故原命题错误;③一个正数或负数的立方根与这个数的符号一致,正确;④如果一个数的立方根等于它本身,那么它一定是±1或0,故原命题错误;其中正确的是③,有1个;故选:A.【点评】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(3分)下列各式计算结果为正数的是()A.(﹣3)×(﹣5)×(﹣7)B.(﹣5)101C.﹣32D.(﹣5)3×(﹣2)【分析】根据有理数的乘法及乘方运算法则进行逐一分析即可.【解答】解:A、错误,(﹣3)×(﹣5)×(﹣7)=﹣105;B、错误,∵101为奇数,∴结果为负数;C、错误,﹣32=﹣9;D、正确,∵3为奇数,∴(﹣5)3为负数,∴(﹣5)3×(﹣2)的结果必为正数.故选:D.【点评】本题考查的是有理数的乘法及乘方的运算法则.有理数的乘法法则:几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.乘方运算的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.7.(3分)若|x|=1,|y|=4,且xy<0,则x﹣y的值等于()A.﹣3或5 B.3或﹣5 C.﹣3或3 D.﹣5或5【分析】先去绝对值符号,再根据xy<0得出x、y的对应值,进而可得出结论.【解答】解:∵|x|=1,|y|=4,∴x=±1,y=±4.∵xy<0,∴x、y的符号相反,∴当x=1时,y=﹣4,x﹣y=1+4=5;当x=﹣1时,y=4,x﹣y=﹣1﹣4=﹣5.故选:D.【点评】本题考查的是代数式求值,根据题意判断出x、y的符号是解答此题的关键.8.(3分)当a=3,b=﹣1时,代数式0.5(a﹣2b)的值是()A.1 B.0.5 C.﹣2.5 D.2.5【分析】本题是代数式求值的考查,解决此类问题可直接将a=3,b=﹣1代入即可.【解答】解:当a=3,b=﹣1时,代数式0.5(a﹣2b)=0.5×(3+2)=2.5,故选:D.【点评】本题主要考查代数式的求值,是代数式求值中最为直接的一类,求解时直接代入求解即可.9.(3分)如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P 应落在线段()A.AO上B.OB上C.BC上D.CD上【分析】根据估计无理数的方法得出0<3﹣<1,进而得出答案.【解答】解:∵2<<3,∴0<3﹣<1,故表示数3﹣的点P应落在线段OB上.故选:B.【点评】此题主要考查了估算无理数的大小,得出的取值范围是解题关键.10.(3分)在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:①任何无理数都是无限不循环小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.其中正确的个数是()A.1 B.2 C.3 D.4【分析】根据无理数是无限不循环小数,实数与数轴的关系,可得答案.【解答】①任何无理数都是无限不循环小数,故①正确;②实数与数轴上的点一一对应,故②错误;③在1和3之间的无理数有无数个,故③错误;④是无理数,故④错误;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数,故⑤正确;故选:B.【点评】本题考查了实数,无理数是无限不循环小数,实数与数轴的关系,注意近似数要四舍五入.二、认真填一填(6个小题,每题4分,共24分)11.(4分)的平方根是±3,的立方根是【分析】利用平方根、立方根定义计算即可.【解答】解:=9,9的平方根是±3;﹣的立方根是﹣,故答案为:±3;﹣【点评】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.12.(4分)用代数式表示a、b两数的平方和与a,b乘积的差a2+b2﹣ab.【分析】根据题意,可以用相应的代数式表示出题目中的语句.【解答】解:a、b两数的平方和与a,b乘积的差是:a2+b2﹣ab,故答案为:a2+b2﹣a b.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.13.(4分)已知:数轴上一个点到﹣2的距离为5,则这个点表示的数是﹣7或3.【分析】根据数轴上一个点到﹣2的距离为5,可知这个数与﹣2的差的绝对值等于5,从而可以解答本题.【解答】解:∵数轴上一个点到﹣2的距离为5,∴设这个数为x,则|x﹣(﹣2)|=5.解得,x=﹣7或x=3.故答案为:﹣7或3.【点评】本题考查数轴,解题的关键是明确距离是两个点的对应的数的绝对值.14.(4分)若x,y为实数,且|x﹣2|+=0,则(x+y)2017的值为﹣1【分析】直接利用绝对值以及偶次方的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣2|+=0,∴x=2,y=﹣3,∴(x+y)2017=(2﹣3)2017=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.15.(4分)精确到万位,并用科学记数法表示5 197 500≈ 5.20×106,||=.【分析】利用实数的性质,以及科学记数法与有效数字性质判断即可.【解答】解:5 197 500≈5.20×106,||=3﹣,故答案为:5.20×106,3﹣【点评】此题考查了实数的性质,以及科学记数法与有效数字,熟练掌握运算法则是解本题的关键.16.(4分)如图所示,数轴上点A表示的数是﹣1,O是原点,以AO为边作正方形AOBC,以A为圆心、AB长为半径画弧交数轴于P1、P2两点,则点P1表示的数是﹣1﹣,点P2表示的数是﹣1+.【分析】首先利用勾股定理计算出AB的长,再根据题意可得AP1=AB=AP2=,然后根据数轴上个点的位置计算出表示的数即可.【解答】解:∵点A表示的数是﹣1,O是原点,∴AO=1,BO=1,∴AB==,∵以A为圆心、AB长为半径画弧,∴AP1=AB=AP2=,∴点P1表示的数是﹣1﹣,点P2表示的数是﹣1+,故答案为:﹣1﹣;﹣1+.【点评】此题主要考查了勾股定理,以及实数与数轴,关键是掌握勾股定理,计算出AB的长.三.全面答一答(7个小题,共66分)17.(6分)把下列各数填在相应的横线上﹣8,π,﹣|﹣2|,,,﹣0.9,5.4,,0,﹣3.,1.2020020002…(每两个2之间多一个0)整数﹣8,﹣|﹣2|,,0;负分数﹣0.9,﹣3.;无理数π,,1.2020020002….【分析】根据整数、负分数、无理数的概念判断即可.【解答】解:整数﹣8,﹣|﹣2|,,0;负分数﹣0.9,﹣3.;无理数π,,1.2020020002…;故答案为:﹣8,﹣|﹣2|,,0;﹣0.9,﹣3.;π,,1.2020020002….【点评】本题考查的是实数的概念,掌握实数的分类是解题的关键.18.(12分)计算下列各题:(1)﹣12×()(2)﹣10﹣6÷(﹣2)(3)﹣32﹣|﹣4|+(﹣5)2×(4)÷﹣【分析】(1)直接利用乘法分配律化简,进而得出答案;(2)直接利用有理数的混合运算法则计算得出答案;(3)直接利用绝对值的性质以及有理数的混合运算法则化简进而得出答案;(4)直接利用立方根的性质以及二次根式的性质化简得出答案.【解答】解:(1)﹣12×()=﹣12×+12×﹣12×=﹣16+9﹣10=﹣17;(2)﹣10﹣6÷(﹣2)=﹣10+3=﹣7;(3)﹣32﹣|﹣4|+(﹣5)2×=﹣9﹣4+10=﹣3;(4)÷﹣=8÷3﹣=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(8分)出租车司机老姚某天上午营运全是在东西走向的解放路上进行.如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+6,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+8,﹣9,﹣12.(1)将第几名乘客送到目的地时,老姚刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老姚距上午出发点多远?在出发点的东面还是西面?(3)若汽车耗油量为0.075L/km,这天上午老姚的出租车耗油多少L?【分析】(1)老姚刚好回到上午出发点,就是说正负相加为0,估算后发现是前六个数相加.(2)把所有的行车里程相加,即为所求;(3)耗油总量=行走的总路程×单位耗油量.【解答】解:(1)因为+8+6﹣10﹣3+6﹣5﹣2=0,所以将第7名乘客送到目的地时,老姚刚好回到出发点.(2)+8+6﹣10﹣3+6﹣5﹣2﹣7+4+8﹣9﹣12=﹣16,所以老姚距上午出发点16km因为﹣16是负的,所以在出发点的西边16km处.(3)|+8|+|+6|+|﹣10|+|﹣3|+|+6|+|﹣5|+|﹣2|+|﹣7|+|+4|+|+8|+|﹣9|+|﹣12|=80,80×0.075=6(L),所以这天上午老姚的出租车油耗为6 L.【点评】本题考查正负数的意义,解题的关键是理解用正负数表示两种具有相反意义的量.20.(8分)已知|a|=5,b2=4,(1)求a+b的值;(2)若ab<0,求2a﹣3b的值.【分析】(1)利用绝对值的定义求出a的值,利用平方根的定义求出b的值,即可求出a+b的值;(2)根据ab小于0,得到ab异号,求出a与b的值,代入所求式子中计算即可求出值.【解答】解:∵|a|=5,b2=4,∴a=±5,b=±2,(1)当a=5,b=2时,a+b=5+2=7;当a=5,b=﹣2时,a+b=5﹣2=3;当a=﹣5,b=2时,原式=﹣5+2=﹣3;当a=﹣5,b=﹣2时,a+b=﹣5﹣2=﹣7;(2)∵ab<0,∴a与b异号,则a=﹣5,b=2时,2a﹣3b=﹣10﹣6=﹣16;当a=5,b=﹣2时,2a﹣3b=10+6=16.【点评】求出考查了代数式求值,涉及的知识有:绝对值及平方根的定义,求出a与b的值是解本题的关键.21.(10分)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)如果的小数部分为a,的整数部分为b,求a+b的值;(2)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.【分析】(1)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;(2)根据题意确定出x与y的值,求出x﹣y的相反数即可.【解答】解:(1)根据题意得:a=﹣2,b=3,则a+b=﹣2+3=+1;(2)∵x为整数,10+=x+y,且0<y<1,∴x=11,y=﹣1,则x﹣y的相反数为﹣(x﹣y)=﹣x+y=﹣12.【点评】此题考查了估算无理数的大小,解题关键是确定无理数的整数部分即可解决问题.22.(10分)我国是世界上淡水资源匮乏的国家之一,为了节约用水,不少城市做出了对用水大户限制用水的规定:某城市规定每一个用水大户,月用水量不超过规定标准a顿时,按每吨1.6元的价格收费;如果超过了标准,超过部分每吨加收0.4元的附加费用.(1)若某用户在3月份用水x(x>a)吨,则该用户应交水费多少元?(2)若规定标准用水量为100吨,某用户在4月份用水150吨,则该用户应交水费多少元?【分析】(1)设按标准用水为a,根据题目中的条件,可求出标准用水水费为3x元(0<x≤m),超出标准用水各应缴纳的水费(5x﹣2m)元(x>m);(2)根据上述关系式可求处这家某月用水160t的应缴水费.【解答】解:(1)标准用水水费为1.6x元(0<x≤a)超标用水水费:1.6a+2(x﹣a)=(2x﹣0.4a)元(x>a);(2)当a=100,x=150时,该月应交水费=2×150﹣0.4×100=260(元).答:该月应交水费为260元.【点评】此题考查了列代数式的知识,解题的关键是按照题目中的已知条件,根据用水数量的不同列出相应的关系式.23.(12分)观察图1,每个小正方形的边均为1.可以得到每个小正方形的面积为1.(1)图中阴影部分的面积是多少?阴影部分正方形的边长是多少?(2)估计边长的值在哪两个相邻整数之间?(3)请你利用图1在数轴上用刻度尺和圆规表示阴影部分正方形边长所表示的数.(4)请你利用图2在5×5的方格内作出边长为的正方形.【分析】(1)根据阴影部分的面积等于正方形的面积减去四周四个小直角三角形的面积列式计算即可得解;再利用算术平方根的定义求出边长;(2)根据无理数的大小估算方法解答;(3)利用勾股定理作出边长表示的无理数即可;(4)利用勾股定理作出边长,画出正方形即可.【解答】解:(1)阴影部分面积=4×4﹣4××1×3,=16﹣6,=10,阴影部分正方形的边长=;(2)∵9<10<16,∴3<<4,即边长的值在整数3和4之间;(3)如图,点P表示数的点.(4)如图所示,正方形ABCD即为所求.【点评】本题考查了作图﹣复杂作图,算术平方根,实数与数轴,三角形的面积以及无理数大小的比较,此种阴影部分的面积的求法是常用方法,需熟练掌握并灵活运用.。
最新浙教版七年级上期中考试数学试卷及答案最学资料:浙教版数学七年级数学期中试卷一、选择题(本大题共8小题,每小题3分,共24分)1.2014的倒数是()。
A。
2014 B。
-2014 C。
±2014 D。
1/20142.在下面各数中无理数的个数有()。
322π,-3.14,0.xxxxxxxx01…,+1.99,-xxxxxxxxA。
5个 B。
4个 C。
3个 D。
2个3.下列各式①m ②x+2=7 ③2x+3y ④a>3 ⑤中,x整式的个数有()。
A。
1个 B。
2个 C。
3个 D。
4个4.下列运算中,正确的是()。
A。
-a^2b+2a^2b=a^2b B。
2a-a=2C。
3a^2+2a^2=5a^4 D。
2a+b=2ab5.把方程-0.3x+0.7/(x+2)-1=0化为整数,结果应为()。
A。
-2 B。
-20/37 C。
-2 D。
-20/376.下面是一个被墨水污染过的方程:2x-2=3x+2,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是()。
A。
1 B。
-1 C。
2 D。
27.如果A和B都是5次多项式,则下面说法正确的是()。
A。
A-B一定是多项式 B。
A-B是次数不低于5的整式C。
A+B一定是单项式 D。
A+B是次数不高于5的整式8.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m^3分裂后,其中有一个奇数是103,则m的值是()。
A。
9 B。
10 C。
11 D。
12二、填空题:(本大题共10小题,每题3分,共30分)9.江都地区实现地区生产总值639亿元,639亿用科学记数法表示应为(6.39×10^11)。
10.单项式-π/4a^3b的次数是(3)次。
11.若单项式2x^2ym与-xny^3是同类项,则m+n的值是(3)。
12.在数轴上,与表示-1的点相距6个单位长度的点所表示的数是(-7)。
