高分子总复习各章重点
- 格式:doc
- 大小:310.00 KB
- 文档页数:17
高物第一章习题1.测量数均分子量,不可以选择以下哪种方法:(B)。
A.气相渗透法B.光散射法C.渗透压法D.端基滴定法2.对于三大合成材料来说,要恰当选择分子量,在满足加工要求的前提下,尽量( B )分子量。
A.降低B.提高C.保持D.调节3.凝胶色谱法(GPC)分离不同分子量的样品时,最先流出的是分子量(大)的部分,是依据(体积排除)机理进行分离的。
4.测量重均分子量可以选择以下哪种方法:(D)A.粘度法B.端基滴定法C.渗透压法D.光散射法5. 下列相同分子量的聚合物,在相同条件下用稀溶液粘度法测得的特性粘数最大的为( D )(A)高支化度聚合物(B)中支化度聚合物(C)低支化度聚合物(D)线性聚合物6. 内聚能密度:定义克服分子间作用力,1mol的凝聚体汽化时所需的能量为内聚能密度,表征分子间作用力的强弱。
7. 同样都是高分子材料,在具体用途分类中为什么有的是纤维,有的是塑料,有的是橡胶?同样是纯的塑料薄膜,为什么有的是全透明的,有的是半透明的?答:(1)塑料橡胶的分类主要是取决于使用温度和弹性大小。
塑料的使用温度要控制在玻璃化温度以下且比Tg室温低很多。
而橡胶的使用温度控制在玻璃化温度以上且Tg比室温高很多,否则的话,塑料就软化了,或者橡胶硬化变脆了,都无法正常使用。
玻璃化温度你可以理解为高分子材料由软变硬的一个临界温度。
塑料拉伸率很小,而有的橡胶可以拉伸10倍以上。
纤维是指长径比大于100以上的高分子材料,纤维常用PA(聚酰胺)等材料,这类材料有分子间和分子内氢键,结晶度大,所以模量和拉伸强度都很高,不容易拉断。
(2)结晶的高聚物常不透明,非结晶高聚物通常透明。
不同的塑料其结晶性是不同的。
加工条件不同对大分空间构型有影响,对结晶有影响,这些都能导致透明性不同。
大多数聚合物是晶区和非晶区并存的,因而是半透明的。
8. 在用凝胶渗透色谱方法测定聚合物分子量时,假如没有该聚合物的标样,但是有其它聚合物的标样,如何对所测聚合物的分子量进行普适标定?需要知道哪些参数?参考答案:可以用其它聚合物标样来标定所测聚合物的分子量。
第一章绪论1、高分子分别在传统制剂、现代制剂中的作用答:在传统剂型中的应用的高分子材料:如作为片剂的赋形剂、黏合剂、润滑剂等。
在现代制剂中高分子作为应用在控释、缓释制剂和靶向制剂中,如做微丸的赋形剂、缓释包衣的衣膜以及特殊装置的器件。
包装用材料。
药用辅料的定义答:辅料是经过安全评价的、有助于剂型的制备以及保护、支持,提高药物或制剂有效成分稳定性和生物利用度的材料。
第二章高分子的结构、合成和化学反应聚合物的结构式答:聚乙烯(PE)聚丙烯(PP)聚苯乙烯(PS)聚氯乙烯(PVC)聚甲基丙烯酸甲脂(PMMA)聚乙酸乙烯酯(PV Ac)聚乙烯醇(PV A)纤维素尼龙-66按照性能和用途进行的高分子材料分类答:五大类,塑料、橡胶、纤维,涂料以及黏合剂。
热塑性塑料和热固性塑料的区别答:热塑性塑料——受热后软化,冷却后又变硬,这种软化和变硬可重复、循环,因此可以反复成型。
大吨位的品种有聚氯乙烯、聚乙烯、聚丙烯。
热固性塑料——是由单体直接形成网状聚合物或通过交联线型预聚体而形成,一旦形成交联聚合物,受热后不能再回复到可塑状态。
聚合过程(最后的固化阶段)和成型过程是同时进行的,所得制品不溶不熔。
热固性塑料的主要品种有酚醛树脂、氨基树脂、环氧树脂等。
柔性概念、影响因素答:(1)主链结构当主链中含C-O,C-N,Si-O键时,柔顺性好。
因为O、N原子周围的原子比C原子少,内旋转的位阻小;而Si-O-Si的键角也大于C-C-C键,因而其内旋转位阻更小,即使在低温下也具有良好的柔顺性。
当主链中含非共轭双键时,虽然双键本身不会内旋转,但却使相邻单键的非键合原子间距增大使内旋转较容易,柔顺性好。
