专题06 圆锥曲线离心率及范围问题(解析版)
- 格式:docx
- 大小:2.19 MB
- 文档页数:27
2019-2020学年百强名校好题汇编高一数学(选修2-1)专题06 圆锥曲线中的离心率问题一、选择题1.(贵州省铜仁市思南中学2018-2019学年高二上学期第二次月考)已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12π3F PF ,记椭圆和双曲线的离心率分别为1e ,2e ,则121e e 的最大值是( )A . 3B .433C . 2D .2332.(黑龙江省大庆实验中学2018-2019学年高二上学期期中考试)已知 1,0F c , 2,0F c 是椭圆 2222:10x y C a b a b的左、右焦点,若椭圆上存在一点P 使得212PF PF c ,则椭圆的离心率的取值范围为 ( )A . 3533 ,B .3232 ,C .331,2D . 2123.(黑龙江省哈尔滨师范大学附属中学2018-2019学年高二上学期第一次月考)已知椭圆 2222:10x y C a b a b的右顶点为A ,点P 在椭圆上,O 为坐标原点,且90OPA ,则椭圆的离心率的取值范围为 ( )A . 32B . 212C .202,D . 302,4.(重庆市綦江区南州中学高2019届高二下第三学月考)已知12F F 分别是椭圆的左,右焦点,现以2F 为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M N ,,若过1F 的直线1MF 是圆2F 的切线,则椭圆的离心率为( ) A . 32B . 23C .22D . 315.设椭圆 2222:10x y C a b a b 的左、右焦点分别为12,F F ,P 是椭圆上一点,12PF PF 122,12π2F PF,则椭圆离心率的取值范围为 ( )A . 202,B . 2523,C . 2533,D . 5136.(湖北武汉华中师范大学第一附属中学2018-2019学年高二上学期期中)如图,12F F 、是椭圆1C 与等轴双曲线2C 的公共焦点,A B 、分别是12C C 、在第二、四象限的公共点.若四边形12AF BF 为矩形,则椭圆1C 离心率是( )A .63 B . 33 C .23D .137.(广西南宁市第三中学2018-2019学年高二上学期期中)已知12F F ,是双曲线 2222:10,0x y C a b a b的左右焦点,若直线3y x 与双曲线C 交于,P Q 两点,且四边形12F PF Q 是矩形,则双曲线的离心率为 ( ) A .55 B . 525 C . 31 D . 218.(青海省西宁市第四高级中学2017-2018学年高二上学期期末)设椭圆 2222:10x y C a b a b的左、右焦点分别为12F F ,,P 是C 上的点,212PF F F ,1230PF F =,则C 的离心率为 ( )A . 33B .13C .12D .369.(黑龙江省鹤岗市第一中学2018-2019学年高二上学期期中)已知双曲线 2222:10,0x y C a b a b过点 3,6P 的直线L 与C 相交于A B ,两点,且AB 的中点为 12,15Q ,则双曲线C 的离心率为 ( )A . 2B .32C .35D .510.(黑龙江省牡丹江市第一高级中学2018-2019学年高二上学期期中)若椭圆 2222:10x y C a b a b的离心率为322221x y a b的离心率为 ( ) A . 54B .52C .32D .5411.(江西省南昌市第十中学2018-2019学年高二上学期期中)过椭圆的右焦点2F 作椭圆长轴的垂线交椭圆于,A B 两点,1F 为椭圆的左焦点,若1F AB △为正三角形,则椭圆的离心率为 ( )A . 3B .33C .23D 2112.(黑龙江省哈尔滨师范大学青冈实验中学校2017-2018学年高二下学期期中)已知椭圆 2222:10x y C a b a b过点 3,2,当22a b 取得最小值时,椭圆的离心率为 ( )A . 12B 2C 3D .313.(黑龙江省大庆实验中学2018-2019学年高二上学期期中)已知过椭圆 2222:10x y C a b a b的左焦点1F 作x 轴的垂线交椭圆于点2,P F 为其右焦点,若1260F PF ,则椭圆的离心率为 ( )A . 53B .32C .22D .3314.(黑龙江省大庆实验中学2018-2019学年高二上学期期中)已知,A B 是双曲线 2222:10,0x y C a b a b 的两个顶点,P 为双曲线上(除顶点外)一点,若直线,PA PB 的斜率乘积为12,则双曲线的离心率e ( )A . 5B .6 C . 2 D .15二、填空题15.(天津市七校2018-2019学年高二上学期期中联考)已知椭圆1C 与双曲线2C 有公共焦点12,F F ,M 为1C 与2C 的一个交点,12MF MF ,椭圆1C 的离心率为1e ,双曲线2C 的离心率为2e ,若212e e ,则1e _______.16.(江西省南昌市第十中学2018-2019学年高二上学期期中)椭圆 2222:10x y C a b a b的右焦点 ,0F c 关于直线by x c的对称点Q 在椭圆上,则椭圆的离心率是 _________ .17.(江苏省启东中学2018-2019学年高二上学期期中)已知椭圆 2222:10x y C a b a b的左、右焦点分别为12,F F ,离心率为e ,若椭圆上存在点P ,使得12PF e PF ,则该离心率e 的取值范围是________.18.(湖北省武汉市华中师范大学第一附属中学2018-2019学年高二上学期期中)已知双曲线2222:10,0x y C a b a b的右顶点为A ,焦距为2c ,以A 为圆心,c 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M N ,两点.若120MAN ,则C 的离心率为______.19.(辽宁省实验中学2018-2019学年高二上学期期中)已知椭圆 2222:10x y C a b a b的左右焦点为12,F F ,过2F 的直线与圆222x y b 相切于点A ,并与椭圆C 交于两点,P Q ,若12PF PF ,则椭圆的离心率为______.20.(江西省南昌市第二中学2018-2019学年高二上学期期中)已知有公共焦点的椭圆与双曲线中心为原点,焦点在x 轴上,左右焦点分别为12,F F ,且它们在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形.若110PF ,双曲线的离心率的取值范围为 1,2.则该椭圆的离心率的取值范围是________.专题06圆锥曲线中的离心率问题(参考答案)一、选择题1.【答案】D 【解析】如图,设椭圆的长半轴长为1a ,双曲线的半实轴长为2a , 则根据椭圆及双曲线的定义1212PF PF a ,1222PF PF a , 112PF a a ,212PF a a ,设122F F c ,12π3F PF, 则在12PF F △中由余弦定理得22212121212π4+2cos3c a a a a a a a a , 化简2221234a a c ,该式变成2212134e e ,2212121334e e e e ,解得121233e e ,,121e e 的最大值是33,故选D.2.【答案】B 【解析】 设 00,P x y ,则2200221x y a b ,因为120PF PF,即 20000,,c x y c x y c ,两式联立整理得:2222023a x c a c,又因为2200x a ,所以2222203a c a a c,解得3222e故选B【解析】∵90APO ,∴点P 在以AO 为直径的圆上, ∵ 0,0,0O A a ,,∴以AO 为直径的圆方程为22224a a x y ,即220x y ax ,由22222210x ax x a b y y消去y ,得222322()0b a x a x a b . 设 ,P m n ,∵P 、A 是椭圆22221x y a b 与220x y ax 两个不同的公共点,∴322a m a b a ,2222a b ma a b ,可得222ab m a b .