(浙教版)七年级上册数学期中考试全真模拟试卷一一、单选题 (每题3分,总30分)(24-25七年级上·浙江杭州·阶段练习)1.某体育中心体育场的观众席位数29800座,则29800用科学记数法表示为( )A .229810´B .329.810´C .42.9810´D .50.29810´(24-25七年级上·浙江温州·阶段练习)2.小明和晓晓相约周六早上8点30分在植物园门口见面.若小明早到10分钟记为10-分钟,则晓晓晚到2分钟记为( )A .2+分钟B .2-分钟C .32+分钟D .32-分钟(24-25七年级上·浙江杭州·阶段练习)3.如图,点A ,B 对应的数分别为a ,b ,对于结论:①0ab <,②0a -<,③0a b +<,其中说法正确的是( )A .①②B .①③C .②D .①②③(24-25七年级上·浙江杭州·阶段练习)4.若20.3a =-,23b =-,213c æö=-ç÷èø,()23d =-,则( )A .a b c d <<<B .b a c d <<<C .a d c b <<<D .c a d b <<<(23-24七年级上·浙江宁波·期中)5.下列说法中正确的是( )A .有理数与数轴上的点一一对应B .负数有立方根C .如果三个有理数的积为正数,那么这三个数中负因数的个数为0D .若数a 由四舍五入法得到近似数为7.30,则数a 的范围是:7.2957.304a ££(23-24七年级上·浙江宁波·期中)62的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间(24-25七年级上·浙江杭州·阶段练习)7.下列说法:①减去一个正数,差一定小于被减数;②两个数的乘积为0,则这两个数至少有一个为0;③0除以任何有理数都得0;④任何一个有理数的偶次幂都是正数,正确的有( )A .①②B .①③C .①②③D .②③④(24-25七年级上·浙江绍兴·阶段练习)8.已知0112m n t m n +=<<<<,,.若数轴上点N ,T 所对应的数是n ,t ,则N ,T 的位置可能是( )A .B .C .D .(24-25七年级上·浙江温州·阶段练习)9.如图,阶梯图的每个台阶上都标有一个数,数列呈现一定的符号变化规律和绝对值的变化规律,请计算13572025-+-+¼+=( )A .1013B .1011C .0D .以上都不对(24-25七年级上·浙江·期中)10.下列各数:227,π, 1.010010001-L (两个1之间依次多一个0)中,无理数的个数是( )A .1个B .2个C .3个D .4个二、填空题 (每题3分,总18分)(24-25七年级上·浙江杭州·阶段练习)11.计算:()263æö-´-=ç÷èø .(24-25七年级上·浙江金华·阶段练习)12.用四舍五入法把1.5942精确到0.01的近似数是 .(24-25七年级上·浙江金华·阶段练习)13.若()2320x y ++-=,则x y +的值为 .(23-24七年级上·浙江宁波·期中)14.规定符号()x △(x 是正整数)满足下列性质:①当x 为质数时,()1x =△②对于任意两个正整数p 和q ,有()()()*p q p q q p =´+´△△△例如:()()()()933333331316=´=´+´=´+´=△△△△;()()()()1535355331518=´=´+´=´+´=△△△△;()()()()302152151522815131=´=´+´=´+´=△△△△.问:()32=△ ,()2024=△(24-25七年级上·浙江温州·阶段练习)15.若10a b +=,且a ,b 都是奇数,则满足条件的a 与b 共有 对.(24-25七年级上·浙江杭州·阶段练习)16.若在数轴上有两个点M 、N ,它们在数轴上的点表示的数分别为m 、n ,满足529m m ++-=且236n n n ++++-的值最小,则两个点M 、N 之间的距离是 .三、解答题 (总72分)(2024七年级上·浙江·专题练习)17.计算下列各题:(1)(12)(8)(10)(8)--+-+--;(2)(55)(9.4)(32)(9.4)+---+-+;(3)231213343æöæö-+--ç÷ç÷èøèø;(4)()340.2547éù--+êúëû.(24-25七年级上·浙江温州·阶段练习)18.一辆无人驾驶快递车(名叫“小白”)从快递公司门口出发,在东西走向的道路上行驶.若规定向东为正,向西为负,“小白”的8段行驶里程(单位∶千米)分别是∶3,5,4,2,7,5,4,8-+--+-+-.(1)经过8段行驶里程,“小白”的位置在哪里?(2)若每行驶100千米“小白”的耗电量是4度,则总耗电量是多少?(24-25七年级上·浙江金华·阶段练习)19.出租车司机小飞某天上午营运全是在南北走向的某条大街上进行的,如果规定向南为正,向北为负,他这天上午的行程是(单位:千米):5710121583151213,,,,,,,,,--+-+++-+-.(1)将最后一名乘客送达目的地时,小张距上午出发点的距离是多少千米?在出发点的什么方向?(2)若汽车耗油量为0.6升/千米,出车时,邮箱有油61升,若小张将最后一名乘客送达目的地,再返回出发地,问小张今天下午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油,请说明理由.(24-25七年级上·浙江杭州·阶段练习)20.岚山多岛海以其优类的海岸线,宽广的金沙滩吸引了众多游客慕名而来.如表是某社会实践小组统计的2023年8月1日~7日七天内每天旅游人数变化表(正号表示人数比前一天多,负号表示比前一天少)已知7月31日的游客人数为0.3万人,结合以上信息解决下列问题:日期1日2日3日4日5日6日7日人数变化单位:万人 1.8+0.6-0.2+0.7-0.3-0.5+0.7-(1)8月4日的旅客人数为__________万人;(2)8月1日~7日中旅客人数最多的一天比最少的一天多多少人?(3)如果每万人带来的经济收入约为300万元,则8月1日~7日的旅游总收入约为多少万元?(24-25七年级上·浙江杭州·阶段练习)21.小华在电脑中设置了一个有理数的运算程序:4a b ab a b =-++※,输入a ,b 的值可在屏幕上输出运算结果.(1)①求()32-※的值;②求()()345-※※的值;(2)计算25※和52※的值,并根据计算结果判断小华设计的运算程序是否满足交换律.(24-25七年级上·浙江温州·阶段练习)22.任意一个正整数n 都可以写成两个正整数x ,y 相乘的形式,我们把两个乘数的差的绝对值最小的一种分解称为该正整数的最优分解,并定义一种新运算“()F n x y =-”,例∶121122634=´=´=´,则()12341F =-=.(1)填空:()6F =______,()15F =_____,()100F =_____.(2)若()()()0,818F m F n m n +=<<<,求m 和n 的值.(23-24七年级上·浙江台州·期末)23.小明与小红两位同学计算()321428æö¸-´-ç÷èø的过程如下:小明:原式()1868æö=¸-´-ç÷èø(第一步)4138æöæö=-´-ç÷ç÷èøèø(第二步)16=-(第三步)小红:原式()11688æö=¸-´-ç÷èø(第一步)()11688éùæö=¸-´-ç÷êúèøëû(第二步)161=¸(第三步)=16(第四步)(1)小明与小红在计算中均出现了错误,请指出小红出错的步骤;(2)写出正确的解答过程.(24-25七年级上·浙江温州·阶段练习)24.在数学探究课上,老师和同学们一起利用数轴研究了下面的问题:数轴上点12320,,,,A A A A ¼满足从第3个点起,每个点到前2个点的距离相等(点3A 到点12,A A 的距离相等).已知点1A 表示5,点2A 表示3-.【理解运用】(1)填空:点3A 表示______,点4A 表示______(填数字).【画图探究】(2)在如图所示的数轴上标出点3456,,,A A A A 的位置.①哪个点是原点?②利用数轴比较点3456,,,A A A A 所表示的数的大小,将它们按从小到大的顺序用“<”连接.【创新发现】(3)在点12320,,,,A A A A ¼中,距离原点最近的点(不包括原点)是哪一个?(直接写出答案)1.C 【分析】本题考查科学记数法,根据科学记数法的表示方法:()10110,n a a n ´£<为整数,进行表示即可.【详解】解:429800 2.9810=´;故选C .2.A【分析】此题考查了正负数的应用,根据正负数是表示一对意义相反的量进行辨别,解题的关键是能准确问题间的数量关系和具有意义相反的量.【详解】解:∵早到10分钟记为10-分钟,∴晚到2分钟记为2+分钟,故选:A .3.D 【分析】本题主要考查了有理数与数轴,有理数的加法和乘法计算,根据数轴可知0b a a b <<<,,据此根据乘法和加法计算法则求解即可.【详解】解:由数轴可知0b a a b <<<,,∴0ab <,0a -<,0a b +<,∴正确的有①②③,故选:D .4.B【分析】本题考查有理数大小比较,有理数乘方运算,先根据有理数的乘方计算各个数字,再比较大小即可.【详解】解:∵20.30.09a =-=-,239b =-=-,21139c æö=-=ç÷èø,()239d =-=,而190.0999-<-<<,∴b a c d <<<,故选:B .5.B【分析】本题考查了数轴:实数与数轴上的点是一一对应关系.也考查了单项式、算术平分根和近似数.利用数轴上点表示的数为全体实数可对A进行判断;利用立方根的定义对B 进行判断;根据有理数乘法运算法则对C进行判断;根据近似数的精确度对D进行判断即可.【详解】解:A、实数与数轴上的点一一对应,所以A选项的说法错误;B、负数有立方根,所以B选项的说法正确;C、如果三个有理数的积为正数,那么这三个数中负因数的个数为0或2,所以C选项的说法错误;D、若数a由四舍五入法得到近似数为7.30,则数a的范围是:7.2957.305£<,所以D选a项的说法错误.故选:B.6.C【分析】本题考查了估算无理数的大小.用夹逼法估算出45<<,即可求解.<<,【详解】解:∵253336∴56<<,∴324<-<,2的值在3到4之间.故选:C.7.A【分析】本题考查了有理数的减法,乘法,除法,乘方运算,掌握运算法则及相关的概念是解题的关键;根据有理数的减法,乘法,除法,乘方运算逐项判断即可.【详解】解:①减去一个正数,差会变小,所以差一定小于被减数,故本选项符合题意;②两个数的乘积为0,其中一个为0,或两个都为0,即这两个数至少有一个为0,故本选项符合题意;③0不能作除数,故本选项不符合题意;④0的偶次幂都是0,故本选项不符合题意;综上所述,正确的有①②,故选:A.8.A【分析】本题主要考查了有理数与数轴,根据题意得到13t <<,且n t <,然后根据数轴上的位置判断即可.【详解】解:∵01m <<,12n <<,∴13m n <+<,即13t <<,且n t <,故N ,T 的位置符合的是A 选项,故选:A .9.A【分析】本题考查了有理数的混合运算,正确理解题意是解题的关键.将13572025-+-++L 化为()()()()1357911202120232025-+-+-++-+L ,找出共有202314+个2-即可求解.【详解】解:13572025-+-++L ()()()()1357911202120232025=-+-+-++-+L ()()()2222025=-+-++-+L ()20231220254+=-´+1013=,故选:A .10.D【分析】本题考查无理数,无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项.【详解】解:28=4=,故在实数227,π 1.010010001-L (两个1之间依次多一个0)中,无理数有π 1.010010001-L (两个1之间依次多一个0),共4个.故选:D .11.4【分析】本题考查有理数的乘法运算,牢记运算法则是解题关键,根据有理数乘法运算法则即可求解.【详解】解:()263æö-´-=ç÷èø4,故答案为:412.1.59【分析】本题主要考查了近似数等知识点,把千分位上的数字4进行四舍五入即可,熟练掌握取近似数的方法是解决此题的关键.【详解】1.5942 1.59»,故答案为:1.59.13.1-【分析】本题考查绝对值的非负性、偶次方的非负性等知识.直接利用偶次方的性质以及绝对值的性质得出x ,y 的值,进而得出答案.【详解】解:∵()2320x y ++-=,∴30x +=,20y -=,∴3x =-,2y =,∴321x y +=-+=-,故答案为:1-.14. 80 3308【分析】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.原式利用题中的新定义计算即可得到结果.【详解】解:()32V ()216=´V ()()216162=´+´V V ()22816=´+V ()()4816216=´+´+V V ()42432=´+V ()()8416232=´+´+V V ()8221632=´´++V ()8221632=´+++23216180=´+´=;()()202421012=´V V ()()2101210122=´+´V V ()225061012=´+V ()()2250650621012éù=¸+´+ëûV V()450650621012=´+´+V ()425322024=´´+V ()()4225325322024éù=´+´+ëûV V ()4225325312024éù=´+´+ëûV ()811233036=´´+V ()()8112323113036éù=´+´+ëûV V ()81112313036=´´+´+3308=,故答案为:80,3308.15.20【分析】本题主要考查了绝对值的意义,有理数的加法计算,根据a ,b 都是奇数,得到a b、都是奇数,则可推出91a b ì=ïí=ïî或73a b ì=ïí=ïî或55a b ì=ïí=ïî或37a b ì=ïí=ïî或19a b ì=ïí=ïî,再由绝对值的意义即可得到答案.【详解】解:∵a ,b 都是奇数,∴a b 、都是奇数,∵10a b +=,∴91a b ì=ïí=ïî或73a b ì=ïí=ïî或55a b ì=ïí=ïî或37a b ì=ïí=ïî或19a b ì=ïí=ïî,∴91a b =±=±,或73a b =±=±,或55a b =±=±,,或37a b =±=±,或19a b =±=±,∴满足条件的a 与b 共有20对,故答案为:20.16.4或5【分析】本题主要考查了绝对值的几何意义,解绝对值方程,数轴上两点距离计算,分当5m <-时,当52m -££时,当2m >时,三种情况去绝对值后解方程求出m 的值;根据绝对值的几何意义推出当2n =-时, 36n n ++-和2n +能同时取得最小值,即236n n n ++++-能取得最小值,据此根据数轴上两点距离计算公式求解即可.【详解】解:当5m <-时,∵529m m ++-=,∴529m m --+-=,解得6m =-;当52m -££时,∵529m m ++-=,∴529m m ++-=,此时方程无解,不符合题意;当2m >时,∵529m m ++-=,∴529m m ++-=,∴3m =;综上所述,6m =-或3m =;∵36n n ++-表示的是数轴上表示x 的数到表示3-和6的两个数的距离之和,∴当36n -££时,36n n ++-有最小值,最小值为369n n ++-=,∵20n +≥,∴当2n =-时,2n +取值最小值,最小值为0,∴当2n =-时, 36n n ++-和2n +能同时取得最小值,即236n n n ++++-能取得最小值,∴2n =-,∴两个点M 、N 之间的距离是235--=或()264---=,故答案为:4或5.17.(1)22-(2)23(3)144(4)37【分析】本题考查有理数的加减混合运算,熟知运算法则及加法的运算律是正确解决本题的关键.各个小题均先根据有理数的减法法则,把减法化成加法,写成省略加号和的形式,然后交换加数位置,进行简便计算即可.【详解】(1)解:原式(12)(8)(10)(8)=-+-+-++128108=---+308=-+22=-;(2)解:原式()()()()559.4329.4=++++-+-55943294..=+--55329494..=-+-23=;(3)解:原式231213343æöæö=+-++ç÷ç÷èøèø231213343=-+ 213231334=+- 3614=- 144=;(4)解:原式341474éùæö=-+-ç÷êúèøëû341474æö=--ç÷èø 341474=-+ 314447=+- 417=- 37=.18.(1)在快递公司西边6千米(2)1.52度【分析】本题主要考查了有理数的加法运算、乘除法运算以及正负数的实际应用.(1)根据题意列出算式求出结果,再根据结果判断即可;(2)将题干中的数据的绝对值相加算出总的路程,再根据题意即可列出算式求解即可.【详解】(1)解:()()()()354275486-++-+-++-++-=-,∴“小白”的位置在快递公司西边6千米;(2)解:3542754838-++-+-++-++-=,∴耗电:410038 1.52¸´=度,答:总耗电量是1.52度.19.(1)在出发点的北边,距离出发点4千米;(2)需要加油,至少加1.4升油.【分析】本题考查了正数和负数,注意返回出发地,还需加上距出发地距离.(1)根据有理数的加法运算,可得答案;(2)根据行车就耗油,可得耗油量,可得答案.【详解】(1)解:57101215831512134--+-+++-+-=-(千米),答:在出发点的北边,距离出发点4千米;(2)解:需要加油,理由:57101215831512134104-+-+++-+++++++-+++-+-=(千米),1040.662.4´=(升),∵62.4<61,∴62.461 1.4-=(升),∴需要加油,至少加1.4升油.20.(1)1(2)1.6万人(3)2610万元【分析】本题考查了有理数的加法、有理数的混合运算的应用,解题的关键是理解题意,正确列式计算.(1)根据7月31日的游客人数,以及之后每天人数变化情况列出算式,即可求解;(2)先计算出每天的游客人数,找出人数最多的一天的人数和最少的一天的人数,求出它们的差即可;(3)先求出8月1日~7日游客总人数,再乘以300万即可.【详解】(1)解:8月4日的旅客人数为:0.3 1.80.60.20.71+-+-=(万人),故答案为:1;(2)解:8月1日的游客人数为:0.3 1.8 2.1+=(万人),8月2日的游客人数为:2.10.6 1.5-=(万人),8月3日的游客人数为:1.50.2 1.7+=(万人),8月4日的游客人数为:1.70.71-=(万人),8月5日的游客人数为:10.30.7-=(万人),8月6日的游客人数为:0.70.5 1.2+=(万人),8月7日的游客人数为:1.20.70.5-=(万人),可知人数最多的一天为8月1日2.1万人,人数最少的一天为8月7日0.5万人,2.10.5 1.6-=(万人),答:人数最多的一天比最少的一天多1.6万人;(3)解:()2.1 1.5 1.710.7 1.20.5300++++++´8.7300=´2610=(万元)答:旅游总收入约为2610万元.21.(1)①3;②103-(2)2517=※,5211=※,小华设计的运算程序不满足交换律.【分析】本题主要考查了新定义,有理数的混合计算:(1)①根据新定义可得()()()3232324----=´++※,据此计算求解即可;②先根据新定义计算出3417=※,再计算出()175-※的结果即可得到答案;(2)根据新定义分别计算出25※和52※的值,若二者的值相等,则满足交换律,若不相等,则不满足交换律.