当主链中由共轭双键组成时,由于共轭双键因p电子云重叠不能内旋转,因而柔顺性差,是刚性链。
(2)侧基侧基的极性越大,极性基团数目越多,相互作用越强,单键内旋转越困难,分子链柔顺性越差。
非极性侧基的体积越大,内旋转位阻越大,柔顺性越差;对称性侧基,可使分子链间的距离增大,相互作用减弱,柔顺性大。
《高分子化学》考研复习大纲绪论高分子化合物的基本概念,高分子的分类方式及命名方法,不同聚合反应类型及聚合反应式,聚合物的不同平均分子量的定义及计算方法,高分子的多层次结构。
第二章缩聚和逐步聚合缩聚和逐步聚合的相互关系,单体的官能度对缩聚反应的影响,线形缩聚的逐步特性和可逆平衡以及副反应,影响聚酯化动力学的因素,线形缩聚物聚合度的计算及控制方法,体形缩聚中凝胶点的定义及Carothers法凝胶点的预测,缩聚反应主要产品及高性能缩聚高分子材料简介。
第三章自由基聚合烯类单体取代基的电子效应和位阻效应对聚合反应类型和能力的影响,自由基聚合的引发剂类型,自由基聚合机理及基元反应特征,自由基聚合反应速率,自由基聚合动力学链长、链转移及聚合度的相互关系,影响自由基聚合反应的因素,阻聚和缓聚,可控“活性”自由基聚合的基本概念。
第四章共聚合反应共聚物的类型及研究共聚反应的意义,二元共聚物组成微分方程、共聚行为的判断以及共聚物组成随转化率的变化规律,共聚物组成分布的控制,竞聚率的定义及其对共聚反应中的作用,单体和自由基的相对活性,Q-e概念及意义。
第五章聚合方法本体聚合、溶液聚合、悬浮聚合、乳液聚合方法的基本概念。
第六章离子聚合阴离子聚合和阳离子聚合反应单体,阴离子聚合和阳离子聚合的引发剂类型,阴离子聚合和阳离子聚合机理及各基元反应特征,阴离子聚合反应动力学,活性聚合的特点及应用。
第七章配位聚合配位聚合的基本概念,配位聚合的引发剂类型,聚合物的立体异构现象。
第八章开环聚合开环聚合的基本概念,开环聚合热力学特征,环醚、己内酰胺及羰基化合物的开环聚合。
第九章聚合物的化学反应高分子化学反应中的基团反应因素,接枝、嵌段、扩链及交联反应的基本概念,降解与老化。
基础篇第一章高分子材料导论A.高分子——高分子也叫高分子化合物,是指分子量很高并由多个重复单元以共价键连接的一类化合物,并且这些重复单元实际上或概念上是由相应的小分子衍生而来。
B.单体——能够进行聚合反应,并构成高分子基本结构组成单元的小分子。
C.结构单元——聚合物分子结构中出现的以单体结构为基础的原子团D.单体单元——聚合物分子结构中由单个单体分子生成的最大的结构单元E.重复单元——重复组成高分子的最小的结构单元。
F.聚合度——单个聚合物分子所含单体单元的数目,是衡量高分子大小的一个指标。
表示方法:1)以大分子链中的结构单元数目表示,记作xn2)以大分子链中的重复单元数目表示,记作DPG.链节数——表示重复单元数,记作nH.遥爪高分子——含有反应性末端基团、能进一步聚合的高分子I.均聚物——由一种(真实的、隐含的或假设的)单体聚合而成的聚合物。
生成均聚物的聚合反应称均聚反应J.共聚物——由一种以上(真实的、隐含的或假设的)单体聚合而成的聚合物。
生成共聚物的聚合反应称为共聚反应K.L.根据反应机理和动力学性质的不同,分为逐步聚合反应和链式聚合反应。
1)逐步聚合反应是指在反应过程中,聚合物链是由体系中所有聚合度分子之间通过缩合或加成反应生成的。
其中通过缩合反应生成聚合物链的称缩合聚合反应,简称缩聚反应(逐步缩合反应,反应中有小分子物质生成);如果聚合物链是通过加成反应生成的称逐步加成聚合反应(大部分的缩聚反应(反应中有低分子副产物生成)都属于逐步聚合);2)连锁聚合反应是指在聚合反应过程中,聚合物链是仅由单体和聚合物链上的反应活性中心之间的反应生成,并且在新的聚合物链上再生反应活性点。