∵由图形得0m a ,∴2220ab a a b, 即222b a b ,可得222a c c ,得222a c , ∴2a c ,解得椭圆离心率22e , 又∵)1(0e ,,∴椭圆的离心率e 的取值范围为212.故选B.4.【答案】D 【解析】 如图所示:由题意可得:12MF MF ,2MF c ,12MF a c ,122F F c , 所以 22224c a c c ,化为2220e e ,又)1(0e ,, 解得31e ,故选D.【解析】设10F c (,),20F c (,),由椭圆的定义可得,12||2PF PF a , 可设2||PF t ,可得1||PF t , 即有 12t a ①由12π2F PF ,可得22212||||4PF PF c , 即为 22214t c ,② 由2②①,可得22211e令1m ,可得1m , ∵122 ,∴332m 即有 2222221221112221m m e m m由21529e ,解得2523e . 故选:B6.【答案】A【解析】设 22222:10x y C a a a ,则212AF AF a 且1222F F a ,因为21AF F △为直角三角形,故2221128AF a AF a ,故131AF a,所以椭圆的长轴长为3a 2633a a. 故选A【解析】 联立方程222213x y a b y ,有22222222333a b x b a a b y b a , 所以222243a b PQ b a因为矩形的对角线的长度相等,所以12F F PQ ,即2222423a b c b a,化简得42840e e ,解得31e , 故选C.8.【答案】A【解析】 设2PF x ,∵212PF F F ,1230PF F , ∴12PF x ,123F F x , 又122PF PF a ,122F F c∴23a x ,23c x ,∴C 的离心率为:33e. 故答案为:A.【解析】设 11A x y ,, 22B x y ,,由AB 的中点为 1215N ,,则1224x x ,1230y y , 由22112222222211x y a b x y ab ,两式相减得: 1212121222x x x x y y y y a b , 则 22121222121245b x x y y b x x a y y a , 由直线AB 的斜率1561123k , ∴22415b a ,则2254b a,易得双曲线的离心率32e , 故选:B .10.【答案】B【解析】 因为椭圆 2222:10x y C a b a b的离心率为32,所以224a b , 5 故选B.11.【答案】B【解析】 根据题意,如图所示,可得1F AB △为正三角形,可得在12Rt AF F △中,有122AF AF ,12223F F c , 点A 在椭圆上,由椭圆的定义可得12223a AF AF AF , 则该椭圆的离心率121233F F c e a AF AF ,故选B.【解析】 由点在椭圆上则:22941a b, 则22222222229449131324925a b a b a b a b b a 当且仅当222249a b b a ,即2223b a时等号成立, 则椭圆的离心率3e故选:D .13.【答案】D 【解析】由题意可知点P 的坐标为2,b c a或2,b c a , 因为1260F PF ,则223c ba222233ac b a c , 23230e e ,解得33e故选D14.【答案】B【解析】 由题意,可得()0A a ,,()0B a ,,设()P m n , ∴22200PA PB n n n k k m a m a m a. ∵点P 是双曲线上的点,可得22221m n a b,化简整理得 22222b m a n a . ∴22222222PA PB b m a b a k k m a a, ∵直线PA ,PB 的斜率乘积为12,即2212PA PB b k k a ,可得22212c a a ,即2232c a ,解得62e 故选:B .二、填空题15.10 【解析】 如图,由椭圆定义及勾股定理得,1212221224PF PF a PF PF c ,可得2121PF F S b △ , 则222221121c b a c c e 同理可得2122PF F S b △ 则222222222c b c a c e 联立有22222212c c c c e e ,即2212112e e , ∵212e e , ∴1104e . 故答案为:104.16.2 【解析】 设椭圆另一焦点为1F ,线段QF 与直线:b l y x c交点为M ,设1QF n ,QF m , ,O M 分别为1,FF QF 的中点,所以1QF 平行OM ,又OM QF ,所以22224l m n a m n c m b k n c, 整理得22ab m b c acn b c ,代入2224m n c ,整理得:2220b b c b bc c ,所以b c , 所以22e.【解析】 由题意可得:12PF e PF ,又122PF PF a ,所以 212PF e a , 由于2a c PF a c ,所以 12a c e a ①,且 12a c e a ②,①式两边除以a ,得 112e e ,解得21e ②式两边除以a ,得 112e e ,恒成立, 所以离心率e 的取值范围是 21,1 .18.2【解析】因为120MAN ,故A 到直线0bx ay 的距离为2c ,又A 到直线0bx ay 22ab ab c a b ,,故2c ab c ,也就是42440e e ,解得2e .19.【答案】53【解析】 因为OA PQ ,12PF PF ,12OF OF , 故12PF b ,222PF a b , 所以2AF a b故 22222b a b c a b ,所以32b a ,解得53e故答案为:5335【解析】如图,设椭圆的长半轴为1a ,双曲线的半实轴长为2a , 它们公共的焦距为2c ,2PF n , ∵110PF ,12PF F △是以1PF 为底边的等腰三角形.∴由椭圆与双曲线的定义,得121021022n a n a n c,解之得1255a c a c , ∵双曲线的离心率的取值范围为(1)2,,∴125c c, 设5c x c ,可得51x c x , 从而得到椭圆的离心率11521242c x e c x x . 由12x ,可得1235e . 故答案为:1235,。
圆锥曲线离心率取值范围圆锥曲线离心率取值范围圆锥曲线是平面上的一类二次曲线,包括椭圆、双曲线和抛物线。
而离心率则是描述椭圆和双曲线形状的一个参数。
本文将详细介绍圆锥曲线离心率的定义、性质以及取值范围。
一、离心率的定义在平面直角坐标系中,设有一个椭圆和一个点F(称为焦点),则对于椭圆上任意一点P,其到焦点F的距离与到该椭圆的长轴两端点A、B 距离之和相等,即PF + PF' = 2a(a为长轴长度),其中PF'称为焦点F关于椭圆上一点P的对称点。
同理,在双曲线中也存在类似的定义。
定义1:对于一个椭圆或双曲线,其离心率e等于焦距c与长轴长度a 之比,即e=c/a。
其中,焦距c可以通过勾股定理得出:c²=a²-b²(b为短轴长度)。
而对于抛物线,则不存在焦点和长轴这样的参数,因此抛物线的离心率定义为无穷大。
定义2:对于一个抛物线,其离心率e为无穷大。
二、离心率的性质1. 离心率e与椭圆或双曲线的形状有关,当e越接近于0时,椭圆形状越接近于圆形;当e越接近于1时,椭圆形状越扁平,双曲线则越尖锐。
2. 对于椭圆和双曲线而言,焦点到中心的距离为c=a×e。
因此,当离心率越大时,焦点离中心点也就越远。
3. 对于椭圆和双曲线而言,焦点到直线l的距离为d=c/e。
因此,在给定直线l的情况下,当离心率越大时,焦点到直线l的距离也就越远。
4. 对于椭圆和双曲线而言,其两个焦点之间的距离为2a。
因此,在给定长轴长度a的情况下,当离心率越大时,则短轴长度b也就越小。
三、取值范围根据定义1可知,对于一个椭圆或双曲线而言,其离心率e的取值范围为0<e<1。
当e=0时,椭圆退化为圆;当e=1时,双曲线退化为两条平行直线。
对于抛物线而言,其离心率定义为无穷大,因此不存在取值范围的限制。