【详解】(1)解:①由题意得,()32-※()()32342---=´++6324=-+++3=;②34※34344=´-++12344=-++17=,∴()()345-※※()175=-※()()1174557=-+--+´851754=---+103=-;(2)解:25※25254=´-++10254=-++17=,52※52524=´-++10524=-++11=,∴2552¹※※,∴小华设计的运算程序不满足交换律.22.(1)1,2,0;(2)9m =,16n =.【分析】本题考查了新定义,绝对值的意义,有理数的减法和乘法,掌握相关知识是解题的关键.(1)根据新运算进行计算即可;(2)由 ()()0F m F n +=得到()0F m =,()0F n =,再根据818m n <<<可得出答案.【详解】(1)解:依题意得:∵61623=´=´,∴()6231F =-=,∵1511535=´=´,∴()15352F =-=,∵10011002504255201010=´=´=´=´=´,∴()10010100F =-=,故答案为:1,2,0;(2)解:∵()()0F m F n +=,∴()0F m =,()0F n =,又∵()F n x y =-,∴x y =,∵818m n <<<,∴9m =,16n =.23.(1)小红第二步计算出现错误(2)14【分析】本题考查有理数的乘除法、有理数的乘方,掌握运算法则,正确的计算,是解题的关键.(1)小红的第二步计算出现错误,第二步运算顺序出现错误;(2)根据有理数的混合运算法则,进行计算即可.【详解】(1)解:小红第二步计算()11688éùæö=¸-´-ç÷êúèøëû出现错误,运算顺序出现了错误;(2)解:原式()11688æö=¸-´-ç÷èø128æö=-´-ç÷èø14=.24.(1)1,1-;(2)①5A ;②图见解析,11012-<-<<;(3)距离原点最近的点(不包括原点)是7A .【分析】本题考查了数轴表示数,两点间的距离,有理数的大小比较等知识,掌握相关知识是解题的关键.(1)根据中点公式即可求解;(2)①根据中点公式求出5A 、6A 表示的数,则可确定原点;②在数轴上把3A 、4A 、5A 、6A 表示出来,根据数轴特点比较大小即可;(3)根据中点公式求出7A 、8A ,并在数轴上表示出来,由题意和数轴可知,891020,,,,A A A A ¼都在7A 的左边,则可得出答案.【详解】解:∵点1A 表示5,点2A 表示3-,由题意可得,3A 表示的数为:()5312+-=,∴3A 表示的数为1,∴4A 表示的数为:()3112-+=-,故答案为:1,1-;(2)①由(1)可知,3A 表示的数为1,4A 表示的数为1-,∴5A 表示的数为:()1102+-=,6A 表示的数为:10122-+=-,∴原点是5A ;②由上可知,3A 表示的数为1,4A 表示的数为1-,5A 表示的数为0,6A 表示的数为12-,在数轴上表示为:根据数轴特点可得:11012-<-<<;(3)∵5A 表示的数为0,6A 表示的数为12-,∴7A 表示的数为101224æö+-ç÷èø=-,8A 表示的数为1132428æöæö-+-ç÷ç÷èøèø=-,如图:由题意和数轴可知,891020,,,,A A A A ¼都在7A 的左边,5A 是原点,3A 到原点的距离为1,7A 到原点的距离为14,∴距离原点最近的点(不包括原点)是7A .。
一、选择题1.如表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的整数为( )1- a b c 2 5 …A .1-B .0C .2D .5 2.已知|a|=2,b 2=25,且ab >0,则a ﹣b 的值为( ) A .7B .﹣3C .3D .3或﹣3 3.求23201312222+++++的值,可令220131222S =++++,则23201422222S =++++,因此2014221S S -=-.仿照以上推理,计算出23201315555+++++的值为( ) A .201451- B .201351- C .2014514- D .2013514- 4.如图是由“○”组成的龟图,则第10个龟图中“○”的个数是( )A .77B .90C .95D .116 5.下列计算结果正确的是( )A .()111--=B .()010-=C .2142-⎛⎫-=- ⎪⎝⎭D .()211--=- 6.截至2020年10月末,全国核酸日检测能力是65.7610⨯人份,实现了“应检尽检”、“愿检尽检”.数据65.7610⨯原来的数是( )A .576000B .576万C .57600000D .57.6万 7.下列图形为正方体展开图的是( )A .B .C .D . 8.下列四个立体图形中,从正面和左面看到的形状图有可能不同的是( )A .B .C .D . 9.如图是正方体的表面展开图,则“乐”字相对面上的字为( )A .南B .开C .生D .快10.已知数轴上的四点P ,Q ,R ,S 对应的数分别为p ,q ,r ,s .且p ,q ,r ,s 在数轴上的位置如图所示,若10r p -=,12s p -=,9s q -=,则r q -等于( ).A .7B .9C .11D .1311.如图,有理数a ,b ,c ,d 在数轴上的对应点分别是A ,B ,C ,D ,若5b d +=,则a c +( )A .大于5B .小于5C .等于5D .不能确定 12.一个七棱柱的顶点的个数为( )A .7个B .9个C .14个D .15个 二、填空题13.观察下面的一列单项式:2x ,34x -,58x ,716x -,……,根据你发现的规律,第20个单项式为__________.14.如图是一个按某种规律排列的数阵,根据数阵的规律,第8行倒数第二个数是______.15.面对2020年突如其来的新冠疫情,党和国家及时采取“严防严控”措施,并对新冠患者全部免费治疗,据统计共投入约21亿元资金,21亿用科学记数法表示为______. 16.5-的相反数是________,5-的倒数是________,5-的绝对值是________. 17.一百货大楼地上共有30层,地下共有3层,若某人乘电梯从地下2层升至地上16层,则电梯一共升了______________层.18.下列说法:①球的截面一定是圆;②正方体的截面可以是五边形;③棱柱的截面不可能是圆;④长方体的截面一定是长方形,其中正确的有___________个19.如图是一个正方体纸盒的展开图.正方体的各面标有数字 5、﹣2,3,﹣3,A ,B .相对面上的两个数互为相反数,则A =_____,B =_____.20.一个几何体的三种视图如图所示,这个几何体的表面积是__.(结果保留π)三、解答题21.()()322322(2)32x y x y x y x -----+,其中2,1x y =-=-.22.先化简,再求值;()()222232522x xy y x xy y -+--+,其中1x =,2y =-.23.(1)()32102 2.25327⎛⎫-⨯+-⨯-⎪⎝⎭; (2)()()32353128⨯---÷24.计算.(1)()512821()+----;(2)()()()22830.751923--⎡⎤⎢⎥⎣⎦--⨯⨯-; (3)用简便方法计算:53966()-⨯-.25.如图,是由一些大小相同的小正方体组合成的简单几何体.(1)画出图中几何体的主视图、左视图.(2)如果移走图中的一个小正方体,使新几何体的主视图、左视图一样,应该移走哪一个?(在相应小正方体上标上字母M ).(3)在原图的基础上添加一些小正方体,使新几何体的主视图、左视图与原几何体的主视图、左视图分别相同,则最多添加多少个小正方体?26.如图所示是长方体的表面展开图,折叠成一个长方体.(1)与字母F重合的点有哪几个?(2)若AD=4AB,AN=3AB,长方形DEFG的周长比长方形ABMN的周长少8,求原长方体的容积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据有一个不同数是5可得b=5,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴-1+a+b=a+b+c,解得c=-1,a+b+c=b+c+2,解得a=2,所以数据从左到右依次为-1、2、b、-1、2、b,有一个不同数是5,即b=5,所以每3个数“-1、2、5”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为2.故选:C.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.2.D解析:D【分析】根据绝对值,乘方的意义求出a、b的值,再代入计算即可.【详解】解:因为|a|=2,所以a=±2,因为b2=25,所以b=±5,又因为ab>0,所以a、b同号,所以a=2,b=5,或a=﹣2,b=﹣5,当a=2,b=5时,a﹣b=2﹣5=﹣3,当a=﹣2,b=﹣5时,a﹣b=﹣2﹣(﹣5)=3,因此a﹣b的值为3或﹣3,故选:D.【点睛】本题主要考查了绝对值的性质和代数式求值,准确计算是解题的关键.3.C解析:C【分析】类比题目中所给的解题方法解答即可.【详解】解:设a=1+5+52+53+ (52013)则5a=5(1+5+52+53+…+52013)=5+52+53+…+52013+52014,∴5a-a=(5+52+53+…+52013+52014)-(1+5+52+53+…+52013)=52014-1,即a=2014514.故选:C.【点睛】本题是阅读理解题,类比题目中所给的解题方法是解决问题的基本思路.4.C解析:C【分析】先求出第1、2、3、4个图中“○”的个数,再归纳类推出一般规律,由此即可得出答案.【详解】观察图可知,第1个图中“○”的个数是5510=+⨯,第2个图中“○”的个数是7521=+⨯,第3个图中“○”的个数是11532=+⨯,第4个图中“○”的个数是17543=+⨯,归纳类推得:第n 个图中“○”的个数是5(1)n n +-,其中n 为正整数,则第10个图中“○”的个数是510995+⨯=,故选:C .【点睛】本题考查了用代数式表示图形的规律,依据已知图形,正确归纳类推出一般规律是解题关键.5.D解析:D【分析】结合负整数指数幂和零指数幂的概念和运算法则进行求解即可.【详解】解:A 、(-1)-1=-1≠1,本选项错误;B 、(-1)0=1≠0,本选项错误;C 、212-⎛⎫- ⎪⎝⎭=4≠-4,本选项错误; D 、-(-1)2=-1,本选项正确.故选:D .【点睛】本题考查了负整数指数幂,解答本题的关键在于熟练掌握该知识点的概念和运算法则. 6.B解析:B【分析】将科学记数法a×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.【详解】解:65.7610⨯=5760000=576万.故选:B .【点睛】本题考查写出用科学记数法表示的原数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法. 7.C解析:C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】A,B,D折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,只有C是一个正方体的表面展开图.故选C.【点睛】考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.8.A解析:A【分析】根据立体图形的特点逐项判断即可求解.【详解】解:A.从正面看是一个长方形,从左面看是一个长方形,但这两个长方形有可能不同,符合题意;B.从正面和左面看都是一个等腰三角形,并且形状相同,不合题意;C.从正面和左面看都是一个圆,并且形状相同,不合题意;D.从正面和左面看都是一个长方形,并且形状相同,不合题意.故选:A【点睛】本题考查对立体图形的理解及空间想象能力.根据立体图形的特点能正确想象出从正面和左面看到的图形是解题关键.9.B解析:B【分析】根据正方体的表面展开图的性质,即可求得答案.【详解】由题意得“乐”字相对面上的字为“开”故答案为:B.【点睛】本题考查了正方体的表面展开图,掌握正方体表面展开图的性质是解题的关键.10.A解析:A【分析】=(r−p)−(s−p)+(s−q),整体代根据数轴判断p、q、r、s四个数的大小,得出r q入求解.【详解】解:由数轴可知:p<r,p<s,q<s,q<r,∵r−p=10,s−p=12,s−q=9,∴ r−q=(r−p)−(s−p)+(s−q)=10−12+9=7.故选:A.【点睛】本题考查了数轴及有理数大小比较.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.11.A解析:A【分析】根据数轴,判断出数轴上的点表示的数的大小,进而可得结论【详解】解:由数轴可得,a>d,c>b,∴a+c>b+d∵b+d=5∴a+c>5故选:A【点睛】本题考查数轴、有理数加法法则以及有理数的大小比较,属于中等题型.12.C解析:C【解析】【分析】一个七棱柱是由两个七边形的底面和7个四边形的侧面组成,根据其特征进行填空即可.【详解】解:一个七棱柱共有:7×2=14个顶点.故选:C.【点睛】本题主要考查n棱柱的构造特点:(n+2)个面,3n条棱,2n个顶点.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.【分析】结合题意根据数字类规律乘方的性质推导出第n个单项式的表达式从而得到答案【详解】第一个单项式:第二个单项式:第三个单项式:第四个单项式:……第n个单项式:∴第20个单项式为:故答案为:【点睛】解析:20392x【分析】结合题意,根据数字类规律、乘方的性质,推导出第n 个单项式的表达式,从而得到答案.【详解】第一个单项式:2x第二个单项式:34x -第三个单项式:58x第四个单项式:716x -……第n 个单项式:()12112n n n x +--∴第20个单项式为:()212022012039122x x ⨯--=-故答案为:20392x -.【点睛】本题考查了数字类规律、乘方的知识;解题的关键是熟练掌握数字类规律、乘方的性质,从而完成求解.14.【分析】由数阵规律可知被开方数是连续的自然数根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数可得结论【详解】解:第1行的最后一个数是;第2行的最后一个数是;第3行的最后一个数是;第4行的【分析】由数阵规律可知,被开方数是连续的自然数,根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数,可得结论.【详解】解:第1第2第3;第4∴第8∴第8【点睛】本题考查观察与归纳,要善于发现数列的规律性特征.15.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10继而用此形式来表示此数即可;【详解】∵21亿=2100000000∴故答案为:【点睛】本题考查了科学记数法的表示形式正确掌握科学记数解析:92.110⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,继而用此形式来表示此数即可;【详解】∵21亿=2100000000∴92100000000=2.110⨯ ,故答案为:92.110⨯ .【点睛】本题考查了科学记数法的表示形式,正确掌握科学记数法的表示形式是解题的关键. 16.5【分析】根据相反数倒数绝对值的概念及性质解题【详解】解:的相反数是5;的倒数是;的绝对值是5故答案为:55【点睛】此题考查了相反数倒数绝对值的定义注意区分概念不要混淆 解析:15- 5 【分析】根据相反数、倒数、绝对值的概念及性质解题. 【详解】解:5-的相反数是5;5-的倒数是15-;5-的绝对值是5. 故答案为:5,15-,5.【点睛】此题考查了相反数、倒数、绝对值的定义,注意区分概念,不要混淆. 17.17【分析】地下为负地上为正所以可以看做从-2层上升到+16层由于没有0层所以应该再减去1计算即可求得【详解】16-(-2)-1=18-1=17(层)∴电梯一共升了17层故答案为:17【点睛】本题主解析:17【分析】地下为负,地上为正,所以可以看做从-2层上升到+16层,由于没有0层,所以应该再减去1,计算即可求得.【详解】16-(-2)-1=18-1=17(层)∴电梯一共升了17层.故答案为:17【点睛】本题主要考查正负数的应用及有理数的运算,先根据数的意义确定出正负再进行计算,易错点是从地下1层到地上1层只上升了1层.18.319.-520.100π解析:100π.三、解答题21.化简结果为:222y x y --+,值为1.【分析】先去括号,合并同类项,把整式进行化简,然后把2,1x y =-=-代入计算,即可得到答案.【详解】解:()()322322(2)32x y x y x y x -----+=322324232x y x y x y x --+--+=222y x y --+;当2,1x y =-=-时,则原式=22(2)2((1)111)42-⨯-+⨯-=-+--=-.