根据活性中心不同,连锁聚合反应又分为:a.自由基聚合:活性中心为自由基b.阳离子聚合:活性中心为阳离子c.阴离子聚合:活性中心为阴离子d.配位离子聚合:活性中心为配位离子M.高分子的构型异构:1)高分子的结构排列:首-尾连接首-首连接尾-尾连接2)高分子的立体异构:a.全同立构高分子(isotactic polymer):主链上的C*的立体构型全部为D型或L 型, 即DDDDDDDDDD或LLLLLLLLLLL;b.间同立构高分子(syndiotactic polymer):主链上的C*的立体构型各不相同, 即D型与L型相间连接,(LDLDLDLDLDLDLD);c.无规立构高分子(atactic polymer):主链上的C*的立体构型紊乱无规则连接。
功能高分子材料复习资料 第一章.功能高分子材料总论功能高分子的分类方法:P3高分子材料的结构层次:P4功能高分子的制备方法:P11聚苯乙烯的功能化反应:P14聚氯乙烯的功能化反应:P16聚乙烯醇的功能化反应:P16聚环氧氯丙烷的功能化反应:P17缩合型聚合物的功能化反应:P17设计聚合反应需注意:P21第二章.反应型功能高分子高分子试剂与高分子催化剂的优缺点:P29高分子氧化还原试剂高分子氧化还原试剂特点:P30高分子氧化还原试剂制备方法:P31高分子还原试剂:P33高分子酰基化试剂高分子酰基化试剂:P37高分子载体上的固相合成含义:采用不溶于反应体系的低交联度高分子材料作为载体,将反应试剂通过与高分子上活性基的反应固定于其上。
反应过程中中间产物始终与载体相连,从而使有机合成在固相上进行。
反应完成后再将产物从载体上脱下。
高分子载体上的固相合成优势:分离纯化步骤简化;反应总产率高;合成方法可程序化、自动化进行。
固相合成载体选择的要求:P40固相合成连接结构的要求:P41高分子催化剂高分子酸碱催化剂结构:属于离子交换树脂,是具有网状结构的复杂的有机高分子聚合物。
网状结构的骨架部分一段很稳定,不溶于酸、碱和一般溶剂。
在网状结构的骨架上有许多可被交换的活性基团。
根据活性基团的不同、离子交换树脂可分为阳离子交换树脂(高分子酸催化剂)和阴离子交换树脂(高分子碱催化剂)两大类。
高分子酸碱催化剂的特点网状结构难溶(水、酸、碱、有机溶剂)稳定(热、机械、化学)含活性基团(-SO3H、-COOH、-NOH)提供-H或者-OH基团催化反应。
高分子催化剂的使用方法:传统混合搅拌反应床填有催化剂的反应柱阳离子交换树脂(高分子酸催化剂)分类具有酸性基团,化学性质很稳定,具有耐强酸、强碱、氧化剂和还原剂的性质,因此应用非常广泛。
根据活性基团离解出H+能力的大小不同,分为强酸性和弱酸性两种。
强酸性阳离子交换树脂,常用R-SO3H表示(R表示树脂的骨架) 弱酸性阳离子交换树脂,分别用R-COOH和R-OH表示。
1. 自由基聚合按引发剂的分解方式:热分解型与氧化还原型2.热分解引发a.偶氮类引发剂:代表品种:偶氮二异丁腈(AIBN):分解只形成一种自由基,无诱导分解,常温下稳定,贮存安全。
80℃以上会剧烈分解分解速度与取代基有关:烯丙基、苄基>叔烷基>仲烷基>伯烷基b.过氧化类引发剂——最简单的过氧化物:过氧化氢活化能较高,一般不单独用作引发剂。
过氧化类引发剂的典型代表:过氧化二苯甲酰(BPO)。
分解温度:60~80℃,BPO 的分解分两步:第一步分解成苯甲酰自由基,第二步分解成苯基自由基,放出CO2c.无机过氧化类引发剂代表品种为过硫酸盐,如过硫酸钾(K2S2O8)和过硫酸铵[(NH4)2S2O8]。
水溶性引发剂,主要用于乳液聚合和水溶液聚合。
分解温度:60~80℃5.氧化—还原引发体系优点:活化能低(40~60kJ/mol);引发温度低(0~50℃),聚合速率大◆水溶性氧化—还原引发体系, 用于乳液聚合和水溶液聚合◆油溶性氧化—还原引发体系, 溶液聚合和本体聚合。
最常用的油溶性氧化—还原引发体系:过氧化二苯甲酰(BPO)—N, N二甲基苯胺(DMBA)。