总结本文介绍了圆锥曲线离心率的定义、性质以及取值范围。
离心率是描述椭圆和双曲线形状的一个重要参数,其大小与焦点到中心的距离、焦点到直线的距离、短轴长度等都有关系。
高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c 之间的联系。
一、基础知识: 1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距) (1)椭圆:()0,1e ∈ (2)双曲线:()1,+e ∈∞2、圆锥曲线中,,a b c 的几何性质及联系 (1)椭圆:222a b c =+,① 2a :长轴长,也是同一点的焦半径的和:122PF PF a += ② 2b :短轴长 ③ 2:c 椭圆的焦距 (2)双曲线:222c b a =+① 2a :实轴长,也是同一点的焦半径差的绝对值:122PF PF a −=② 2b :虚轴长 ③ 2:c 椭圆的焦距3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距。
从而可求解 (2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。
如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、典型例题:例1:设12,F F 分别是椭圆()2222:10x y C a b a b +=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( ) A .33 B .36C .13D .16思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角三角形12PF F 中,1212::2:1:3PF PF F F =,且12122,2a PF PF c F F =+=,所以12122323F F c c e a a PF PF ∴====+ 答案:A小炼有话说:在圆锥曲线中,要注意O 为12F F 中点是一个隐含条件,如果图中存在其它中点,则有可能与O 搭配形成三角形的中位线。
圆锥曲线离心率范围四种题型椭圆的离心率的范围是高考的要点,其主假如列出 a, b,c 的不等式, 从而求出离心率的范围。
此中列不等式是这类题目的要点,下边我们说以下不等式的几种方法。
一、依据圆锥曲线中所隐含的不等关系列式例 1:已知椭圆x 2y 2 1( ab 0) 的左右焦点分别是F 1 ( ,0), F 2 ( ,0)a 2b 2c c ,若椭圆上存在点 P (异于长轴的端点) ,使得 csin PF 1 F 2 a sin PF 2 F 1 ,则该椭圆的离心率的范围是 _________.c sin PF 2 F 1 PF 1 sin PF 2 F 1解: 由已知得 esin PF 1F 2 , 由正弦定理得sinPF 1F 2aPF 2 PF 12a PF 2PF 22a 2因此 ePF 2,从而 a。
PF 2c又由于 a cPF 2 a c 且 0 e 1 ,解得离心率范围是 ( 21,1) 。
变式训练 1:设椭圆x 2y 2 1(ab 0) 的两焦点为 F 1 , F 2 ,若在其右准线上存在一a 2b 2点 P ,使得线段 PF 1 的中垂线过点 F 2 ,求椭圆离心率的范围。
变式训练 2:双曲线x 2y 2 1(a 0, b 0) 的两个焦点为 F 1 , F 2 ,若 P 为其上一点, a 2b 2且 PF 1 2 PF 2 ,则双曲线离心率的取值范围。
变式训练 3:双曲线x 2y 2 1(a 0, b 0) 的两个焦点为 F 1, F 2 ,若 P 为右支上一点,a 2b 2且PF 1 4 PF 2 ,则双曲线离心率的取值范围。
二、相关存在性问题求离心率例 2:设 P 是椭圆 x2y 2 1( a b 0) 上的一点, F 1, F 2 是椭圆的左右焦点,已知a 2b 2F 1 PF 2 60o ,求椭圆离心率的范围。
剖析:要想使得存在椭圆上的一点P ,知足F 1 PF 2 60o ,也就是要求当点 P 在椭圆上运动时, ( F 1PF 2 ) min 60o ,( F 1PF 2 )max 60o 即可。
圆锥曲线中的离心率问题(答案)圆锥曲线中的离心率问题(答案)一、直接求出a 、c ,求解e 已知标准方程或a 、c 易求时,可利用离心率公式ace =来求解。
来求解。
例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是(的离心率是( )A. 10B. 5C. 310D. 25 分析:这里的1b ,c 1a 2+==,故关键是求出2b ,即可利用定义求解。
,即可利用定义求解。
解:易知A (-1,0),则直线l 的方程为1x y +=。
直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b ,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10ac e ==,从而选A 。
二、变用公式,整体求出e 例2. 已知双曲线)0b ,0a (1by a x 2222>>=-的一条渐近线方程为x 34y =,则双曲线的离心率为(心率为( )A. 35B. 34C. 45D. 23 分析:本题已知=a b 34,不能直接求出a 、c ,可用整体代入套用公式。
,可用整体代入套用公式。
解:由22222222k 1a b 1a b a ab a ace +=+=+=+==(其中k 为渐近线的斜率)。
这里34a b =,则35)34(1a c e 2=+==,从而选A 。
三、第二定义法三、第二定义法由圆锥曲线的统一定义(或称第二定义)知离心率e 是动点到焦点的距离与相应准线的距离比,特别适用于条件含有焦半径的圆锥曲线问题。
距离比,特别适用于条件含有焦半径的圆锥曲线问题。
例 3. 在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为(则该椭圆的离心率为( )A. 2B. 22C. 21D. 42解:由过焦点且垂直于长轴的弦又称为通径,设焦点为F ,则x F M ^轴,知|MF|是通径的一半,则有22|MF |=。
微重点 离心率的范围问题圆锥曲线离心率的范围问题是高考的热点题型,对圆锥曲线中已知特征关系的转化是解决此类问题的关键,相关平面几何关系的挖掘应用也可使问题求解更简洁.知识导图考点一 利用圆锥曲线的定义求离心率的范围考点二 利用圆锥曲线的性质求离心率的范围考点三 利用几何图形的性质求离心率的范围考点分类讲解考点一 利用圆锥曲线的定义求离心率的范围规律方法 此类题型的一般方法是利用圆锥曲线的定义,以及余弦定理或勾股定理,构造关于a ,b ,c 的不等式或不等式组求解,要注意椭圆、双曲线离心率自身的范围.1(23-24高三上·内蒙古锡林郭勒盟·期末)已知椭圆C :x 2a2+y 2b 2=1(a >b >0)上存在点P ,使得PF 1 =4PF 2 ,其中F 1,F 2是椭圆C 的两个焦点,则椭圆C 的离心率的取值范围是()A.35,1 B.14,35C.12,1D.0,14【答案】A【分析】根据给定条件,利用椭圆的定义求出PF 1 ,PF 2 ,再利用线段和差关系建立不等式求解即得.【详解】点P 在椭圆C :x 2a2+y 2b 2=1(a >b >0)上,F 1,F 2是椭圆C 的两个焦点,令半焦距为c ,由PF 1 =4PF 2 及PF 1 +PF 2 =2a ,得PF 1 =8a 5,PF 2 =2a 5,显然PF 1 -PF 2 ≤|F 1F 2|,当且仅当点F 1,F 2,P 共线,且F 2在线段PF 1上时取等号,因此2c ≥8a 5-2a 5=6a 5,即e =c a ≥35,又0<e <1,则35≤e <1,所以椭圆C 的离心率的取值范围是35,1 .故选:A2(23-24高三上·云南曲靖·阶段练习)已知F 1,F 2,分别为双曲线x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点,M 为双曲线左支上任意一点,若MF 22MF 1 的最小值为8a ,则双曲线离心率e 的取值范围是()A.1,72B.2,4C.1,3D.3,5【答案】C【分析】由双曲线定义MF 2 2MF 1=MF 1 +2a2MF 1,变形后由基本不等式得最小值,从而得MF 1 =2a ,再利用双曲线中的范围有MF 1 ≥c -a ,由此结合可得离心率的范围.