【点睛】本题考查了整式的混合运算,整式的化简求值,解题的关键是掌握运算法则,正确的进行化简.22.22x y +,5【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:()()222232522x xy y x xy y -+--+2222325224x xy y x xy y =-+-+-22x y =+当1x =,2y =-时,原式()2212=+-5= 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.(1)1;(2)13.【分析】(1)原式先计算乘方,再进行乘除运算,最后算加减即可得到答案;(2)原式先算乘除法,再进行加减运算即可.【详解】解:(1)()32102 2.25327⎛⎫-⨯+-⨯- ⎪⎝⎭=104 2.252727-⨯+⨯=-9+10=1; (2)()()32353128⨯---÷=()128235+33⨯-⨯=-115+128=13.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.24.(1)-6;(2)32;(3)239【分析】(1)利用加法交换律和结合律进行计算即可得解;(2)首先计算乘方和括号里面的运算,然后计算括号外面的乘法,求出算式的值是多少即可;(3)把5396-写成1406⎛⎫-+⎪⎝⎭,然后利用乘法分配律进行计算即可得解. 【详解】 ()1原式512821=-++-2620=-+6=-()2原式92[()]()194--⨯-=-84=-⨯-()()32=()3原式14066()⎛⎫=-+⨯ ⎪-⎝⎭ ()()()1406?66=-⨯-+⨯ 2401=-239=【点睛】本题考查了有理数的混合运算,有理数的乘法运算律,熟记运算法则是解题的关键,利用运算律可以使计算更加简便,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.25.见解析;【解析】【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为1,2,1,左视图有,2列,每列小正方形数目分别为2,1;据此可画出图形.(2)可在最底层第2列第1行移走一个;(3)可在最底层第1列第1行加一个,第3列第2行加1个,共2个.【详解】(1)如图所示:(2)如图所示:(3)最底层第1列第1行加一个,第3列第2行加1个,共1+1=2个.故最多添加2个小正方体.【点睛】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.26.(1)与F重合的点是B(2)384【解析】【分析】(1)把展开图折叠成一个长方体,找到与F重合的点即可;(2)设长方体的长、宽、高分别为x、y、z,根据题意可知:2z+y=4z,x=3z,2x+2z-(2z+2y)=8,从而可求得x、y、z的值,从而可求得元长方体的容积.【详解】(1)与F重合的点是B.(2)设长方体的长、宽、高分别为x、y、z.根据题意得:解得:.∴原长方体的容积=4×8×12=384.【点睛】本题考查的知识点是展开图折叠成几何体,解题的关键是熟练的掌握展开图折叠成几何体.。
七年级上期中数学试卷一.选择题(共10小题,3*10=30)1.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A.100g B.150g C.300g D.400g2.﹣3的倒数是()A.3B.C.﹣D.﹣33.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对4.估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.计算4+(﹣2)2×5=()A.﹣16B.16C.20D.246.如图,在数轴上表示实数的可能是()A.点P B.点Q C.点M D.点N7.有理数a,b,c在数轴上的对应点如图所示,下列各式不正确的是()A.a+c<b+c B.ac<bc C.ab>ac D.8.单项式2a3b的次数是()A.2B.3C.4D.59.如图的最小正方形的边长均为1,则阴影部分正方形的面积和边长分别是()A.5和B.8和C.10和D.2和10.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0B.1C.3D.5二.填空题(共8小题,3*8=24)11.﹣2和它的相反数之间的整数有个.12.一件童装每件的进价为a元(a>0),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为元.13.已知﹣1<b<0,0<a<1,则代数式a﹣b、a+b、a+b2、a2+b中值最大的是.14.的平方根是.15.209506精确到千位的近似值是.16.请写出一个比3大比4小的无理数:.17.如图,在数轴上点A表示的实数是.18.我们根据指数运算,得出了一种新的运算.下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子,①log232=5;②log416=4;③log 2=﹣1,其中正确的是(填式子序号)三.解答题(共7小题,66分)19.(6分)计算:(1)|﹣4|×7﹣(﹣8);(2)﹣14﹣2×.20.(9分)问题背景:小红同学在学习过程中遇到这样一道计算题“计算4×3.142﹣4×3.14×3.28+3.282”,他觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!获取新知:请你和小红一起完成崔老师提供的问题:(1)填写下表:(2)观察表格,你发现A与B有什么关系?解决问题:(3)请结合上述的有关信息,计算4×3.142﹣4×3.14×3.28+3.282.21.(12分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?22.(9分)已知2a﹣1的平方根是±3,的算术平方根是b,求a+b的平方根.23.(10分)某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,会员每月交会员费12元,租碟费每张0.4元.小彬经常来该店租碟,若小彬每月租碟数量为x张.(1)分别写出两种租碟方式下小彬应付的租碟金额;(2)若小彬在一月内租24张碟,试问选用哪种租碟方式合算?(3)小彬每月租碟多少张时选取哪种方式更合算?24.(10分)把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,3,5},…,我们称之为集合,其中的每一个数都叫做这个集合的元素,在某一集合中,有理数x是它的一个元素,如果6﹣x也是它的一个元素,那么我们把这样的集合又称为黄金集合.(1)判断{1,2}和{1,3,5}是不是黄金集合?请说明集合;(2)请你写出两个黄金集合(不能与上面出现过的集合重复).25.(10分)观察下面图形我们可以发现:第1个图中有1个正方形,第2个图中有5个正方形,按照这种规律变化下去…(1)第3个图中有个正方形;(2)第4个图形比第3个图形多个正方形;(3)第n个图形比前一个图形多个正方形(用含有n的式子表示);(4)按照规律,是否存在某个图形,它比前一个图形增加2015个正方形?为什么?参考答案与试题解析1.解:根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋两大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g.故选:D.2.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.3.解:∵a是9的平方根,∴a=±3,又B=()2=3,∴a=±b.故选:A.4.解:∵2<<3,∴3<+1<4,故选:B.5.解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.6.解:∵<<,∴2<<3,点Q在这两个数之间,故选:B.7.解:根据数轴可以得到:a<b<0<c,∵a<b,c>0∴a+c<b+c,故选项A正确;ac>bc,故选项B正确;∵a<b<0<c,∴ab>0,ac<0,∴ab>ac,故选项C正确;∵a<b<0<c,∴a﹣b<0,∴>0,<0,∴>,故选项D错误.故选:D.8.解:该单项式的次数为:4故选:C.9.解:小正方形的面积为1×1=1,由阴影部分的面积为8,边长为2,故选:B.10.解:∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,而5!、…、10!的数中都含有2与5的积,∴5!、…、10!的末尾数都是0,∴1!+2!+3!+…+10!的末尾数为3.故选:C.11.解:﹣2和它的相反数2之间的整数有﹣2,﹣1,0,1,2,故答案为:5.12.解:实际售价为:3a×0.6=1.8a,所以,每件童装所得的利润为:1.8a﹣a=0.8a.故答案为:0.8a.13.解:∵﹣1<b<0,∴﹣b>b,0<b2<1,∴a﹣b>a+b,a﹣b>a+b2;又∵0<a<1,∴0<a2<1,∴a﹣b>a2+b;综上,可得在代数式a﹣b,a+b,a+b2,a2+b中,对任意的a,b,对应的代数式的值最大的是a﹣b.故答案为:a﹣b.14.解:∵==5,∴的平方根是±.故答案为:±.15.解:209506≈2.10×105(精确到千位).故答案为2.10×105.16.解:比3大比4小的无理数很多如π.故答案为:π.17.解:如图,由勾股定理,得OB===,由圆的性质,得OA=OB=,∴点A表示的实数是﹣,故答案为:﹣.18.解:①因为25=32,所以log232=5正确;②因为42=16,所以log416=2,即log416=4错误.③因为2﹣1=,所以此选项正确;故答案是:①③.19.解:(1)|﹣4|×7﹣(﹣8)=4×7+8=28+8=36;(2)﹣14﹣2×=﹣1﹣2×9+(﹣3)÷(﹣)=﹣1﹣18+9=﹣10.20.解:(1)当x=3,y=2时,B=4x2﹣4xy+y2=4×32﹣4×3×2+22=16;当x=1,y=1时,B=4x2﹣4xy+y2=4×12﹣4×1×1+12=1;当x=5,y=3时,B=4x2﹣4xy+y2=4×52﹣4×5×3+32=49.故答案为16,1,49;(2)B=A2;(3)4×3.142﹣4×3.14×3.28+3.282=(2×3.14﹣3.28)2=9.21.解:(1)超产记为正、减产记为负,所以星期四生产自行车(200+13)辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409(辆),故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26(辆),故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675(元),故该厂工人这一周的工资总额是84675元.22.解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵的算术平方根是b,即16的算术平方根是b,∴b=4,∴±=±=±3.23.解:根据题意得:(1)零星租碟应付的租碟金额为x元;会员卡租碟应付的租碟金额为(12+0.4x)元;(2)当x=24时,则12+0.4x=21.6<24,则交会员费合算;(3)当x=12+0.4x时,则x=20.所以大于20张时,交会员费合算;等于20张时两种方式一样合算;小于20张时,零星租碟合算.24.解:(1){1,2}不是黄金集合;理由:因为6﹣1=5,而5不是集合{1,2}的元素;6﹣2=4,而4也不是集合{1,2}的元素,所以{1,2}不是黄金集合;{1,3,5}是黄金集合;理由:因为6﹣1=5,而5是集合1,3,5}的元素;6﹣3=3,而3也是集合{1,3,5}的元素;6﹣5=1,而1也是集合{1,3,5}的元素,所以{1,3,5}是黄金集合;(2)写出两个黄金集合如:{0,6}和{2,3,4}.25.解:(1)由图知:第3个图中有9+4+1=14个正方形,故答案为:14;(2)∵第1个图中有1个正方形;第2个图中共有5=2×2+1个正方形;第3个图中共有14=3×3+5个正方形;可以发现:第2个图形比第1个图形多:5﹣1=4=22个;第3个图形比第2个图形多:14﹣5=9=32个,∴第4个图形比第3个图形多42=16个.故答案为:16;(3)由(2)的规律可得:第n个图比前一个图形多n2个.故答案为:n2;(4)∵不能开平方,∴不存在某个图形,它比前一个图形增加2015个正方形.。
新浙教版七年级上学期数学期中试卷【本试卷满分100分,测试时间90分钟】一、选择题(每小题3分,共30分)1.下列计算正确的是( ) A.B .C.D.2.下列说法: ①如果,那么; ②如果,那么; ③如果是负数,那么是正数; ④如果是负数,那么是正数.其中正确的是( )A.①③B.①②C.②③D.③④ 3.22)4(+x 的算术平方根是( ) A.42)4(+x B.22)4(+x C.42+xD.42+x4.下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1; (3)38的平方根是2±;(4)2122128183==++. 共有( )个是错误的. A.1B.2C.3D.45.观察下列算式:221=,422=,823=,1624=,….根据上述算式中的规律,请你猜想102的末位数字是( ) A.2 B.4 C.8 D.6 6.数轴上的点A 到-2的距离是6,则点A 表示的数为( ) A.4或-8 B.4C.-8D.6或-67.下列运算结果为负数的是( )A.-11×(-2)B.0×(-1)×7C.(-6)-(-4) D .(-7)+188.有下列各数,0.01,10,-6.67,31-,0,-90,-(-3),2--,)(-24-,其中属于非负整数的共有( )A.1个B.2个C.3个D.4个9.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A -C 表示观测点A 相对观测点C 的高度),根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )米.A.210B.130C.390D.-21010.如图,数轴上的A 、B 、C 、D 四点所表示的数分别为a 、b 、c 、d ,且O 为原点.根据图中各点位置,判断|a -c |之值与下列选项中哪个不同( )A.|a |+|b |+|c |B.|a -b |+|c -b |C.|a -d |-|d -c |D.|a |+|d |-|c -d |二、填空题(每小题3分,共30分)11.大于-3.1而小于2的整数有 个。
一、选择题1.边长为1的正方形从如图所示的位置开始在数轴上顺时针滚动,当正方形某个顶点落在数字2023时停止运动,此时与2023重合的点是( )A .点AB .点BC .点CD .点O2.如图,直线上的四个点A ,B ,C ,D 分别代表四个小区,其中A 小区和B 小区相距am ,B 小区和C 小区相距200m ,C 小区和D 小区相距am ,某公司的员工在A 小区有30人,B 小区有5人.C 小区有20人,D 小区有6人,现公司计划在A ,B ,C ,D 四个小区中选一个作为班车停靠点,为使所有员工步行到停靠点的路程总和最小,那么停靠点的位置应设在( )A .A 小区B .B 小区C .C 小区D .D 小区 3.下列运算正确的是( ) A .2347a a a +=B .44a a -=C .32523a a a +=D .10.2504ab ab -+= 4.图①②③④……是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第100个“广”字中的棋子个数是( )A .105B .205C .305D .405 5.若a ,b ,c ,m 都是不为零的有理数,且23++=a b c m ,2a b c m ++=,则b 与c 的关系是( )A .互为相反数B .互为倒数C .相等D .无法确定 6.已知有理数a ,b 在数轴上的对应点的位置如图所示,则下列式子中正确的是( )A .0a b ->B .0b a ->C .0ab >D .0a b +> 7.下列各式一定成立的是( )A .()22=a a -B .()33a a =-C .22 a a -=-D .33a a = 8.下列几何体中,其侧面展开图为扇形的是( )A .B .C .D . 9.如图,是由四个完全相同的小正方体组合而成的几何体,从正面看它得到的平面图形是( )A .B .C .D . 10.如图是一个正方体的展开图,把展开图折叠成正方体后,标有“☆“的一面相对面上的字是( )A .神B .奇C .数D .学11.下列几何体中,从正面、左面、上面观察的几何体的形状相同的有( )个A .1B .2C .3D .412.已知数轴上的四点P ,Q ,R ,S 对应的数分别为p ,q ,r ,s .且p ,q ,r ,s 在数轴上的位置如图所示,若10r p -=,12s p -=,9s q -=,则r q -等于( ).A .7B .9C .11D .13二、填空题13.乐乐家离姥姥家20km ,乐乐坐公交从家到姥姥家,需要xh ,骑自行车从家到姥姥家所用的时间比坐公交所用的时间多1h .则骑自行车的平均速度为___km/h (用含x 式子表示).14.当1x =-时,代数式21x +=________.15.