6.电荷转移络合物引发:富电子分子和缺电子分子之间反应,可以生成电荷转移络合物(CTC),电荷转移络合物可以自发地或在光、热的作用下分解,产生自由基引发烯类单体进行自由基聚合。
本质:氧化--还原体系。
特点是体系活化能低(40kJ/mol)、可在低温下进行。
7.热引发:单体在没有引发剂的条件下,受热发生的聚合反应。
8.光引发:在紫外光作用下引起单体聚合特点:引发聚合活化能低,易控制,产物纯,结果重复性高9.光敏剂的光分解引发:在光的作用下,光引发剂发生光分解,产生两个自由基而引发聚合10辐射引发:在高能射线辐照下引起单体聚合反应11.等离子体引发:机理主要是自由基聚合反应12.引发剂分解动力学a. 初级自由基的生成:引发剂分解(均裂)形成自由基,为吸热反应,活化能高,反应速度慢。
复习第一章绪论1.聚合物的命名(习惯)习惯命名法a.以单体名称来命名。
一种单体:“聚”+单体名。
如聚乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯。
两种不同单体合成的共物:共聚单体中各取一个字后缀“树脂”“橡胶”。
苯酚-甲醛的聚合物称为酚醛树脂,丁二烯-苯乙烯共聚物称为丁苯橡胶。
两种不同单体合成的缩聚物:在其结构单元前加一个“聚”字。
如由己二胺、己二酸缩聚的产物称为聚己二酰己二胺。
b. 以聚合物的结构特征命名以聚合物的特征结构命名。
如聚酯、聚酰胺、聚氨酯、聚脲、聚砜等。
c. 以商品名称命名如涤纶(聚对苯二甲酸乙二醇酯),锦纶(尼龙6),维纶(聚乙烯醇缩甲醛),腈纶(聚丙烯腈),丙纶(聚丙烯)等。
尼龙后面的数字代表其单体来源,第一个数字代表二元胺中碳的数目,第二个数字代表二元酸中碳的数字。
例如尼龙-6,10即是用己二胺、癸二酸为单体合成的。
d.用英文缩写命名在文章和文献中经常采用英文缩写符号表示。
如聚苯乙烯(polystyrene)简称为PS,聚醋酸乙烯酯(polyvinylacetate)简称为PVAc等。
见附表1。
2.结构单元、重复单元、聚合度、单体单元的概念结构单元:由一种单体分子通过聚合进入重复单元的部分。
重复单元:大分子链上重复出现的、最小基本单元(分子式中括号内的部分)。
聚合度:高分子链中重复单元的数目称为聚合度。
单体单元:除电子结构改变外,原子种类及个数完全相同的结构单元。
3.判断聚合类型逐步聚合:通过单体上所带的能相互反应的官能团逐步反应形成二聚体、三聚体、四聚体等,直到最终在数小时内形成聚合物的反应。
连锁聚合:在链引发形成的活性中心的作用下,通过链增长、链终止、链转移等基元反应在极短时间内形成高分子的反应写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合?-(1) -[- CH2- CH-]n|COO CH3(2) -[- CH2- CH-]-n|OCOCH3(3) -[- CH2- C = CH- CH2-]-n|CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH 2)5CO -]n - 知识点:H 2CCH COOCH3n CH 2CH COOCH3n丙烯酸甲酯 聚丙烯酸甲酯加聚反应、连锁聚合(1)(2)(3)(4)(5)CH 2CH OCOCH3n CH 2CH OCOCH3n醋酸乙烯 聚醋酸乙烯加聚反应、连锁聚合CH 2CCH 3H CCH 2n CH 2CCH 3CHCH 2n异戊二烯 聚异戊二烯加聚、连锁聚合NH 2(CH 2)6NH 2n +COOH(CH 2)4COOHn 己二胺 己二酸 尼龙-66(聚己二酰己二胺)逐步、聚合缩聚NH(CH2)5COn H+OH-NH(CH2)5CO n NH(CH2)5COn逐步聚合 开环聚合连锁聚合 开环聚合己内酰胺 尼龙-6NH(CH2)6NHOC(CH2)4COn课后作业P15—3写出聚乙烯、聚氯乙烯、尼龙66、维尼纶、天然橡胶、顺丁橡胶的分子式,根据表1-4所列这些聚合物的相对分子质量,计算这些聚合物的聚合度。