【详解】F 1,F 2是左、右焦点,M 为双曲线左支上的任意一点,则MF 2 -MF 1 =2a ,即MF 2 =MF 1 +2a ,代入MF 22MF 1得MF 22MF 1=MF 1 +2a2MF 1=MF 1 +4a 2MF 1+4a ≥2MF 1 ×4a 2MF 1+4a =8a ,当且仅当MF 1 =2a 时取等号,即MF 1 =2a ,又点M 是双曲线左支上任意一点,所以MF 1 ≥c -a ,即2a ≥c -a ,解得e ≤3,所以双曲线离心率e 的取值范围是1,3 .故选:C .3(23-24高三上·陕西安康·阶段练习)已知双曲线E :x 2a2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过点F 1的直线l 与双曲线E 的左、右两支分别交于点A ,B ,弦AB 的中点为M 且MF 1⊥MF 2.若过原点O 与点M 的直线的斜率不小于3,则双曲线E 的离心率的取值范围为()A.1,2 B.2,+∞C.1,5D.5,+∞【答案】B【分析】方法一:连接AF 2,BF 2,结合双曲线的定义,再由条件列出不等式,代入计算,即可得到结果;方法二:连接AF 2,BF 2,可得AF 2 =BF 2 ,联立直线与双曲线方程,结合韦达定理代入计算,表示出k OM ,列出不等式,即可得到结果.【详解】方法一:如图,设双曲线E 的半焦距为c ,连接AF 2,BF 2,因为MF 1⊥MF 2,所以AF 2 =BF 2 .设AF 2 =m ,由双曲线的定义,得AF 1 =m -2a ,BF 1 =2a +m ,所以AB =4a ,AM =BM =2a ,MF 1 =m ,所以MF 2 2=m 2-4a 2=4c 2-m 2,即m 2=2c 2+2a 2.设∠BF 1F 2=α,则∠MOF 2=2α,所以tan2α=2tan α1-tan 2α≥3,解得13≤tan 2α<1.又tan α=MF 2 MF 1 ,所以13≤m 2-4a 2m 2<1,解得m 2≥6a 2,所以2c 2+2a 2≥6a 2,即c 2≥2a 2,所以e =ca≥ 2.故选:B .方法二:如图,设双曲线E 的半焦距为c ,连接AF 2,BF 2,因为MF 1⊥MF 2,所以AF 2 =BF 2 .设AF 2 =m ,由双曲线的定义,得AF 1 =m -2a ,BF 1 =2a +m ,所以AB =4a .设直线l 的方程为x =ty -c ,A x 1,y 1 ,B x 2,y 2 .由x =ty -cx 2a2-y 2b2=1,消去x 并整理,得b 2t 2-a 2 y 2-2b 2tcy +b 4=0.422422242242因为直线l 与双曲线E 的两支相交,所以-ba<1t <b a ,即b 2t 2-a 2>0.由y 1+y 2=2b 2tc b 2t 2-a2y 1y 2=b 4b 2t 2-a 2,得AB =1+t 2y 1-y 2 =2ab 21+t 2 b 2t 2-a 2.结合AB =4a ,化简得t 2=b 2+2a 2b 2①.由x 21a 2-y 21b 2=1x 22a 2-y 22b 2=1,两式相减,得x 1-x 2y 1-y 2=a 2b 2⋅y 1+y 2x 1+x 2,即t =a 2b 2⋅k OM ②,②代入①化简,得k 2OM=b 4+2a 2b 2a 4≥3,所以b 2≥a 2,即c 2≥2a 2,所以e ≥ 2.故选:B .4(2023·亳州模拟)已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若C 与直线y =x 有交点,且双曲线上存在不是顶点的P ,使得∠PF 2F 1=3∠PF 1F 2,则双曲线离心率的取值范围为.【答案】 (2,2)【解析】双曲线C 与直线y =x 有交点,则ba >1,b 2a 2=c 2-a 2a 2>1,解得e =ca>2,双曲线上存在不是顶点的P ,使得∠PF 2F 1=3∠PF 1F 2,则P 点在双曲线右支上,设PF 1与y 轴交于点Q ,由对称性得|QF 1|=|QF 2|,所以∠QF 1F 2=∠QF 2F 1,所以∠PF 2Q =∠PF 2F 1-∠QF 2F 1=2∠PF 1F 2=∠PQF 2,所以|PQ |=|PF 2|,所以|PF 1|-|PF 2|=|PF 1|-|PQ |=|QF 1|=2a ,由|QF 1|>|OF 1|得2a >c ,所以e =ca<2,又在△PF 1F 2中,∠PF 1F 2+∠PF 2F 1=4∠PF 1F 2<180°,∠PF 1F 2<45°,所以c 2a=cos ∠PF 1F 2>22,即e =ca>2,综上,2<e <2.考点二 利用圆锥曲线的性质求离心率的范围规律方法 利用圆锥曲线的性质,如:椭圆的最大角,通径,三角形中的边角关系,曲线上的点到焦点距离的范围等,建立不等式(不等式组)求解.1(2024·陕西·模拟预测)已知椭圆C 1:x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1-c ,0 ,F 2c ,0 ,抛物线C2:x2=2py(p>0),椭圆C1与抛物线C2相交于不同的两点A,B,且四边形ABF1F2的外接圆直径为5c2,若b>c,则椭圆C1的离心率的取值范围是()A.55,2 2B.22,255C.55,255D.255,1【答案】A【分析】先利用椭圆与抛物线的对称性分析得四边形ABF1F2的外接圆就是△BF1F2的外接圆,再利用正弦定理求得sin∠F1BF2,再利用椭圆中焦点三角形的性质得到∠F1MF2=θ的取值范围,从而得到关于a,b,c的齐次不等式,解之即可得解.【详解】如图,由椭圆与抛物线的对称性,知点A,B关于y轴对称,四边形ABF1F2是等腰梯形,易知四边形ABF1F2的外接圆就是△BF1F2的外接圆,设四边形ABF1F2的外接圆半径为R.在△BF1F2中,由正弦定理,知2csin∠F1BF2=2R=5c2,∴sin∠F1BF2=45,记椭圆C1的上顶点为M,∠F1MF2=θ,坐标原点为O,易知∠F1BF2<θ,又b>c,则tan θ2=tan∠F1MO=cb<1,0<θ2<π2,∴0<θ2<π4,∴0<∠θ<π2,即θ为锐角,∴45=sin∠F1BF2<sinθ,又sinθ=2sinθ2cosθ2sin2θ2+cos2θ2=2tanθ2tan2θ2+1,∴2tanθ2tan2θ2+1>45,∴12<tanθ2<2.又0<θ2<π4,∴12<tanθ2<1,∴12<cb<1,则14<c2b2<1,所以14<c2a2-c2<1,则55<ca<22,即55<e<22,则椭圆C1的离心率的取值范围是55,22,故选:A.【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式e=c a;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).2(2024高三·全国·专题练习)如图,椭圆的中心在坐标原点,焦点在x轴上,A1,A2,B1,B2椭圆顶点,F2为右焦点,延长B1F2与A2B2交于点P,若∠B1PA2为钝角,则该椭圆离心率的取值范围是()A.5-22,0B.0,5-22C.0,5-12D.5-12,1【答案】D【分析】利用椭圆的性质及平面向量数量积的坐标表示构造齐次式计算即可.【详解】解:如图所示,∠B 1PA 2是B 2A 2 与F 2B 1的夹角;设椭圆的长半轴、短半轴、半焦距分别为a ,b ,c ,则B 2A 2 =a ,-b ,F 2B 1=-c ,-b ,∵向量的夹角为钝角时,B 2A 2 ⋅F 2B 1=-ac +b 2<0,又b 2=a 2-c 2,∴a 2-ac -c 2<0,两边除以a 2得1-e -e 2<0,解得e >5-12或e <-5-12;又∵0<e <1,∴1>e >5-12.