一个数用科学记数法表示为35.2810⨯,则这个数是______.16.用“☆”定义一种新运算:对于任意有理数a 和b ,规定23a b ab a =+☆.如:213133112=⨯+⨯=☆,则()32-=☆_________.17.某市出租车的收费标准如下:行驶路程在3千米以内,收费8元;行驶路程超过3千米时,超过3千米的按2.6元/千米收费(不满1千米,按1千米计算).小明乘坐出租车到距离14千米的少年宫,他所付的车费是______元.18.用一个平面去截正方体(如图),下列关于截面(截出的面)形状的结论: ①可能是锐角三角形;②可能是钝角三角形;③可能是长方形;④可能是梯形.其中正确结论的是______(填序号).19.从正面看、从上面看、从左面看都是正方形的几何体是___________.20.如图是一个几何体的三视图,若这个几何体的体积是30,则它的表面积是________.三、解答题21.某大型商场销售一种茶具和茶碗,茶具每套定价200元,茶碗每只定价20元,“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案,方案一:买一套茶具送一只茶碗;方案二,茶具和茶碗按定价的九五折付款,现在某客户要到商场购买茶具30套,茶碗x 只(x >30).(1)若客户按方案一,需要付款 元;若客户按方案二,需要付款 元.(用含x 的代数式表示)(2)若x =40,试通过计算说明此时哪种购买方案比较合适?(3)当x =40,能否找到一种更为省钱的方案,如果能,写出你的方案,并计算出此方案应付钱数;如果不能,说明理由.22.已知x 、y 互为相反数,a 、b 互为倒数,m 是最大的负整数,求(x +y )﹣abm 的值.23.计算:(1)()18623⎛⎫-÷-⨯- ⎪⎝⎭(2)()()2221235122---+--÷⨯ 24.计算:(1)()2273---+(2)()255115364612⎛⎫-+-⨯-- ⎪⎝⎭ 25.如图是由小立方块所搭成的几何体从上面看到的图形,正方形中的数字表示在该位置小立方块的个数,请你在所给出的方格图中画出这个几何体从正面、从左面看到的图形.26.如图,是由一些大小相同的小正方体组合成的简单几何体.(1)画出图中几何体的主视图、左视图.(2)如果移走图中的一个小正方体,使新几何体的主视图、左视图一样,应该移走哪一个?(在相应小正方体上标上字母M ).(3)在原图的基础上添加一些小正方体,使新几何体的主视图、左视图与原几何体的主视图、左视图分别相同,则最多添加多少个小正方体?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由图可知规律滚动一圈,4个单位为一个循环.由202345053÷=,即可知结果. 【详解】由图可知滚动一圈,即4个单位为一个循环.∵202345053÷=,∴与2023点重合的是A .故选:A .【点睛】本题考查数轴和规律探究.根据图形总结出规律是解答本题的关键.2.B解析:B【分析】分别列出停靠点设在不同小区时,所有员工步行路程总和的代数式,选出其中最小的那个.【详解】解:若停靠点设在A 小区,则所有员工步行路程总和是:()()52020062200375200a a a a ++++=+(米), 若停靠点设在B 小区,则所有员工步行路程总和是:()30200206200365200a a a +⨯++=+(米), 若停靠点设在C 小区,则所有员工步行路程总和是:()3020020056367000a a a ++⨯+=+(米), 若停靠点设在D 小区,则所有员工步行路程总和是:()()302200520020857000a a a a ++++=+(米), 其中365200a +是最小的,故停靠点应该设在B 小区.故选:B .【点睛】本题考查列代数式,解题的关键是根据题意列出路程和的代数式,然后比较大小. 3.D解析:D【分析】根据合并同类项得法则计算即可.【详解】解:A.347a a a +=,故A 选项错误;B.43a a a -=,故B 选项错误;C.3a 与22a 不是同类项,不能合并,故C 选项错误;D.10.2504ab ab -+=,故D 选项正确; 故选:D .【点睛】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.4.B解析:B【分析】首先观察每个广字横有几个原点,然后观察撇有几个原点,找到规律后即可解答.【详解】解:由题目得,第1个“广”字中的棋子个数是7;第2个“广”字中的棋子个数是9;第3个“广”字中的棋子个数是11;4个“广”字中的棋子个数是13;发现第5个“广”字中的棋子个数是15…进一步发现规律:第n 个“广”字中的棋子个数是(2n+5).所以第100个“广”字中的棋子个数为2×100+5=205,故选:B .【点睛】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.第II 卷(非选择题)请点击修改第II 卷的文字说明5.A解析:A【分析】由题可得232a b c a b c ++=++,则可得到b 与c 的关系,即可得到答案.【详解】,,,a b c m 为不为零的有理数2a b c m ++=,2a b c m ++=∴232a b c a b c ++=++∴ 0b c +=∴,b c 互为相反数故选:A .【点睛】本题考查了代数式的换算,相反数的性质,熟练掌握是解题关键.6.A解析:A【分析】观察数轴可得:b <0<a ,|b|>|a|,据此及有理数的运算法则逐个分析即可.【详解】解:∵由数轴可得:b <0<a ,|b|>|a|∴0a b ->,故A 正确;0b a -<,故B 错误;ab<0,故C 错误;0a b +<,故D 错误.故选:A .【点睛】本题考查了借助数轴进行的相关运算,数形结合,得出相关基本结论,并明确有理数的运算法则,是解题的关键.7.A解析:A【分析】根据乘方的运算和绝对值的意义来进行判断即可.【详解】A 、()22a a -= ,故该选项正确;B 、()33a a -=- ,故该选项错误;C 、22a a -= ,故该选项错误;D 、当a <0时,3a <0,3a >0,故该选项错误;故选:A .【点睛】此题考查的知识点是绝对值,有理数的乘方,注意乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行,注意任何数的绝对值为非负数. 8.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A 、圆柱的侧面展开图是矩形,故A 错误;B 、三棱柱的侧面展开图是矩形,故B 错误;C 、圆锥的侧面展开图是扇形,故C 正确;D 、三棱锥的侧面展开图是三个三角形拼成的图形,故D 错误,故选C .【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.9.A解析:A【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看,第一层有3个正方形,第二层有1个正方形,且在左边.所以A选项符合题意,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.注意所有的看到的棱都应表现在主视图中.10.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“神”与“的”是相对面,“奇”与“学”是相对面,“☆”与“数”是相对面.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.11.C解析:C【解析】【分析】根据主视图,左视图,俯视图的定义找出从正面,左面,上面看到的几何体的形状图都一样的几何体即可.【详解】解:第一个正方体的三视图都是正方形,符合题意;第二个球的三视图都是圆,符合题意;第三个圆锥的主视图和左视图都是矩形,但俯视图是圆,不符合题意;第四个的三视图都是都是,符合题意;故选:C.【点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题的关键.12.A解析:A【分析】根据数轴判断p、q、r、s四个数的大小,得出r q-=(r−p)−(s−p)+(s−q),整体代入求解.【详解】解:由数轴可知:p<r,p<s,q<s,q<r,∵r−p=10,s−p=12,s−q=9,∴ r−q=(r−p)−(s−p)+(s−q)=10−12+9=7.故选:A.【点睛】本题考查了数轴及有理数大小比较.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.二、填空题13.【分析】根据平均速度=总路程÷总时间来解题即可;【详解】根据题意可知:路程为20km骑自行车的时间为(x+1)h∴骑自行车的平均速度为:;故答案为:【点睛】本题考查了学生对速度计算公式的理解和掌握正解析:201 x+【分析】根据平均速度=总路程÷总时间来解题即可;【详解】根据题意可知:路程为20km,骑自行车的时间为(x+1)h,∴骑自行车的平均速度为:201x+;故答案为:201 x+.【点睛】本题考查了学生对速度计算公式的理解和掌握,正确理解题意是解题的关键.14.2【分析】将x=-1代入计算即可【详解】解:当x=-1时(-1)2+1=2故答案为:2【点睛】此题考查已知字母的值求代数式的值正确掌握有理数的混合运算是解题的关键解析:2【分析】将x=-1代入计算即可.【详解】解:当x=-1时,21x +=(-1)2+1=2,故答案为:2.【点睛】此题考查已知字母的值求代数式的值,正确掌握有理数的混合运算是解题的关键. 15.5280【分析】科学记数法的标准形式为a×10n (1≤|a|<10n 为整数)本题数据中的a=528指数n 等于3所以需要把528的小数点向右移动3位就得到原数了【详解】=故答案为:5280【点睛】本题解析:5280【分析】科学记数法的标准形式为a×10n (1≤|a|<10,n 为整数),本题数据“35.2810⨯”中的a=5.28,指数n 等于3,所以,需要把5.28的小数点向右移动3位,就得到原数了.【详解】35.2810⨯=5.2810005280⨯=,故答案为:5280.【点睛】本题考查写出用科学记数法表示的原数.将科学记数法a×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.16.【分析】根据新定义用3和-2分别代替公式中的ab 正确计算即可【详解】∵对于任意有理数和规定∴3×+3×3=21故应该填21【点睛】本题考查了新定义知识准确理解新定义公式的意义是解题的关键解析:【分析】根据新定义,用3和-2分别代替公式中的a,b 正确计算即可.【详解】∵对于任意有理数a 和b ,规定23a b ab a =+☆,∴()32-=☆3×2(2)-+3×3=21,故应该填21.【点睛】本题考查了新定义知识,准确理解新定义公式的意义是解题的关键.17.【分析】先根据收费标准列出运算式子再计算有理数的乘法与加减法即可得【详解】由题意得:即他所付的车费是元故答案为:【点睛】本题考查了有理数的乘法与加减法的应用依据题意正确列出运算式子是解题关键解析:36.6【分析】先根据收费标准列出运算式子,再计算有理数的乘法与加减法即可得.【详解】由题意得:()8 2.6143+⨯-,828.6=+,36.6=,即他所付的车费是36.6元,故答案为:36.6.【点睛】本题考查了有理数的乘法与加减法的应用,依据题意,正确列出运算式子是解题关键. 18.①③④19.正方体20.62三、解答题21.(1)(20x+5400);(19x+5700 );(2)方案一更合适,见解析;(3)可以有更合适的购买方式,按方案一购买30套茶具和30只茶碗,按方案二购买剩余10只茶碗,此方案应付钱数为6190元【分析】(1)由题意分别求出两种方案购买的费用即可;(2)将x =40分别代入(1)中所求的代数式,再比较哪个更优惠即可;(3)两种方案一起购买,按方案一购买30套茶具和30只茶碗,按方案二购买剩余10只茶碗,依此计算即可求解.【详解】解:(1)若客户按方案一,需要付款30×200+20(x ﹣30)=(20x+5400)元; 若客户按方案二,需要付款30×200×0.95+20x×0.95=(19x+5700 )元.故答案为:(20x+5400);(19x+5700 );(2)当x =40时,方案一:20x+5400=800+5400=6200,方案二:19x+5700=760+5700=6460,因为6200<6460,所以方案一更合适;(3)可以有更合适的购买方式.按方案一购买30套茶具赠30只茶碗,需要200×30=6000(元),按方案二购买剩余10只茶碗,需要10×20×0.95=190(元),共计6000+190=6190(元).故此方案应付钱数为6190元.【点睛】本题考查了列代数式及代数式求值问题,得到两种优惠方案付费的关系式是解答本题的关键.22.1【分析】根据相反数和倒数的概念以及数的大小比较法则确定x+y ,ab 以及m 的值,从而代入计算.【详解】解:∵x 、y 互为相反数,a 、b 互为倒数,m 是最大的负整数,∴x+y=0,ab=1,m=-1∴(x +y )﹣abm=0-1×(-1)=1.【点睛】本题考查代数式求值,掌握相反数及倒数的概念以及数的大小比较,正确计算是解题关键.23.(1)7,(2)-12.【分析】(1)按照有理数混合运算的顺序和法则计算即可;(2)按照有理数混合运算的顺序和法则计算即可.【详解】解:(1)()18623⎛⎫-÷-⨯- ⎪⎝⎭ =1833-⨯=8-1=7(2)()()2221235122---+--÷⨯ =24222---⨯=4422---⨯=-12.【点睛】本题考查了有理数的混合运算,解题关键是熟练运用有理数的运算法则,按照有理数混合运算顺序进行计算.24.(1)0;(2)-7【分析】(1)有理数的混合运算,先算乘方和绝对值的化简,然后算加减;(2)有理数的混合运算,先算乘方,使用乘法分配律使得计算简便,最后算加减.【详解】解:(1)()2273---+ 473=-+0=(2)()255115364612⎛⎫-+-⨯-- ⎪⎝⎭5511253636364612=--⨯+⨯+⨯ 25453033=--++7=-.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 25.见解析.【解析】 【分析】根据已知图形得出实际摆放情况,进而利用从正面和左面观察得出图形即可.【详解】解:如图所示:【点睛】此题主要考查了画三视图,根据已知正确得出图形的三视图是解题关键.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.26.见解析;【解析】【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为1,2,1,左视图有,2列,每列小正方形数目分别为2,1;据此可画出图形.(2)可在最底层第2列第1行移走一个;(3)可在最底层第1列第1行加一个,第3列第2行加1个,共2个.【详解】(1)如图所示:(2)如图所示:(3)最底层第1列第1行加一个,第3列第2行加1个,共1+1=2个.故最多添加2个小正方体.【点睛】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.。
浙教版数学初一上学期期中自测试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题干:在下列数中,最小的质数是:A、18B、22C、23D、252、题干:如果a=5,那么算式a² - 4a + 4的值是多少?A、5B、9C、16D、253、已知一个长方形的长是12cm,宽是5cm,那么它的面积是:A、60cm²B、100cm²C、120cm²D、150cm²4、下列分数中,最简分数是:A、812B、1216C、59D、7105、已知一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是多少厘米?A. 20厘米B. 24厘米C. 30厘米D. 40厘米6、一个数的3倍加上5等于24,这个数是多少?A. 3B. 4C. 5D. 67、已知一个长方形的长是8厘米,宽是5厘米,求这个长方形的面积。
A. 25平方厘米B. 40平方厘米C. 32平方厘米D. 60平方厘米8、一个等边三角形的边长是10厘米,求这个等边三角形的周长。
A. 15厘米B. 30厘米C. 25厘米D. 20厘米9、下列各数中,是负数的是:A、-3.5B、0.5C、-0.5D、5 10、一个长方形的长是12cm,宽是5cm,那么这个长方形的周长是:A、22cmB、24cmC、26cmD、28cm二、填空题(本大题有5小题,每小题3分,共15分)1、一个长方形的长是12厘米,宽是5厘米,那么这个长方形的面积是________ 平方厘米。
2、若一个数的2倍加上3等于17,那么这个数是 ________ 。
3、一个长方形的长是10厘米,宽是长的一半,这个长方形的周长是 ______ 厘米。
4、在直角三角形ABC中,∠C是直角,AC=6厘米,BC=8厘米,根据勾股定理,斜边AB的长度是 ______ 厘米。
5、已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长是______cm。