根据计算结果分析做塑料、纤维和橡胶用的聚合物在相对分子质量和聚合度上的差别。
① 聚乙烯 M 0=28,DP=2143~10714。
② 聚氯乙烯 M 0=62.5,DP=800~2400。
③ 尼龙-6,6 M 0=226,DP=53~80。
④ 维尼纶 M 0=86,DP=698~872。
⑤ 天然橡胶 M 0=68,DP=2941~5882。
⑥ 顺丁橡胶 M 0=52,DP=4808~5769。
从相对分子质量和聚合度来比较,三者的关系为:橡胶>塑料>纤维。
第三章 自由基聚合1、名词解释:引发效率、诱导分解和笼蔽效应、自动加速现象、链转移反应、链转移常数、动力学链长、凝胶效应和沉淀效应、半衰期、自由基聚合。
引发效率f ;引发剂分解生成的初级自由基实际参与链引发反应的分率。
诱导分解:指自由基向引发剂的转移反应。
笼蔽效应:当体系中有溶剂存在时,引发剂分解产生的自由基,在开始的瞬间被溶剂分子所包围,发生副反应而失去活性,不能与单体发生反应生成单体自由基的现象。
自动加速现象:随着聚合反应继续进行,反应速率并未因单体浓度和引发剂浓度降低而下降,相反却出现了聚合反应速率自动加快的现象。
链转移反应:链自由基从单体、溶剂,引发剂或已形成的大分子上夺取一个原子而终止,并使失去原子的分子成为新的自由基,这种反应称为链转移反应。
链转移常数:链转移反应速率常数和链增长反应速率常数比值动力学链长:平均每一个链自由基从引发到终止过程中(包括链转移反应的延续)所消耗的单体分子数。
凝胶效应:随反应进行体系粘度加大,链自由基活性寿命增加及链终止反应速率常数下降,使得聚合反应速率自动加速的现象。
沉淀效应:在非均相体系中,反应形成的聚合物一开始就从体系中沉析出来,链自由基被埋在长链形成的无规线团内部,阻碍了双基终止,使得聚合反应速率自动加速的现象。
半衰期:在一定温度下,引发剂分解一半所需时间称为引发剂分解半衰期,以t 1/2表示。
自由基聚合:自由基引发剂(radical initiator)能使大多数烯烃聚合。
这是因为自由基呈中性,对键的进攻和对自由基增长种的稳定作用并无严格的要求。
2、完成反应式:引发剂的分解反应;以偶氮二异丁腈为引发剂,写出苯乙烯自由基聚合历程中各基元反应。
解答:CH 3C CH 3CNN N C CH 3CNCH 32CH 3C CH 3CN+ N 2(1)苯乙烯CH 3C CH 3CN+CH 2CHCH 3C CH 3CNCH 2CH 链引发链增长链终止CH 3C CH 3CNCH 2CH+CH 2CHn CH 3C CH 3CNCH 2CH CH 2CHn CH 3C CH 3CNCH 2CH CH 2CHn 2CH 3C CH 3CNCH 2CH CH 2CH n CHCH 2H CCH 2CCH 3CNCH 3n例题:写出下列常用引发剂的分子式和分解反应式。
其中哪些是水溶性引发剂,哪些是油溶性引发剂,使用场所有何不同?(1)偶氮二异丁腈,偶氮二异庚腈。
(2)过氧化二苯甲酰,过氧化二碳酸二乙基己酯,异丙苯过氧化氢。
(3)过氧化氢-亚铁盐体系,过硫酸钾-亚硫酸盐体系,过氧化二苯甲酰-N,N 二甲基苯胺。