故选:D .3(23-24高三下·陕西安康·阶段练习)已知椭圆C 1:x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),抛物线C 2:x 2=2py (p >0),且椭圆C 1与抛物线C 2相交于A ,B 两点,若F 1A ⋅F 1B=3c 2,则椭圆C 1的离心率的取值范围是()A.0,33B.0,33C.33,1D.33,1 【答案】B【分析】由椭圆和抛物线的对称性可知A ,B 两点关于y 轴对称,设出两点坐标,代入条件计算,将结果与椭圆联立可求解A 点纵坐标,结合点在椭圆上纵坐标的范围即可求出离心率的范围.【详解】解:设A x 0,y 0 ,则B -x 0,y 0 ,因为F 1(-c ,0),F 2(c ,0),由F 1A ⋅F 1B =3c 2,得:x 0+c ⋅-x 0+c +y 20=3c 2,即x 20-y 20=-2c 2,点A ,B 在椭圆上,所以满足x 20a2+y 20b 2=1,代入上式可得:y 20-2c 2a 2+y 20b 2=1,即b 2y 20-2c 2 +a 2y 20=a 2b 2,即y 20=a 2b 2+2b 2c 2a 2+b 2,因为点在椭圆上,所以y 20=a 2b 2+2b 2c 2a 2+b 2≤b 2,解得:2c 2≤b 2,即3c 2≤a 2,解得:0<e ≤33.故选:B4已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若双曲线上存在点P ,使sin ∠PF 1F 2sin ∠PF 2F 1=ac ,则该双曲线的离心率的取值范围为()A.(1,1+2) B.(1,1+3)C.(1,1+2]D.(1,1+3]【答案】A【解析】若点P 是双曲线的顶点,asin ∠PF 1F 2=c sin ∠PF 2F 1无意义,故点P 不是双曲线的顶点,在△PF 1F 2中,由正弦定理得|PF 1|sin ∠PF 2F 1=|PF 2|sin ∠PF 1F 2,又a sin ∠PF 1F 2=c sin ∠PF 2F 1,∴|PF 1||PF 2|=c a ,即|PF 1|=ca ·|PF 2|,∴P 在双曲线的右支上,由双曲线的定义,得|PF 1|-|PF 2|=2a ,∴c a |PF 2|-|PF 2|=2a ,即|PF 2|=2a 2c -a ,由双曲线的几何性质,知|PF 2|>c -a ,∴2a 2c -a>c -a ,即c 2-2ac -a 2<0,∴e 2-2e -1<0,解得-2+1<e <2+1,又e >1,∴双曲线离心率的取值范围是(1,1+2).考点三 利用几何图形的性质求离心率的范围规律方法 利用几何图形中几何量的大小,例如线段的长度、角的大小等,构造几何度量之间的关系.1(2023·无锡模拟)已知点P 在双曲线C :x 2a2-y 2b 2=1(a >0,b >0)上,P 到两渐近线的距离分别为d 1,d 2,若d 1d 2≤12|OP |2恒成立,则C 的离心率的最大值为()A.2B.3C.2D.5【答案】 A【解析】双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b a x ,即bx ±ay =0,设双曲线上的点P (x 0,y 0),所以x 20a2-y 20b 2=1,即b 2x 20-a 2y 20=a 2b 2,则P (x 0,y 0)到两条渐近线bx ±ay =0的距离分别为d 1=bx 0+ay 0a 2+b2,d 2=bx 0-ay 0a 2+b2,所以d 1d 2=b 2x 20-a 2y 2a 2+b 2=a 2b 2a 2+b2,又|OP |2=x 20+y 20=a 2+a 2b2y 20+y 20=a 2+a2b2+1y 20,y 0∈R ,所以|OP |2≥a 2,因为d 1d 2≤12|OP |2恒成立,所以a 2b 2a 2+b2≤12a 2,整理得b 2≤a 2,即b 2a2≤1,所以离心率e =c a =c 2a 2=1+b 2a2≤2,则C 的离心率的最大值为 2.2(2022高三上·河南·专题练习)已知椭圆C :x 2a2+y 2b 2=1a >b >0 的焦距为2c ,直线y =ba x +b 2与椭圆C 交于点P ,Q ,若PQ ≤7c ,则椭圆C 的离心率的取值范围为()A.32,1 B.0,22 C.105,1 D.0,13【答案】C【分析】联立椭圆与直线方程,利用韦达定理与弦长公式得到关于a ,b ,c 的齐次不等式,从而得解.【详解】联立方程y =b ax +b2x 2a2+y 2b2=1,消去y ,整理得8x 2+4ax -3a 2=0,则Δ=4a 2-4×8×-3a 2 =112a 2>0,设P ,Q 的横坐标分别为x 1,x 2,则x 1+x 2=-a2,x 1⋅x 2=-3a 28,所以PQ =1+b a 2⋅x 1-x 2 =1+b a2⋅x 1+x 2 2-4x 1x 2=a 2+b 2a 2⋅a 24+3a 22=72a 2+b 2,由PQ ≤7c ,得72a 2+b 2≤7c ,整理得a 2+b 2≤4c 2,即a 2+a 2-c 2≤4c 2,即c 2a2≥25,又0<e <1,则e =c a ≥105,故105≤e <1,所以椭圆C 的离心率的取值范围为105,1 .故选:C .【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式e =ca;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3(23-24高三上·广东·阶段练习)过双曲线C :x 2a2-y 2b 2=1,a >0,b >0 的右焦点F 作渐近线的垂线,垂足为H ,点O 为坐标原点,若sin ∠HOF >sin ∠HFO ,又直线y =2x 与双曲线无公共点,则双曲线C 的离心率的取值范围为()A.(2,5]B.(2,+∞)C.(1,5)D.(2,5)【答案】A【分析】结合题意以及双曲线的有关知识,找到a ,b ,c 之间的不等关系,整理计算即可.【详解】如图,可知△OFH 中,OF =c ,FH =b ,OH =a ,因为sin ∠HOF >sin ∠HFO ,由正弦定理可知b >a ,即b 2>a 2,所以c 2>2a 2,得e >2.又因为直线y =2x 与双曲线无公共点,则ba≤2,即b ≤2a ,结合a 2+b 2=c 2,所以c 2≤5a 2,所以e ≤5.综上:2<e ≤5,故选:A .4(2023·陕西西安·模拟预测)已知两动点A ,B 在椭圆C :x 2a2+y 2=1a >1 上,动点P 在直线3x +4y -10=0上,若∠APB 恒为锐角,则椭圆C 的离心率的取值范围是()A.0,23B.23,1C.0,63D.63,1【答案】C【分析】由椭圆性质和图像得出椭圆的两条互相垂直的切线的交点的轨迹为圆,由条件可知直线3x +4y -10=0与圆x 2+y 2=a 2+1相离, 从而可得出a 的范围, 进而求出离心率的范围.【详解】若从圆x 2+y 2=a 2+b 2上一点引椭圆x 2a2+y 2b 2=1的两条切线一定互相垂直.证明如下:设椭圆的切线方程为y =kx ±k 2a 2+b 2,∴过圆上一点p 1x 1,y 1 的切线为y 1=kx 1±k 2a 2+b 2,y 1-kx 1 2=k 2a 2+b 2,即x 21-a 2 k 2-2x 1y 1k +y 21-b 2 =0.(1)又∵p 1x 1y 1 在圆上, ∴x 21+y 21=a 2+b 2,即x 21-a 2=-y 21-b 2 .(i )当x 21-a 2≠0时, (1)式为k 2-2x 1y 1x 2-a 2k -1=0,由根与系数关系知k 1k 2=-1, 故两条切线互相垂直.(ii )当x 21-a 2=0时, x =±a ,y =±b , 此时两条切线显然互相重直.故圆x 2+y 2=a 2+b 2上一点引椭圆x 2a2+y 2b 2=1的两条切线一定互相垂直.所以椭圆x2a2+y 2=1的两条互相垂直的切线的交点的轨迹是圆x 2+y 2=a 2+1.若∠APB 恒为锐角, 则直线3x +4y -10=0与圆x 2+y 2=a 2+1相离故109+16>a 2+1, 又a >1,∴1<a <3,∴e =c a =a 2-1a =1-1a2∈0,63 .故选:C .