一、选择题1.如表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的整数为( )1- a b c 2 5 … A .1-B .0C .2D .52.任意大于1的正整数m 的三次幂均可“分裂”成m 个连接奇数的和,如:3235=+,337911=++,3413151719=+++,…按此规律,若3m 分裂后,其中一个奇数是2021,则m 的值是( )A .46B .45C .44D .433.如图,若要使得图中平面展开图折叠成长方体后,相对面上的两个数之和为9,求x y z ++的值( )2-3xy2z10A .10B .11C .12D .13 4.一个正方形的边长减少10%,则它的面积减少( ) A .19%B .20%C .1%D .10% 5.若a >0,b <0,且a >|b|,那么a ,b ,-b 的大小关系是( ) A .-b <b <aB .b <a <-bC .b <-b <aD .-b <a <b6.有理数a ,b 在数轴上的对应点的位置如下图所示,则下列结论正确的是( )A .b a <-B .0ab >C .a b >D .02ba-< 7.2020年是我国在航天方面收获满满的一年,12月19日,中国嫦娥五号任务月球样品正式交接.嫦娥五号任务是“探月工程”的第六次任务,也是中国航天迄今为止最复杂,难度最大的任务之一.其有着非常重要的意义,实现中国开展航天活动以来的四个“首次”:首次在月球表面自动采样;首次从月面起飞;首次在38万公里外的月球轨道上进行无人交会对接;首次带着月壤以接近第二宇宙速度返回地球.38万公里用科学记数法表示为( )A .3.8×103公里B .3.8×104公里C .3.8×105公里D .38×104公里8.按如图所示的运算程序,能输出结果为20的是( )A .5x =-,15y =-B .3x =,2y =-C .6x =,3y =D .1x =-,21y =-9.一个表面标有汉字的正方体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是( )A .“年”在下面B .“祝”在后面C .“新”在左边D .“快”在左边10.如图是正方体的平面展开图,每个面上都标有一个汉字,与“爱”字对应的面上的字为( )A .大B .美C .綦D .江11.如图是正方体的平面展开图,则与“梅”字相对的字是( )A .侨B .香C .牛D .旺 12.用一个平面去截一个正方体,所得截面不可能为( )A .圆B .五边形C .梯形D .三角形二、填空题13.观察下列图中所示的一系列“〇”图形,它们是按一定规律排列的,依照此规律,第2021个图形中共有_____个〇 .14.我们可以用符号()f a 表示代数式,当a 为正数时,我们规定:如果a 为偶数,()0.5f a a =,如果a 为奇数,()51f a a =+.例如()2010f =,()526f =.设16a =,()21a f a =,()32a f a =,,依此规律进行下去,得到一列数1a 、2a 、3a 、、n a (n 为正整数),则2019a =________;计算12345620172018201920202a a a a a a a a a a -+-+-++-+-=_______.15.12021-的倒数的相反数是________. 16.比较大小:13-________12-(填入“>”“=”“<”) 17.对于有理数m ,n 定义运算*2(2)2m n m n =--,则*4(3)-=______. 18.若圆柱的底面半径是3,将该圆柱的侧面展开后,得到长方形,该长方形的面积为18π.则圆柱高为__________.19.某正方体每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“我”字所在面相对的面上的汉字是______.20.一个小立方块的六个面分别标有字母A 、B 、C 、D 、E 、F,从三个不同方向看到的情形如图所示,其中A 、B 、C 、D 、E 、F 分别代表数字-2、-1、0、1、2、3,则三个小立方块的下底面所标字母代表的数字的和为_____三、解答题21.计算:22223355a b ab a b ab ⎛⎫-++ ⎪⎝⎭. 22.计算:(1)2|6|3(12)(3)--+⨯-÷-(2)5113(2)248⎛⎫-⨯--⎪⎝⎭ (3)3[52(1)]xy xy xy --+ (4)()()2222732ab b aaab b --+--+23.在一张长方形纸条上画一条数轴,并在两处虚线处,将纸条进行折叠,产生的两条折痕中,左侧折痕与数轴的交点记为A ,右侧折痕与数轴的交点记为B . (1)若数轴上一点P (异于点B ),且PA =AB ,则P 点表示的数为 ; (2)若数轴上有一点Q ,使QA =3QB ,求Q 点表示的数;(3)若将此纸条沿两条折痕处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折(n ≥2)次后,再将其展开,请直接写出最左端的折痕和最右端的折痕之间的距离(用含n 的式子表示,可以不用化简) .24.计算:(1)()()101723-+---(2)123(1)6(3)(3)|5|-⨯--÷-+-25.问题提出:求n 个相同的长方体(相邻面的面积不相同)摆放成一个大长方体的表面积.问题探究:探究一:为了研究这个问题,同学们建立了如下的空间直角坐标系:空间任意选定一点O ,以点O 为端点,作三条互相垂直的射线ox 、oy 、oz .这三条互相垂直的射线分别称作x 轴、y 轴、z 轴,统称为坐标轴,它们的方向分别为ox (水平向前)、oy (水平向右)、oz (竖直向上)方向.将相邻三个面的面积记为S 1、S 2、S 3,且S 1<S 2<S 3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S 1所在的面与x 轴垂直,S 2所在的面与y 轴垂直,S 3所在的面与z 轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标系内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.问题一:如图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为______.组成这个几何体的单位长方体的个数为______个.探究二:为了探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),同学们针对若干个单位长方体进行码放,制作了下列表格几何体有序数组单位长方体的个数表面上面积为S1的个数表面上面积为S2的个数表面上面积为S3的个数表面积(1,1,1)12222S1+2S2+2S3(1,2,1)24244S1+2S2+4S3(3,1,1)32662S1+6S2+6S3(2,1,2)44844S1+8S2+4S3(1,5,1)51021010S1+2S2+10S3(1,2,3)6………………………………问题二:请将上面表格补充完整:当单位长方体的个数是6时,表面上面积为S1的个数是______.表面上面积为S2的个数是______;表面上面积为S3的个数是______;表面积为______.问题三:根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z)=______(用x、y、z、S1、S2、S3表示)探究三:同学们研究了当S1=2,S2=3,S3=4时,用3个单位长方体码放的几何体中,有三种码放的方法,有序数组分别为(1,1,3),(1,3,1),(3,1,1).而S(1,1,3)=38,S(1,3,1)=42,S(3,1,1)=46.容易发现个数相同的长方体,由于码放的方法不同,组成的几何体的表面积就不同.拓展应用:要将由20个相同的长方体码放的几何体进行打包,其中每个长方体的长是8,宽是5,高是6.为了节约外包装材料,请直接写出使几何体表面积最小的有序数组,并写出这个最小面积(不需要写解答过程).(缝隙不计)26.图1是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图2,再沿GF折叠成图3,求此时图3中∠CFE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三个相邻格子的整数的和相等列式求出a 、c 的值,再根据有一个不同数是5可得b=5,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解. 【详解】解:∵任意三个相邻格子中所填整数之和都相等, ∴-1+a+b=a+b+c , 解得c=-1, a+b+c=b+c+2, 解得a=2,所以数据从左到右依次为-1、2、b 、-1、2、b , 有一个不同数是5,即b=5,所以每3个数“-1、2、5”为一个循环组依次循环, ∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为2. 故选:C . 【点睛】此题考查数字的变化规律,仔细观察排列规律求出a 、b 、c 的值,从而得到其规律是解题的关键.2.B解析:B 【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2021的是从3开始的第1010个数,然后确定出1007所在的范围即可得解. 【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=(2)(1)2m m +-,∵2n+1=2021,n=1010,∴奇数2021是从3开始的第1010个奇数, ∵(442)(441)(452)(451)989,103422+⨯-+⨯-==,∴第1010个奇数是底数为45的数的立方分裂的奇数的其中一个, 即m=45. 故选:B . 【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.3.D解析:D 【分析】根据相对面上的数字之和为9可得109x +=、29y -=、329z +=,得出x 、y 、z 的值即可求解. 【详解】解:根据题意可得:109x +=,解得1x =-;29y -=,解得11y =;329z +=,解得3z =;∴111313x y z ++=-++=,故选:D . 【点睛】本题考查正方体的相对面,具备空间想象能力是解题的关键.4.A解析:A 【分析】正方形的面积=边长×边长,设原来正方形的边长为a ,则现在的正方形的边长为(1-10%)a ,代入公式即可求解. 【详解】解:设原来正方形的边长为a ,则现在的正方形的边长为(1-10%)a , (1-10%)a×(1-10%)a =0.81a 2, (a 2-0.81a 2)÷a 2×100% =0.19 a 2÷a 2×100% =19% 故选:A 【点睛】本题主要考查了列代数式和整式的加减运算.通过设原边长为a ,根据已知条件求出原面积及边长减少10%后的面积是完成本题的关键.5.C解析:C 【分析】先根据>0,b <0,得到b <a ,b <0<-b ,再根据a >|b|得到-b <a ,即可求解. 【详解】解:∵a >0,b <0, ∴b <a ,b <0<-b , ∵a >|b|∴-b <a , ∴b <-b <a . 故选:C 【点睛】本题考查了有理数的大小比较,理解绝对值,相反数的意义,有理数的大小比较方法是解题关键.6.C解析:C 【分析】根据数轴上点对应数的符号、有理数乘法的符号法则及绝对值的意义求解 . 【详解】解:由图可知:a>2,所以-a<-2,而b>-2,所以b>-a ,A 错误;由图可知,a>0,b<0,所以ab<0,-b>0,2a>0,02ba->,所以B 、D 错误; 由图可知,|a|>2,|b|<2,所以|a|>|b|,C 正确; 故选C . 【点睛】本题考查数轴的应用,熟练掌握有理数乘法的符号法则及绝对值的意义是解题关键.7.C解析:C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数. 【详解】解:38万公里=380000公里=3.8×105米, 故选:C . 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.D解析:D 【分析】根据x 与0的关系,判断出用哪种运算方法,求出每个输出结果各是多少,判断出能输出结果为20的是哪个即可. 【详解】A 、50x =-<,15y =-时,输出结果是:()515x y -=---=10,不符合题意;B 、30x =>,2y =-时,输出结果是:()2232x y +=⨯+-=4,不符合题意;C 、60x =>,3y =时,输出结果是:2263x y +=⨯+=15,不符合题意;D 、10x =-<,21y =-时,输出结果是:()121x y -=---=20,符合题意; 故选:D . 【点睛】本题考查了代数式的求值与有理数的加减乘除混合运算,熟练掌握运算法则是解本题的关键.9.D解析:D 【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图可知“你”和“年”相对,“乐”和“祝”相对,“新”和“快”相对,再根据已知“你”在上面,“乐”在前面,进行判断即可. 【详解】 根据题意可知,“你”在上面,则“年”在下面, “乐”在前面,则“祝”在后面, 从而“新”在左边,“快”在右边. 故不正确的是D. 故选D. 【点睛】此题考查专题:正方体相对两个面上的文字,解题关键在于掌握平面展开图的特点.10.D解析:D 【解析】 【分析】利用正方体及其表面展开图的特点解题.方法比较灵活可让“爱”字面不动,分别把各个面围绕该面折成正方体,这需要空间想象能力,如果想象不出就动手操作,或者拿手边的正方体展成该形状观察. 【详解】这是一个正方体的平面展开图,共有六个面,其中面“我”与面“美”相对,面“爱”与面“江”相对,“大”与面“綦”相对. 故选D . 【点睛】本题考查了正方体相对两个面上的文字,解题关键是注意正方体的空间图形,从相对面入手,分析及解答问题.11.A解析:A 【分析】根据正方体的平面展开图的特点即可得.【详解】由正方体的平面展开图的特点可知,“梅”字与“侨”字是相对的字,两个“香”字是相对的字,“牛”字与“旺”字是相对的字,故选:A.【点睛】本题考查了正方体的平面展开图,熟练掌握正方体的平面展开图的特点是解题关键.12.A解析:A【分析】根据题意,用一个面截一个正方体,可进行不同角度的截取,得到正确结论.【详解】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,所以截面可能为三角形、四边形(梯形,矩形,正方形)、五边形、六边形,而不可能是圆.故选:A.【点睛】此题考查了截一个几何体,要知道截面的形状既与被截的几何体有关,还与截面的角度和方向有关.要利用本题中截面的特殊性求解.对空间思维能力有较高的要求.二、填空题13.6062【分析】根据已知图形得出第n个图形中圆的个数为2n+n−1据此可得【详解】∵第一个图形中圆的个数2=2×1+0第二个图形中圆的个数5=2×2+1第三个图形中圆的个数8=2×3+2第四个图形中解析:6062【分析】根据已知图形得出第n个图形中圆的个数为2n+n−1,据此可得.【详解】∵第一个图形中圆的个数2=2×1+0,第二个图形中圆的个数5=2×2+1,第三个图形中圆的个数8=2×3+2,第四个图形中圆的个数11=2×4+3,……∴第2021个图形中圆的个数为2×2021+2020=6062,故答案为:6062.【点睛】本题主要考查图形的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.14.17【分析】通过计算可以发现规律为:每7个数循环一次再结合所求式子发现a1-a2+a3-a4+a5-a6+a7-a8+a9-a10+a11-a12+a13-a14=14-14=0则可得到所求式子=a解析:17【分析】通过计算可以发现规律为:每7个数循环一次,再结合所求式子发现a1-a2+a3-a4+a5-a6+a7-a8+a9-a10+a11-a12+a13-a14=14-14=0,则可得到所求式子=a1+a1-a2+a3-a4,将所求的每一项代入即可.【详解】解:由题意可得,a1=6,a2=f(6)=3,a3=f(3)=16,a4=f(16)=8,a5=f(8)=4,a6=f (4)=2,a7=f(2)=1,a8=f(1)=6,…,可以发现规律为:每7个数循环一次,∵2019÷7=144 (3)∴2019316a a==∵a1-a2+a3-a4+a5-a6+a7=6-3+16-8+4-2+1=14,∴a1-a2+a3-a4+a5-a6+a7-a8+a9-a10+a11-a12+a13-a14=14-14=0,∵2020÷14=144…4,∴2a1-a2+a3-a4+a5-a6+…+a2019-a2020=a1+a2017-a1018+a2019-a2020,∵2017÷7=288…1,∴a2017=a1,∴2a1-a2+a3-a4+a5-a6+…+a2019-a2020=a1+a1-a2+a3-a4=6+6-3+16-8=17,故答案为:16;17.