(1)偶氮二异丁腈:偶氮二异庚腈:CH 2C CNCH 3N N C CNCH 3CH 2CH 2C CNCH 3+ N 2HC CH 3CH 3HC CH 3H 3C HC CH 3CH 32(2) 过氧化二苯甲酰:C O O OCO C O O2无单体2+ 2C O 2过氧化二碳酸二乙基己酯:C OO O C OO O CH 2CH(CH 2)3CH 3CH 2CH 3H 3C(CH 2)3CHCH2H 3CH 2C2OH 3C(CH 2)3CHCH2H 3CH 2C+ C O 2异丙苯过氧化氢:C CH 3CH 3O O H C CH 3CH 3O + O H(3) 过氧化氢-亚铁盐体系:HO-OH + Fe 2+→ OH - + HO• +Fe 3+过硫酸钾-亚硫酸盐体系:S 2O 82- + SO 32-SO 42- + SO 4 - + SO3-过氧化二苯甲酰-N,N’-二甲苯胺:C O O OCO +N CH 3CH 3C O O+C O O -+N+CH 3CH 3其中,(1)(2)和(3)的最后一组为油溶性引发剂用于本体、悬浮、油溶液聚合。
前两组为水溶性引发剂,用于乳液聚合、水溶液聚合。
3、简答:一.自由基聚合历程中各基元反应。
解答:自由基聚合反应包含四个基元反应:链引发反应、链增长反应、链终止反应、链转移反应二.自由基聚合时,单体转化率与聚合物相对分子质量随时间的变化的特征。
与聚合机理的关系。
解答:自由基聚合时,引发剂是在较长时间内逐渐分解释放自由基的,因此单体是逐次与产生的自由基作用增长的,故转化率随时间延长而逐渐增加。
而对产生的一个活性中心来说,它与单体间反应的活化能很低,k p 值很大,因此瞬间内就可生成高聚物。
因此,从反应一开始有自由基生成时,聚合物分子量就很大,反应过程中任一时刻生成的聚合物分子量相差不大。
三.自由基聚合常用的引发方式解答:引发剂可分为热分解型和氧化还原型两大类。
热分解型引发剂主要有两大类,偶氮类和过氧化物类。
偶氮类如偶氮二异丁腈,45-65℃下使用,引发时产生氮气,只生成一种自由基,性质稳定。
过氧化物类,如过氧化二苯甲酰,分解有副反应存在,性质不稳定。
氧化还原型反应活化能低,活性较高。
有过氧化氢-亚铁盐体系,过硫酸钾-亚硫酸盐体系,过氧化二苯甲酰-N,N二甲基苯胺。
其它应用相对多的引发方式包括热引发、光引发、辐射引发四.推导自由基聚合动力学方程时,作了哪些基本假定?解:在不考虑链转移反应的前提下,作了三个基本假定:等活性假定,即链自由基的活性与链长无关;稳态假定,即在反应中自由基的浓度保持不变;聚合度很大假定五.什么是自动加速现象?产生的原因是什么?对聚合反应及聚合物会产生什么影响?解答:当自由基聚合进入中期后,随转化率增加,聚合速率自动加快,这一现象称为自动加速现象。
这是由于凝胶效应和沉淀效应使链自由基的终止速率受到抑制,而链增长速率变化不大,从而使聚合速率加快。
自动加速现象可提高聚合反应速率,但控制不好,会出现爆聚使聚合失败。
自动加速现象使聚合物分子量分布变宽。
六.什么是凝胶效应和沉淀效应?举例说明。
. 解:对于单体、聚合物、溶剂互溶的均相体系,当反应进入中期后,体系粘度加大,妨碍大分子链自由基的扩散,导致链终止反应速率常数随粘度增大而迅速下降,而粘度变化对单体扩散并不影响,链增长反应速率常数基本不变,由此表现出粘度增加的净结果为聚合速率加速,这一现象称为凝胶效应。
例如,甲基丙烯酸甲酯在苯中聚合,当单体浓度大于60%后,出现自动加速现象。
当反应体系为互不相溶的非均相体系时,整个聚合反应在异相中进行,反应形成的聚合物在一开始就从体系中沉析出来,链自由基包裹在长链形成的无规线团内,难以终止,从而使聚合速率加快,这种效应称为沉淀效应。
如氯乙烯的聚合,聚合物不溶于单体,在很低转化率下就产生自动加速。
七.氯乙烯、苯乙烯、甲基丙烯酸甲酯聚合时,都存在自动加速现象,三者有何异同?解答:氯乙烯不溶聚氯乙烯,反应为非均相体系,沉淀效应抑制链终止,故在很低转化率下出现自动加速现象。
甲基丙烯酸甲酯不是其聚合物的良溶剂,自动加速由凝胶效应产生,在相同的聚合反应条件下,自动加速出现的比较早。
苯乙烯是聚苯乙烯的良溶剂,在相同聚合条件下,链自由基比较舒展,终止反应相对容易,因此自动加速出现的比较晚。