强化训练一、单选题1(2023·全国·模拟预测)已知双曲线C :x 2a2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1,F 2,P 为双曲线C 的右支上一点,且PF 1⊥PF 2,2≤PF 1PF 2 ≤4,则双曲线C 的离心率的取值范围为()A.52,344B.173,5C.1,173D.5,+∞【答案】B【分析】先利用双曲线的定义及勾股定理等得到PF 1 PF 2 =2b 2,设PF 1 PF 2=m ,结合双曲线的定义得到PF 1⋅PF 2 =4a 2m (m -1)2,则b 2a 2=2m +1m -2,构造函数f (m )=m +1m -2(2≤m ≤4),利用导数法求解.【详解】解:因为PF 1 -PF 2 =2a ,PF 1⊥PF 2,∴PF 1 2+PF 2 2=PF 1 -PF 2 2+2PF 1 PF 2 =4a 2+2PF 1 PF 2 =4c 2,又b 2=c 2-a 2,∴PF 1 PF 2 =2b 2.设PF 1 PF 2=m ,则PF 1 =m PF 2 ,2≤m ≤4,∴PF 1 -PF 2 =(m -1)PF 2 =2a ,∴PF 2 =2a m -1,则PF 1 =2amm -1,∴PF 1 PF 2 =4a 2m(m -1)2.∴4a 2m (m -1)2=2b 2,则b 2a 2=2m m 2-2m +1=2m +1m -2,设f (m )=m +1m -2(2≤m ≤4),则f (m )=1-1m2>0,∴f m 在2,4 上单调递增,∴f (2)=12≤f (m )≤f (4)=94,∴49≤1f (m )≤2,∴89≤b 2a 2≤4,∴c 2a 2=1+b 2a2∈179,5 ,∴e =c a ∈173,5 ,故选:B .2(23-24高二上·江苏徐州·期中)设F 1,F 2分别为椭圆C 1:x 2a 21+y 2b 21=1a 1>b 1>0 与双曲线C 2:x 2a 22-y 2b 22=1a 2>0,b 2>0 的公共焦点,它们在第一象限内交于点M ,∠F 1MF 2=60°,若椭圆的离心率e 1∈22,32 ,则双曲线C 2的离心率e 2的取值范围为()A.52,62B.62,+∞ C.324,62D.62,142【答案】C【分析】根据椭圆以及双曲线的定义可得,MF 1 =a 1+a 2MF 2 =a 1-a 2.进而在△MF 1F 2中,由余弦定理变形可得a 1c2+3a 2c 2-4=0,1e 22=134-1e 12.根据不等式的性质,结合已知,求解即可得出答案.【详解】根据椭圆及双曲线的定义可得MF 1 +MF 2 =2a 1MF 1 -MF 2 =2a 2 ,所以MF 1 =a 1+a 2MF2 =a 1-a 2.在△MF F 中,∠F MF =60°,由余弦定理可得cos ∠F 1MF 2=MF 12+MF 2 2-F 1F 2 22MF 1 ⋅MF 2 =a 1+a 2 2+a 1-a 2 2-4c 22a 1+a 2 a 1-a 2=12,整理可得,a 21+3a 22-4c 2=0,两边同时除以c 2可得,a 1c 2+3a 2c 2-4=0.又e 1=c a 1,e 2=ca 2,所以有1e 12+31e 22-4=0,所以,1e 22=134-1e 12.因为e 1∈22,32 ,所以12≤e 21≤34,所以43≤1e 21≤2,所以,-2≤-1e 21≤-43,2≤4-1e 21≤83,所以,23≤1e 2 2=134-1e 12 ≤89.则63≤1e 2≤223,故324≤e 2≤62.故选:C .3(2023·贵州黔东南·一模)设双曲线E :x 2a2-y 2b 2=1(a >0,b >0)的右焦点为F ,M 0,3b ,若直线l 与E 的右支交于A ,B 两点,且F 为△MAB 的重心,则E 的离心率的取值范围为()A.133,3 ∪3,+∞B.2137,3 ∪3,+∞C.1,133D.1,2137 【答案】A【分析】设点D (x 0,y 0)为AB 的中点,根据F 为△MAB 的重心,求得D 3c 2,-3b 2,由直线l 与E 的右支交于A ,B 两点,得到3c 22a 2--3b22b 2>1,求得ca>133,再由e =3时,证得M ,F ,A ,B 四点共线不满足题意,即可求得双曲线E 的离心率的取值范围.【详解】由题意,双曲线E :x 2a2-y 2b 2=1(a >0,b >0)的右焦点为F (c ,0),且M 0,3b ,设点D (x 0,y 0)为AB 的中点,因为F 为△MAB 的重心,所以MF =2FD,即(c ,-3b )=2(x 0-c ,y 0),解得x 0=3c 2,y 0=-3b 2,即D 3c 2,-3b 2,因为直线l 与E 的右支交于A ,B 两点,则满足3c 2 2a 2--3b 22b 2>1,整理得c 2a2>139,解得ca >133或c a <-133(舍去),当离心率为e =3时,即a =33c 时,可得b =c 2-a 2=63c ,此时D 3c 2,-6c2 ,设A (x 1,y 1),B (x 2,y 2),可得x 1+x 2=3c ,y 1+y 2=-6c ,又由x21a2-y21b2=1x22a2-y22b2=1,两式相减可得y2-y1x2-x1=b2x2+x1a2y1+y2=b2×3ca2×(-6c)=-6,即直线l的斜率为k l=-6,又因为k MF=0-3bc-0=-6,所以k MF=k l,此时M,F,A,B四点共线,此时不满足题意,综上可得,双曲线E的离心率的取值范围为133,3∪3,+∞.故选:A.【点睛】知识方法:求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得a,c得值,根据离心率的定义求解离心率e;2、齐次式法:由已知条件得出关于a,c的二元齐次方程或不等式,然后转化为关于e的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.4(2023·四川攀枝花·三模)已知双曲线C:x2a2-y2b2=1a>0,b>0,A为双曲线C的左顶点,B为虚轴的上顶点,直线l垂直平分线段AB,若直线l与C存在公共点,则双曲线C的离心率的取值范围是()A.2,3B.2,+∞C.3,+∞D.1,2【答案】B【分析】先根据题意求得直线l的斜率,再根据直线l与C存在公共点,只需直线l的斜率大于渐近线的斜率-ba即可求解.【详解】依题意,可得A-a,0,B0,b,则k AB=b-00+a=ba,又因为直线l垂直平分线段AB,所以k l=-a b,因为直线l与C存在公共点,所以-ab>-ba,即a2<b2,则a2<c2-a2,即2<c2a2,e2>2,解得e>2,所以双曲线C的离心率的取值范围是2,+∞.故选:B5(2023·湖北·模拟预测)已知双曲线x2m-y24-m=1,m∈0,4,过点P2,1可做2条直线与左支只有一个交点,与右支不相交,同时可以做2条直线与右支只有一个交点,与左支不相交,则双曲线离心率的取值范围是()A.1,5B.1,5 2C.1,2D.1,2【答案】B【分析】作出草图,利用双曲线的性质结合图形分类讨论计算即可.【详解】如图所示,设双曲线的两条渐近线分别为l、l ,由已知易知F22,0,若P在双曲线内部(如P 位置),显然作任何直线均与双曲线右支有交点,无法满足题意;若P在双曲线与渐近线l之间(如P 位置),过P所作直线若与双曲线左支相交则必与右支也相交,也无法满故P 只能在双曲线的渐近线l 上方,此时过P 可做唯一一条与右支相切的直线,也可以作一条与渐近线l 平行的直线,该两条直线均与左支无交点;同理也可作出唯一一条与左支相切的直线,及一条与渐近线l 平行的直线符合要求;即1>24-m m ⇒4m -1<14⇒e 2=4m <54,故e ∈1,52,故选:B6(23-24高三上·内蒙古锡林郭勒盟·期末)已知椭圆C :x 2a2+y 2b 2=1(a >b >0)上存在点P ,使得PF 1 =4PF 2 ,其中F 1,F 2是椭圆C 的两个焦点,则椭圆C 的离心率的取值范围是()A.0,25B.25,1C.35,1D.35,1【答案】D【分析】由PF 1 =4PF 2 结合椭圆的定义可求出PF 1 ,再由a +c ≥PF 1 ≥a -c 可求出离心率的范围.