【点睛】本题考查数字的变化规律;能够通过所给例子,找到式子的规律,利用有理数的混合运算解题是关键.15.2021【分析】直接利用倒数互为相反数的定义分析得出答案【详解】解:的倒数为:-2021则-2021的相反数是:2021故答案为:2021【点睛】此题主要考查了倒数相反数正确把握相关定义是解题关键解析:2021【分析】直接利用倒数、互为相反数的定义分析得出答案.【详解】解:12021-的倒数为:-2021,则-2021的相反数是:2021.故答案为:2021.【点睛】此题主要考查了倒数、相反数,正确把握相关定义是解题关键.16.>【分析】两个负数绝对值大的其值反而小【详解】解:∵||=||=而<∴>故答案为:>【点睛】本题主要考查了有理数的大小比较解题时注意:正数都大于0负数都小于0正数大于一切负数两个负数比较大小绝对值大 解析:>【分析】两个负数,绝对值大的其值反而小.【详解】解:∵|13-|=13,|12-|=12,而13<12, ∴13->12-. 故答案为:>.【点睛】本题主要考查了有理数的大小比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.17.10【分析】按照新定义运算法则把转化为有理数混合运算即可【详解】解:==10故答案为:10【点睛】本题考查了新定义运算根据新定义把原算式转化为有理数混合运算是解题关键解析:10【分析】按照新定义运算法则,把*4(3)-转化为有理数混合运算即可.【详解】解:*24(3)(42)2(3)-=--⨯-,=4(6)--,=10.故答案为:10.【点睛】本题考查了新定义运算,根据新定义把原算式转化为有理数混合运算是解题关键. 18.319.国20.-2三、解答题21.24ab -【分析】先去括号再合并同类项即可.【详解】 解:22223355a b ab a b ab ⎛⎫-++ ⎪⎝⎭2222353a b ab a b ab =--+22(33)(51)a b ab =-+-+24ab =-.【点睛】本题考查了整式的加减,解题关键是熟练掌握去括号法则和合并同类项法则,准确进行计算.22.(1)-10;(2)4;(3)2;(3)2224a ab b +-.【分析】(1)原式先计算乘方和化简绝对值,再计算乘除法,最后进行加减运算即可得到答案; (2)原式先进行乘方运算,然后再根据乘法分配律进行计算即可;(3)原式去括号,再合并同类项即可得到答案;(4)原式去括号,再合并同类项即可得到答案.【详解】解:(1)2|6|3(12)(3)--+⨯-÷-6369=--÷=-6-410=-.(2)5113(2)248⎛⎫-⨯-- ⎪⎝⎭ 11332248⎛⎫=-⨯-- ⎪⎝⎭ 11332+32+32248=-⨯⨯⨯ =-16+8+124=.(3)3[52(1)]xy xy xy --+3522xy xy xy =-++2=.(4)()()2222732ab b a a ab b --+--+22227633ab b a a ab b =--+-+-2224a ab b =+-.【点睛】本题考查了有理数的混合运算和整式的加减,熟练掌握运算法则是解答此题的关键.23.(1)1;(2)2或5;(3)4-82n. 【分析】 (1)根据PA =AB ,得出点P 为线段AB 的中点,即点A 、B 关于点P 对称,即可求解. (2)设Q 表示的数为m .分两种情形分别构建方程求解即可.(3)先求出每两条相邻折痕的距离,进一步得到最左端的折痕和最右端的折痕与数轴的交点表示的数,即可求得答案.【详解】解:(1)∵点A 表示的数为-1,点B 表示的数为3,∴数轴上一点P (异于点B ),且PA =AB ,则点P 为线段AB 的中点,即点P 为1, 故答案为1.(2)设Q 表示的数为m .当点Q 在线段AB 上时,m+1=3(3-m ),解得m=2,当点Q 在AB 的延长线上时,m+1=3(m-3),解得m=5,故答案为2或5.(3)∵对折n 次后,每两条相邻折痕的距离为3(1)422n n --=, ∴最左端的折痕与数轴的交点表示的数是-1+42n ,最右端的折痕与数轴的交点表示的数是3-42n . ∴最左端的折痕和最右端的折痕之间的距离为4-82n . 【点睛】本题主要考查的是数轴的认识,找出对称中心是解题的关键.24.(1)4-;(2)2.【分析】(1)先去括号,再加减即可得到答案;(2)先计算乘方和括号里的,再计算乘除,最后算减法.【详解】解:(1)()()101723-+---101723=--+.4=-(2)123(1)6(3)(3)|5|-⨯--÷-+-16(27)(3)5=⨯--÷-+695=-+=2【点睛】此题考查了有理数的混合运算,要灵活掌握运算顺序和运算律,还要注意处理符号.25.(1)(1,2,3),6;(2)12,6,4,12S1+6S2+4S3;(3)2yzS1+2xzS2+2xyS3;拓展应用:几何体表面积最小的有序数组为(2,2,5),最小面积为S(2,2,5)=1786.【解析】【分析】(1)根据题中所给的标示法和图4中主视图知,摆放的长方体共有两列三层,由左视图知长方体共一排,则这种码放方式的有序数组为(1,2,3);组成这个几何体的单位长方体的个数为6个;(2)几何体有序数组(1,2,3)时,表示几何体码放了1排2列3层,单位长方体的个数为6个,表面上面积为S1的个数为12个,表面上面积为S2的个数6个,表面上面积为S3的个数4个,表面积为:12S1+6S2+4S3;(3)根据题意可知当有序数组(x,y,z)时,根据长方体的面积公式知,表面上面积为S1的个数为2yz个,表面上面积为S2的个数2xz个,表面上面积为S3的个数2xy个,该几何体表面积计算公式S(x,y,z)=2yzS1+2xzS2+2xyS3(4)拓展应用:由题目中所给出的S1=2,S2=3,S3=4时,S(x,y,z)=2(yzS1+xzS2+xyS3)=2(2yz+3xz+4xy),分析出要使S(x,y,z)的值最小,应满足x≤y≤z(x、y、z为正整数),然后按条件将20分为:20=1×1×20、20=1×2×10、20=1×4×5、20=2×2×5四种形式,从面得出S(2,2,5)的值最小值为1786.【详解】解:(1)根据如图4中主视图知,摆放的长方体共有两列三层,由左视图知长方体共一排,根据题中所给的标示法,则这种码放方式的有序数组为(1,2,3);组成这个几何体的单位长方体的个数为1×2×3=6(个)故答案(1,2,3),6(2)由题意知,当几何体有序数组(1,2,3)时,表示几何体码放了1排2列3层,单位长方体的个数为6个∴表面上面积为S1的个数为12个,表面上面积为S2的个数6个,表面上面积为S3的个数4个,表面积为:12S1+6S2+4S3故答案为:12,6,4,12S1+6S2+4S3;(3)当有序数组(x,y,z)时,表面上面积为S1的个数为2yz个,表面上面积为S2的个数2xz个,表面上面积为S3的个数2xy个,∴该几何体表面积计算公式S(x,y,z)=2yzS1+2xzS2+2xyS3故答案2yzS1+2xzS2+2xyS3拓展应用:当S1=2,S2=3,S3=4时,S(x,y,z)=2(yzS1+xzS2+xyS3)=2(2yz+3xz+4xy)要使S(x,y,z)的值最小,不难看出x,y,z应满足x≤y≤z(x、y、z为正整数)∵将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3,其中每个长方体的长是8,宽是5,高是6∴S1=30,S2=40,S3=48∴满足要求的组合有(1,1,20),(1,2,10),(1,4,5),(2,2,5)∵S(1,1,20)=2×30×20+2×40×20+2×48=2896S(1,2,10)=2×30×2×10+2×40×10+2×48×2=2192S(1,4,5)=2×30×4×5+2×40×5+2×48×4=1984S(2,2,5)=2×30×2×5+2×40×2×5+2×48×4=1786∴S(2,2,5)的值最小∴几何体表面积最小的有序数组为(2,2,5),最小面积为S(2,2,5)=1786.【点睛】本题为创新题,考查了空间直角坐标系的具体应用及组合体面积的求法,拓展应用中,分析出x≤y≤z就解题的关键.26.此时图3中∠CFE 的度数是120°.【分析】由图1与已知,得图2中的∠CFE=160°,在图3中得:∠CFG=140°,∠EFG=20°,故∠CFE=∠CFG-∠EFG可得答案.【详解】∥,由图1可知:AD BC∴180∠=∠,CFE DEF︒∠+∠=,DEF EFB∴160∠=,EFB︒CFE︒∠=,20由折叠的性质得知图2中的∠CFE=160°,∴16020140CFG︒︒︒∠=-=,在图3中由折叠的性质得知:∠CFG=140°,∠EFG=20°,又∵∠CFE=∠CFG-∠EFG=140°-20°=120°.∴此时图3中∠CFE 的度数是120°.【点睛】本题主要考查了折叠的性质,根据图形找出图中相等的角是解题的关键.。
浙教版七年级上期中考试数学试卷及答案一、选择题(每题2分,共20分)1、下列哪个选项是正确的?A. (x+y)^2=x^2+y^2B. (x+y)^2=x^2+2xy+y^2C. (x+y)^2=x^2-2xy+y^2D. (x+y)^2=x^2+y^2+2xy正确答案是:B. (x+y)^2=x^2+2xy+y^2。
2、如果a和b是互为相反数,那么a+b等于多少?A. 0B. 1C. -1D.无法确定正确答案是:A. 0。
3、下列哪个数不是有理数?A. 0.5B. -3C. π/2D. √9正确答案是:C. π/2。
4、一个正方形的面积是4平方厘米,那么它的周长是多少?A. 4厘米B. 6厘米C. 8厘米D. 10厘米正确答案是:C. 8厘米。
根据正方形面积公式,可得出边长为2厘米,因此周长为8厘米。
5、下列哪个函数在某个区间内单调递增?A. y=x^2B. y=3x+5C. y=|x|D. y=2/x正确答案是:C. y=|x|。
函数y=|x|在区间[0,+∞)内单调递增。
其他选项中,A是二次函数,在区间(-∞,0)内单调递减,在区间(0,+∞)内单调递增;B是一次函数,在R内单调递增;D是反比例函数,在区间(-∞,0)和(0,+∞)内都单调递减。
A.全等三角形的面积相等B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.底边相等的两个等腰三角形全等如果一个点到原点的距离为,那么这个点在()A.轴上B.轴负半轴上C.第三象限的角平分线上D.第四象限的角平分线上A.平方等于它本身的数只有0和1B.互为相反数的两个数之和为0C.除以一个数等于乘这个数的倒数D.任何有理数的偶次方都是正数如果一个数的平方等于它的倒数,那么这个数是_________.下列等式成立的是_________.(添>、<、=、≥、≤)在括号内填上适当的整式使等式成立_________.(1)计算:|-3|+|+5|-|-1|;(2)先化简再求值:当a=5时,求a+4+3a-4的值.(1)计算:3÷(-6);(2)计算:+;(3)计算:2(2a+b)-(3a-b);1已知有理数a、b在数轴上的对应点如图所示,用不等号填空:(1)a_________b;(2)-a_________-b;(3)|a|_________|b|;(4)a的相反数_________b的相反数;(5)-a的相反数_________-b 的相反数.【分析】根据轴对称图形的概念,进行选择即可.【分析】根据数轴上表示数的方法,可得答案.a−b=2,则9 - a + b = ______.下列加点字的注音完全正确的一项是()(2分)A.确凿(záo)倜傥(tǎng)蝉蜕(tuì)菜畦(qí)B.脑髓(suǐ)讪笑(shàn)哽咽(yè)嫉妒(jí)C.庇护(pì)猝然(cù)木讷(nè)笃信(dǔ)D.拮据(jū)褴褛(lǚ)栈桥(zhàn)阔绰(chuò)正确答案是:D.拮据(jū)褴褛(lǚ)栈桥(zhàn)阔绰(chuò)。
2024-2025学年浙教版七年级数学上册期中考试培优卷(浙江)一、单选题1.2023年亚运会沙滩排球比赛的场地设立于宁波半边山沙滩排球中心,其占地面积约为64000平方米.“64000”用科学记数法表示为()A .46.410⨯B .36410⨯C .36.410⨯D .56.410⨯2.下列各组数中,相等的一组是()A .3-与3-B .()23-C .4--与()22-D 与4-3.如果单项式1b xy +-与2312a x y -是同类项,那么()2022a b -=()A .1B .-1C .20225D .20225-4.如图,a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,a -,b ,b -按照从大到小的顺序排列,正确的是()A .b a a b >->>-B .b a a b >>->-C .a b a b->>>-D .a b a b->->>5.下列由四舍五入法得到的近似数,对其描述正确的是()A .1.20精确到十分位B .1.20万精确到百分位C .1.20万精确到万位D .51.2010⨯精确到千位6.一个正数的两个不同的平方根分别是21a -和2a -+,则a 为()A .0B .1-C .9D .17.()22280x y +-=,则x y z ++的值为()A .0B .1C .2D .38.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14-,10,现以点C 为折点,将数轴向右对折,若点A 落在射线C 上且到点B 的距离为6,则C 点表示的数是()A .1B .3-C .1或5-D .1或4-9.已知a ,b ,c 是有理数,当0abc <时,求||||||a b c a b c++的值是()A .1或3-B .1,1-或3-C .1-或3D .1,1-,3或3-10.有一个数值转换器,原理如图所示,若开始输入x 的值是5,可发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4.依次继续下去,第2022次输出的结果是()A .8B .4C .2D .1二、填空题11.比较大小:12-13-.12()220y +-=,则21x y +-=.13.若单项式22m a b -与212na b 的和仍是单项式,则n m 的值是14.小明在电脑中设置了一个有理数的运算程序:*5a b a b =-+,例如()()3*23250-=--+=,试求()3*4*5-⎡⎤⎣⎦的值为.15.根据如下图所示的程序计算,若输入的x 的值为1,则输出的y 值为.16.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,⋯按照这种移动规律进行下去,第2023次移动到点2023A ,那么点2023A 所表示的数为.三、解答题17.在杭州亚运会期间,出租车司机小张某天以家为出发地在东西方向营运.如果规定向东为“正”,向西为“负”,他这天上午的行程可以表示为:3+,6+,5-,4+,3-,2+,7-,3+,9-,5+(单位:千米).借助数轴,解决以下问题:(1)小张将最后一名乘客送达目的地后需要返回出发地,请问小张该如何行驶才能回到出发地?(2)该马路东西方向上至少有多少千米?(3)若汽车耗油量为0.6升/千米,发车前油箱有28.5升汽油,若小张将最后一名乘客送达目的地,再返回出发地,问小张今天上午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油,请说明理由.18.先化简,再求值:(1)6532x y y x -+-,其中2x =-,=3y -.(2)223[1(5)2(2)]b a b a b ---+-,其中12b =,2a =-.19.某商场销售一种西装和领带,西装每套定价500元,领带每条定价60元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x 条(x >20).(1)若该客户按方案一购买,需付款______________元.(用含x 的代数式表示)若该客户按方案二购买,需付款_____________元.(用含x 的代数式表示)(2)若x =30,通过计算说明此时按哪种方案购买较为合算?20.学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式:(1)当有5张桌子时,第一种方式能坐____________人,第二种方式能坐___________人.(2)当有n 张桌子时,第一种方式能坐____________人,第二种方式能坐____________人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,现在请你当一回小老师,你打算选择以下哪种方式来摆放餐桌?为什么?21.为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,下表是该市自来水收费价格的价目表.价目表每月用水量单价不超出6立方米的部分2元/3米超出6立方米但不超出10立方米的部分4元/3米超出10立方米的部分8元/3米注:水费按月结算(1)若某户居民2月份用水4立方米,则应交水费______元.(2)若某户居民3月份用水a 立方米(其中610a <<),求该用户3月份应交水费.(用含a 的整式表示,结果要化成最简形式)(3)若某户居民4,5月份共用水15立方米(5月份用水量多于4月份),设4月份用水x 立方米,求该户居民4,5月份共交水费(用含x 的整式表示,结果要化成最简形式).22.观察下列等式11111111112223233434=-=-=-⨯⨯⨯ ,,.(1)猜想并写出()11n n =⨯+;(2)探究并计算111112233420232024++++⨯⨯⨯⨯ ;(3)探究并计算:111124466820222024++++⨯⨯⨯⨯L ;23.已知,有7个完全相同的边长为m 、n 的小长方形(如图1)和两个阴影部分的长方形拼成1个宽为10的大长方形(如图2),小明把这7个小长方形按如图所示放置在大长方形中.(1)当52m n ==,时,大长方形的面积为__________;(2)请用含m ,n 的代数式表示下面的问题:大长方形的长:__________;阴影A 的面积:__________;阴影B 的周长__________;(3)请说明阴影A 与阴影B 的周长的和与m 的取值无关.24.如图,数轴上点A 表示的有理数为4-,点B 表示的有理数为6,点P 从点A 出发以每秒2个单位长度的速度在数轴上沿由A 到B 方向运动,当点P 到达点B 后立即返回,仍然以每秒2个单位长度的速度点运动至点A 停止运动,设运动时间为t (单位:秒).(1)当2t =时,点P 表示的有理数为.(2)当点P 与点B 重合时t 的值为.(3)①在点P 由A 到点B 的运动过程中,点P 与点A 的距离为.(用含t 的代数式表示)②在点P 由点A 到点B 的运动过程中,点P 表示的有理数为.(用含t 的代数式表示)(4)当点P 表示的有理数与原点距离是2的单位长度时,t 的值为.。