【详解】因为PF 1 =4PF 2 ,因为PF 1 +PF 2 =2a ,所以4PF 2 +PF 2 =2a ,所以PF 2 =2a 5,PF 1 =8a 5,因为a +c ≥PF 1 ≥a -c ,所以a -c ≤8a5≤a +c ,所以5a -5c ≤8a ≤5a +5c ,所以5-5e ≤8≤5+5e ,解得e ≥35,因为0<e <1,所以35≤e <1,所以离心率的范围35,1,故选:D .7(2023·四川·模拟预测)已知双曲线C :x 2a2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1,F 2,离心率为2,焦点到渐近线的距离为 6.过F 2作直线l 交双曲线C 的右支于A ,B 两点,若H ,G 分别为△AF 1F 2与△BF 1F 2的内心,则HG 的取值范围为()A.22,4B.3,2C.2,433D.22,463【分析】求出双曲线的解析式,根据△AF 1F 2与△BF 1F 2的内心求出F 1E ,F 2E 的关系式和点H ,G 的横坐标,设出直线AB 的倾斜角,得到HG 的表达式,即可求出HG 的取值范围【详解】由题意,在C :x 2a2-y 2b 2=1a >0,b >0 中,根据焦点到渐近线的距可得b =6,离心率为2,∴e =ca =1+b 2a 2=1+6a 2=2,解得:a =2,∴c =b 2+a 2=22∴双曲线的方程为C :x 22-y 26=1.记△AF 1F 2的内切圆在边AF 1,AF 2,F 1F 2上的切点分别为M ,N ,E ,则H ,E 横坐标相等AM =AN ,F 1M =F 1E ,F 2N =F 2E ,由AF 1 -AF 2 =2a ,即AM +MF 1 -AN +NF 2 =2a ,得MF 1 -NF 2 =2a ,即F 1E -F 2E =2a ,记H 的横坐标为x 0,则E x 0,0 ,于是x 0+c -c -x 0 =2a ,得x 0=a ,同理内心G 的横坐标也为a ,故HG ⊥x 轴.设直线AB 的倾斜角为θ,则∠OF 2G =θ2,∠HF 2O =90°-θ2(Q 为坐标原点),在△HF 2G 中,HG =c -a tan θ2+tan 90°-θ2 =c -a ⋅sin θ2cos θ2+cos θ2sin θ2 =c -a ⋅2sin θ=22sin θ,由于直线l 与C 的右支交于两点,且C 的一条渐近线的斜率为ba=3,倾斜角为60°,∴60°<θ<120°,即32<sin θ≤1,∴HG 的范围是22,463 .故选:D .【点睛】本题考查双曲线的定义与几何性质、三角恒等变换,考查推理论证能力、运算求解能力、数形结合思想,以及角度的取值范围,具有极强的综合性.8(23-24高二上·山东济宁·阶段练习)设椭圆x 2a2+y 2b 2=1a >b >0 的左、右焦点分别为F 1、F 2,P 是椭圆上一点,PF 1 =λPF 2 13≤λ≤3 ,∠F 1PF 2=π2,则椭圆离心率的取值范围为()A.22,53 B.12,59C.22,104 D.12,58【答案】C【分析】设PF 2 =t ,由椭圆定义和勾股定理得到e 2=λ2+1λ+1 2,换元后得到λ2+1λ+12=21m -12 2+12,根据二次函数单调性求出12≤e 2≤58,得到离心率的取值范围.【详解】设F 1-c ,0 ,F 2c ,0 ,由椭圆的定义可得,PF 1 +PF 2 =2a ,可设PF 2 =t ,可得PF 1 =λt ,即有λ+1 t =2a ,①由∠F 1PF 2=π2,可得PF 1 2+PF 2 2=4c 2,即为λ2+1 t 2=4c 2,②由②÷①2,可得e 2=λ2+1λ+1 2,令m =λ+1,可得λ=m -1,即有λ2+1λ+12=m 2-2m +2m 2=21m -12 2+12,由13≤λ≤3,可得43≤m ≤4,即14≤1m ≤34,则m =2时,取得最小值12;m =43或4时,取得最大值58.即有12≤e 2≤58,得22≤e ≤104.故选:C【点睛】方法点睛:求椭圆的离心率或离心率的取值范围,常见有三种方法:①求出a ,c ,代入公式e =ca;②根据条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于离心率的方程(不等式),解方程(不等式)即可得离心率或离心率的取值范围;③由题目条件得到离心率关于变量的函数,结合变量的取值范围得到离心率的取值范围.二、多选题9(2024·河北邯郸·三模)已知双曲线C :x 2λ+6-y 23-λ=1,则()A.λ的取值范围是(-6,3)B.C 的焦点可在x 轴上也可在y 轴上C.C 的焦距为6D.C 的离心率e 的取值范围为(1,3)【答案】AC【分析】根据双曲线方程的特征,易于求得-6<λ<3,判断方程中分母的符号即可判断A ,B 项,计算易得C 项,先算出离心率的表达式,再根据λ的范围,即可确定e 的范围.【详解】对于A ,∵x 2λ+6-y 23-λ=1表示双曲线,∴(λ+6)(3-λ)>0,解得-6<λ<3,故A 正确;对于B ,由A 项可得-6<λ<3,故λ+6>0,3-λ>0,∴C 的焦点只能在x 轴上,故B 错误;对于C ,设C 的半焦距为c (c >0),则c 2=λ+6+3-λ=9,∴c =3,即焦距为2c =6,故C 正确;对于D ,离心率e =3λ+6,∵-6<λ<3,∴0<λ+6<3,∴e 的取值范围是(1,+∞),故D 错误.故选:AC .10(23-24高三上·黑龙江哈尔滨·期末)已知椭圆C :x 24+y 2b2=1(0<b <2)的左右焦点分别为F 1,F 2,点P 2,1 在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A.离心率的取值范围为0,22B.QF 1 ⋅QF 2 的最小值为4C.不存在点Q ,使得QF 1⋅QF2=0D.当e =33时,以点P 为中点的椭圆的弦的斜率为1【答案】AC【分析】根据点P 2,1 在椭圆内部求b 的范围,然后可得离心率范围,可判断A ;利用椭圆定义和基本不等式判断B ;当点Q 为短轴端点时∠F 1QF 2最大,然后利用余弦定理判断∠F 1QF 2的最大值,然后可判断C ;利用点差法求解即可判断D .【详解】因为点P 2,1 在椭圆内部,所以24+1b2<1,得b 2>2,因为e =c a=1-b 2a2=1-b 24,所以0<e <22,A 正确;因为点Q 在椭圆上,所以QF 1 +QF 2 =2a =4,所以QF 1 ⋅QF 2 ≤QF 1 +QF 2 22=4,当且仅当QF 1 =QF 2 时等号成立,所以,QF 1 ⋅QF 2 有最大值4,B 错误;由椭圆性质可知,当点Q 为短轴端点时∠F 1QF 2最大,此时,cos ∠F 1QF 2=a 2+a 2-2c 22a2=1-2e 2,因为0<e <22,所以cos ∠F 1QF 2=1-2e 2>0,即∠F 1QF 2的最大值为锐角,故不存在点Q ,使得QF 1⋅QF2=0,C 正确;当e =33时,有c 2=33,得c =233,所以b 2=83,易知,当点P 为弦中点时斜率存在,记直线斜率为k ,与椭圆的交点为A x 1,y 1 ,B x 2,y 2 ,则x 214+y 21b 2=1x 224+y 22b 2=1 ,由点差法得y 2-y 1 y 2+y 1 x 2-x 1 x 2+x 1 =-b 24=-23,又k =y 2-y 1x 2-x 1,x 2+x 1=22,y 2+y 1=2,所以22k =-23,即k =-223,D 错误.故选:AC11(2023·广东汕头·三模)已知F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,P 为椭圆上任意一点(不在x 轴上),△PF 1F 2外接圆的圆心为H ,半径为R ,△PF 1F 2内切圆的圆心为I ,半径为r ,直线PI 交x 轴于点M ,O 为坐标原点,则()A.S △PF 1F 2最大时,r =33B.PH ⋅PO的最小值为2C.