浙教版数学七年级上册期中测试考生须知:● 本试卷满分150分,考试时间120分钟。
● 必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。
● 请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。
● 保持清洁,不要折叠,不要弄破。
一.选择题:本大题有10个小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 2019-的相反数是( ) A .2019B. 2019-C .20191D .20191-2. 苍南县高铁站改扩建工程属第四代高铁站房,比照地级市站建设规模,建筑面积扩建到约两万七千平方米,总投资约640000000元.其中数据640000000用科学记数法表示为( )A.71064⨯B.71046⨯.C.81046⨯.D.910640⨯.3. 下列四个数中,属于无理数的是( ) A.34-B.22)(-C.916 D.0.17177177714. 如果零上10℃记作+10℃,那么零下3℃可记为( ) A .-3℃ B .+3℃ C .±3℃D .31℃5. 一根1米长的彩带,第一次裁下51,第二次裁下51m ,则哪次用得多( )A .第一次B .第二次C .一多D .不能确定6. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示.若b+d =0,则下列结论正确的是( )(第6题图)A .b+c>0B.1>caC .ad>bcD .b a >7. 下列计算正确的是( ) A .066=--)(B .()422-=-C.632=-⨯)( D .2142=-÷-)(8. 下列说法正确的是()A.7的算术平方根是49B.平方根等于它本身的数是1和0C.有理数与无理数的乘积一定是无理数D.如ab>0,则点(a,b)在第一象限或第三象限9. 已知实数x,y满足0-y+x,则代数式()2012+43=x+的值为()yA.-1B.1C.2012D.-201810. 正方形ABCD在数轴上的位置如图所示,点A,B对应的数分别为-1和0,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点C所对应的数为1;翻转2次后,点D所对应的数为2:翻转3次后,点A所对应的数为3:翻转4次后,点B所对应的数为4,…,则连续翻转2019次后,数轴上数2019所对应的点是()(第10题图)A.A B.B C.C D.D二.填空题:本大题有6个小题,每小题5分,共30分。
浙教版七年级数学上册期中试卷(含答案)(时间:120分钟 满分:100分)一、选择题(每题3分,共30分)1.23的相反数是( ) A .32 B .-32 C .23 D .-232.湿地旅游爱好者小明了解到某市水资源总量为42.43亿m 3,其中42.43亿用科学记数法可表示为( ) A .42.43×109 B .4.243×108 C .4.243×109 D .0.4243×1083.四位同学画数轴如下图所示,你认为正确的是( ) A .B .C .D .4.下列说法正确的是( ) A .27的立方根是±3 B .16的平方根是±4 C .9的算术平方根是3 D .立方根等于平方根的数是15.下列合并同类项正确的是( )A .2x 2+3x 4=5x 6B .5xy 2-3xy 2=2C .7m 2n -7mn 2=0D .4ab 2-5ab 2=-ab 26.如图,数轴上有O ,A ,B ,C ,D 五点,根据图中各点所表示的数,表示数18的点会落在( )第6题图A .点O 和A 之间B .点A 和B 之间C .点B 和C 之间D .点C 和D 之间7.已知长方形的长为(2b -a),宽比长少b ,则这个长方形的周长是( )A .3b -2aB .3b +2aC .6b -4aD .6b +4a8.一个数a 在数轴上表示的点是A ,当点A 在数轴上向左平移了3个单位长度后到点B ,点A 与点B 表示的数恰好互为相反数,则数a 是( )A .-3B .-1.5C .1.5D .39.已知代数式2x 2-3x +9的值为7,则x 2-32x +9的值为( ) A .72 B .92C .8D .10 10.小华用甲、乙两个容积相同的试管做实验,甲管原来装满纯酒精,乙管是空的,第1次实验:把甲管中的酒精倒一半到乙管中,用水把甲管装满;第2次实验:用甲管中的液体把乙管装满;第3次实验:用乙管中的液体把甲管装满;第4次实验:用甲管中的液体把乙管装满.则做完4次实验后,甲管中的纯酒精是原来的( )A .14B .58C .516D .1116二、填空题(每题3分,共30分)11.单项式-xy 24的次数是____________次. 12.近似数5.70万精确到____________位.13.数轴上一个点到2的距离是3,那么这个点表示的数是____________.14.代数式2x x +y的意义是____________. 15.若代数式2a 3b n +1与-3a m -2b 2是同类项,则2m +3n =____________.16.已知一个数的两个平方根分别是3a +1和a +11,则这个数的立方根是____________.17.定义一种新运算:a ⊗b =14a -b ,那么4⊗(-1)=____________. 18.如图所示两个形状、大小相同的长方形的一部分重叠在一起,重叠部分是边长为2的正方形,则阴影部分的面积是____________(用含a 、b 的代数式表示).第18题图19.已知m 与n 互为相反数,c 与d 互为倒数,a 是5的整数部分,则cd +2(m +n)-a 的值是____________.20.仔细观察前三个正方形,填在正方形内的四个数之间都存在着一定的规律.根据这种规律,请你写出最后一个正方形内字母m 的值:____________.第20题图三、解答题(共40分)21.(6分)计算题:(1)(-1)2017-8×⎝ ⎛⎭⎪⎫322+|-5|; (2)81+3-27+(-23)2.22.(6分)把下列各数分别填在相应的括号内.-12,0,0.16,312,3,-235,π3,16,-22,-3.14 有理数:{__________________________________________}; 无理数:{__________________________________________}; 负实数:{__________________________________________}.23.(6分)已知xy<0,x<y ,且|x|=1,|y|=2.(1)求x 和y 的值;(2)求⎪⎪⎪⎪⎪⎪x -13+(xy -1)2的值.24.(6分)化简求值:(1)3n -[5n +(3n -1)],其中n =-2;(2)-3(x 2+y 2)-[-3xy -2(x 2-y 2)],其中x =-1,y =2.25.(7分)出租车司机小张某天上午营运全是在东西走向的政府大道上进行的,规定向东为正,向西为负,他这天上午的行程是(单位:km):+15,-3,+16,-11,+10,-12,+4,-15,+16,-18.(1)将最后一名乘客送达目的地时,小张距上午出发点的距离是多少千米?在出发点的什么方向?(2)已知汽车耗油量为0.6L/km,出车时,油箱有油72.2L,若小张将最后一名乘客送达目的地,再返回出发点.问:小张这天下午是否需要加油?若要加油,至少要加多少油才能返回出发点?若不用加油,请说明理由.26.(9分)我们自从有了用字母表示数,发现表达有关的数和数量关系更加简洁明了,从而更助于我们发现更多有趣的结论,请你按要求试一试:(1)用代数式表示:①a与b的差的平方;②a与b两数平方和与a,b两数积的2倍的差;(2)当a=3,b=-2时,求第(1)题中①②所列的代数式的值;(3)由第(2)题的结果,你发现了什么等式?(4)利用你发现的结论:求20162-4032×2015+20152的值.答 案一、选择题1.D 2.C 3.B4.C 【解析】327=3;16的平方根是±2;立方根等于平方根的数是0,故只有C 选项正确.5.D 6.D 7.C 8.C 9.C 10.C二、填空题11.3 12.百 13.-1或514.x 的2倍与x 与y 的和的商 15.1316.4 【解析】根据题意,得3a +1+a +11=0,解得a =-3.∴3a +1=-8,a +11=8,∴这个数为(±8)2=64,∴这个数的立方根为364=4.17.2 18.2ab -4 19.-120.158 【解析】第一个:2×4=0+8,第二个:4×6=2+22,第三个:6×8=4+44,…,最后一个:12×14=10+m ,∴m =158.三、解答题21.(1)原式=-1-8×94+5=-1-18+5=-14. (2)203. 22.-12,0,0.16,312,16,-3.14 3,-235,π3,-22-12,-235,-22,-3.14 23.(1)∵|x|=1,|y|=2,∴x =±1,y =±2.∵xy<0,∴x 与y 异号.∵x<y,∴x 为负数,y 为正数,∴x =-1,y =2.(2)∵x=-1,y =2,∴⎪⎪⎪⎪⎪⎪x -13+(xy -1)2=⎪⎪⎪⎪⎪⎪-1-13+(-1×2-1)2=⎪⎪⎪⎪⎪⎪-43+(-3)2=43+9=1013. 24.(1)原式=-5n +1=11. (2)原式=-x 2+3xy -5y 2=-27.25.(1)+15-3+16-11+10-12+4-15+16-18=2(km ).答:小张距上午出发点的距离是2km ,在出发点的东面.(2)|+15|+|-3|+|+16|+|-11|+|+10|+|-12|+|+4|+|-15|+|+16|+|-18|=120(km ).120×0.6=72(L ),2×0.6=1.2(L ),72+1.2=73.2(L )>72.2L ,73.2-72.2=1(L ).答:小张需要加油,至少要加1L 油才能返回出发点.26.(1)①(a-b)2; ②a 2+b 2-2ab ;(2)当a =3,b =-2时,(a -b)2=25,a 2+b 2-2ab =25;(3)(a -b)2=a 2+b 2-2ab ;(4)原式=20162+20152-2×2016×2015=(2016-2015)2=1.《有理数的除法》专题训练课堂笔记1.两数相除,同号得____________,异号得____________,并把绝对值____________.2.零除以任何一个不等于零的数都得____________.3.除以一个数(不等于零),等于乘这个数的____________. 分层训练A 组 基础训练1.(衢州中考)-4÷49×(-94)的值为( ) A .4 B .-4 C.814 D .-8142.下列运算:①1÷(-2)=-2;②(-2)÷12=1;③(-12)÷13×3=-12;④(-13)÷(-6)=2.其中正确的有( ) A .0个 B .1个 C .2个 D .3个3.有理数a ,b 在数轴上的对应点如图所示,则下列式子错误的是( )第3题图A .ab>0B .a +b<0 C.a b<1 D .a -b<0 4.下列四个算式中,误用分配律的是( )A .12×⎝⎛⎭⎪⎫2-13+16=12×2-12×13+12×16 B.⎝⎛⎭⎪⎫2-13+16×12=2×12-13×12+16×12 C .12÷⎝⎛⎭⎪⎫2-13+16=12÷2-12÷13+12÷16 D.⎝⎛⎭⎪⎫2-13+16÷12=2÷12-13÷12+16÷12 5.两个因数相乘,其中一个因数是35,积是-1,那么另一个因数是( )A.35B.53 C .-35 D .-536.下列说法不正确的是( )A .一个不为0的数与它的倒数之积是1B .一个不为0的数与它的相反数的商是1C .两个数的商为-1,这两个数互为相反数D .两个数的积为1,这两个数互为倒数7.填空:(1)(-4)×(____________)=-2;(2)(-14)÷(____________)=-2;(3)(____________)÷7=-3;(4)(____________)÷(-88.9)=0.8.计算:(1)(-56)÷(-14)=____________;(2)(-317)÷1112=____________;(3)-12÷78×(-34)=____________. (4)15÷(15-13)=____________. 9.(1)一个数与-34的积为12,则这个数是____________; (2)-214除以一个数的商为-9,则这个数是____________; (3)一个数的25是-165,则这个数是____________; (4)-114的倒数与4的相反数的商是____________. 10.(1)对于有理数a ,b ,定义⊕运算如下:a⊕b =ab a -b-3,则4⊕6=____________.(2)若a ,b 互为相反数且都不为0,则(a +b -2)×⎝ ⎛⎭⎪⎫a b +1=____________;若a ,b 互为相反数,c ,d 互为倒数,则(a +b +d )÷1c=____________.第10题图(3)小海在自学了简单的电脑编程后,设计了如图所示的程序,若他输入的数是-2,那么执行了程序后,输出的数是____________.11.计算:(1)⎝ ⎛⎭⎪⎫16-18+112÷⎝ ⎛⎭⎪⎫-124;(2)18÷⎝ ⎛⎭⎪⎫12-78×⎝ ⎛⎭⎪⎫-13;(3)(-21)÷7×17÷⎝ ⎛⎭⎪⎫-67.12.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)这10名同学中,低于80分所占的百分比是多少?(3)这10名同学的平均成绩是多少?13.某债券市场发行两种债券,A 种债券面值为100元,买入价也为100元,一年到期本利和为113元;B 种债券面值也是100元,但买入价为88元,一年到期本利和为100元.如果收益率=(到期本利和-买入价)÷买入价×100%,试分析,哪种债券收益率大一些?14.(1)用加、减、乘、除号和括号将3,6,-8,5这四个数(每个数都要用且只用一次)进行加减乘除四则运算使结果为24,请你写出两个算式.(2)已知有理数a ,b ,c 满足|a|a +|b|b +|c|c =-1,求|abc|abc的值.答 案【课堂笔记】1.正 负 相除 2.零 3.倒数【分层训练】1.C 2.A 3.C 4.C 5.D 6.B7.(1)12(2)7 (3)-21 (4)0 8.(1)4 (2)-247 (3)37 (4)-22529.(1)-23 (2)14 (3)-8 (4)1510.(1)-15 (2)0 1 (3)-800 【解析】(-2)÷(-4)×(-80)=-40,|-40|<100,(-40)÷(-4)×(-80)=-800,|-800|>100,∴输出的数是-800.11.(1)原式=324×(-24)=-3. (2)原式=18÷⎝ ⎛⎭⎪⎫-38×⎝ ⎛⎭⎪⎫-13=18×83×13=19. (3)原式=(-3)×17×⎝ ⎛⎭⎪⎫-76=12. 12.(1)最高分是80+12=92(分),最低分是80-10=70(分).(2)低于80分的有5个,所占的百分比是5÷10×100%=50%.(3)平均分是80+(8-3+12-7-10-3-8+1+0+10)÷10=80(分).13.A 种债券的收益率为(113-100)÷100×100%=13%,B 种债券的收益率为(100-88)÷88×100%≈13.6%,所以B 种债券收益率大.14.(1)答案不唯一,如(-8)÷(3-5)×6=24,6÷(3-5)×(-8)=24等. (2)∵|a|a 的值为+1或-1,同理|b|b ,|c|c的值为+1或-1,又∵|a|a +|b|b +|c|c=-1,∴其中两数为-1,一数为+1,不妨设|a|a =|b|b =-1,|c|c =1,则a <0,b <0,c >0,∴abc >0,∴|abc|abc =1.。