椭圆C 的离心率等于PI IMD.R ⋅r 的取值范围为12,23【答案】ABD【分析】对于A ,根据当P 在短轴的端点时,S △PF 1F 2取得最大,且最大值为3,再根据S △MF 1F 2=S △IF 1F 2+S △IF 1P+S △IF 2P =3r ,代入进而即可求解;对于B ,根据PO =12PF 1 +PF 2,然后结合平面向量数量积的几何意义与基本不等式即可求解;对于C ,运用角平分线定理即可求解;对于D ,由正弦定理可得R =1sin θ,再又结合A 可得r =tan θ2,从而得到R ⋅r =tan θ2sin θ=12cos 2θ2,再根据题意得到θ∈0°,60° ,进而即可求解.【详解】对于A ,设P x ,y ,-2<x <2,则-3<y <3,且y ≠0,所以S △PF 1F 2=12F 1F 2 ⋅y =c ⋅y =y ,则当P 在短轴的端点时,S △PF 1F 2取得最大,且最大值为3,又S △MF 1F 2=S △IF 1F 2+S △IF 1P +S △IF 2P =12F 1F 2+PF 1+PF 2 r =122a +2c r =3r ,所以当S △PF 1F 2最大时,3r =3,即r =33,故A 正确;对于B ,过点H 作HG ⊥PF 1,垂足为点G ,又点H 为△PF 1F 2外接圆的圆心,即为△PF 1F 2三条边的中垂线的交点,则点G 为PF 1的中点,由PH ⋅PO =12PH ⋅PF 1 +PF 2 =12PH⋅PF 1 +PH ⋅PF 2 ,又PH ⋅PF 1 =PG +GH ⋅PF 1 =PG ⋅PF 1 =12PF 1 2,同理PH ⋅PF 2 =12PF 2 2,所以PH ⋅PO =14PF 1 2+PF 2 2 =14PF 1 2+PF 2 2≥12PF 1 +PF 222=a 22=2,当且仅当PF 1 =PF 2 =a 时等号成立,即PH ⋅PO的最小值为2,故B 正确;对于C ,由△PF 1F 2内切圆的圆心为I ,则IF 1,IF 2分别是∠PF 1F 2,∠PF 2F 1的角平分线,则由角平分线定理可得PI IM =PF 1 F 1M =PF 2 F 2M ,即PI IM =PF 1+ PF 2 F 1M + F 2M =2a 2c =a c =1e ,故C 错误;对于D ,设∠F 1PF 2=θ,PF 1=a 1,PF 2=a 2,由正弦定理可得2R =F 1F 2 sin θ=2c sin θ,即R =csin θ=1sin θ,则cos θ=a 21+a 22-2c 22a 1⋅a 2=a 1+a 2 2-2a 1⋅a 2-4c 22a 1⋅a 2=4b 2-2a 1⋅a 22a 1⋅a 2,即a 1⋅a 2=2b 2cos θ+1=6cos θ+1,因为S △PF 1F 2=12a 1a 2sin θ=3sin θcos θ+1=3sin θ2cos θ2cos 2θ2=3tanθ2,又结合A 有S △MF 1F 2=3r ,所以3tanθ2=3r ,即r =tan θ2,所以R ⋅r =tan θ2sin θ=12cos 2θ2,又因为当P 在短轴的端点时,θ最大,此时PF 1=PF 2=F 1F 2=2,θ=60°,所以θ∈0°,60° ,即θ2∈0°,30° ,所以cos θ2∈32,1,故R ⋅r =12cos 2θ2∈12,23 ,故D 正确.故选:ABD .【点睛】本题考查了椭圆的定义以及几何性质,明确外心的位置和内角平分线性质,灵活运用正弦定理和等面积法是解答本题关键,考查了推理能力、运算求解能力,属于难题.三、填空题12(22-23高三上·福建泉州·期中)抛物线C 1:y 2=4x 的焦点F ,点P 3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为.【答案】22【分析】焦点F 1,0 ,根据椭圆定义得到c =2,设椭圆和抛物线的交点为Q ,根据抛物线性质得到a =QF +QP2≥2,得到离心率的最大值.【详解】抛物线C 1:y 2=4x 的焦点F 1,0 ,根据题意2c =3-1 2+2-0 2=22,c = 2.设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =QF +QP2=d +QP 2≥3--1 2=2,当PQ 与准线垂直时等号成立,此时e =ca =22.故答案为:2213(2023·广东·一模)已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,倾斜角为π3的直线PF 2与双曲线C 在第一象限交于点P ,若∠PF 1F 2≥∠F 2PF 1,则双曲线C 的离心率的取值范围为.【答案】1+32,2【分析】利用双曲线的性质及余弦定理计算即可.【详解】因为倾斜角为π3的直线PF 2与双曲线C 在第一象限交于点P ,可知直线PF 2的倾斜角大于双曲线的一条渐近线的倾斜角,即batan60°=3⇒3a 2 b 2=c 2-a 2⇒e <2,设PF 2 =n ,则PF 1 =2a +n ,根据∠PF 1F 2≥∠F 2PF 1可知PF 2 ≥F 1F 2 =2c ,在△PF 1F 2中,由余弦定理可知n 2+4c 2-2a +n 2=2cos120°×2cn ⇒n =2b 22a -c,即2b 22a -c≥2c ⇒b 2≥2ac -c 2⇒2c 2-2ac -a 2≥0,则2e 2-2e -1≥0⇒e ≥1+32,故2>e ≥1+32故答案为:1+32,2 14(23-24高三上·湖南娄底·期末)已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0),直线l 1和l 2相互平行,直线l 1与双曲线C 交于A ,B 两点,直线l 2与双曲线C 交于D ,E 两点,直线AE 和BD 交于点P (异于坐标原点).若直线l 1的斜率为3,直线OP (O 是坐标原点)的斜率k ≥1,则双曲线C 的离心率的取值范围为.【答案】2,10 ∪10,+∞ 【分析】首先ba≠3,故e =1+b a 2≠10,其次由题意由点差法得y M =b 23a 2x M ①,同理y N =b 23a2x N ②,由P,M,N三点共线,所以y M-y0x M-x0=y N-y0x N-x0,代入得b23a2=y0x0=k≥1,结合离心率公式即可得解.【详解】由题意,ba≠3,故e=1+b a 2≠10,设A x1,y1,B x2,y2,D x3,y3,E x4,y4,P x0,y0,AB的中点M x M,y M,DE的中点N x N,y N,则x21a2-y21b2=1x22a2-y22b2=1,两式相减,得x21-x22a2-y21-y22b2=0,化简得y1+y22x1+x22⋅y1-y2x1-x2=b2a2,所以b2a2⋅x My M=y1-y2x1-x2=3,所以y M=b23a2x M①,同理y N=b23a2x N②,因为AB∥DE,所以P,M,N三点共线,所以y M-y0x M-x0=y N-y0x N-x0,将①②代入得b23a2x M-y0x M-x0=b23a2x N-y0x N-x0,即x M-x Nb23a2x0-y0=0,因为x M≠x N,所以b23a2=y0x0=k≥1,所以b2a2≥3,所以双曲线C的离心率为e=ca=1+b2a2≥2.所以双曲线C的离心率的取值范围为2,10∪10,+∞.故答案为:2,10∪10,+∞.【点睛】关键点睛:关键是用点差法来得到y M=b23a2x M①,同理y N=b23a2x N②,结合P,M,N三点共线以及离心率公式即可顺利得解.四、解答题15(21-22高三上·新疆昌吉·阶段练习)已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上(点P不在x轴上),且PF1=5PF2.(1)用a表示PF1,PF2;(2)若∠F1PF2是钝角,求双曲线离心率e的取值范围.【答案】(1)PF1=52a,PF2=12a(2)264<e <32【分析】(1)直接利用双曲线的定义结合条件求得PF 1 ,PF 2 ;(2)由余弦定理得到cos ∠F 1PF 2=135-85e 2,利用∠F 1PF 2是钝角,则-1<cos ∠F 1PF 2<0,解得离心率e 的取值范围.【详解】(1)因为点P 在双曲线的右支上,所以PF 1 -PF 2 =2a ,又PF 1 =5PF 2 ,联立解得PF 1 =52a ,PF 2 =12a .(2)在△PF 1F 2中,由余弦定理得cos ∠F 1PF 2=254a 2+a 24-4c 22×52a ×12a =132a 2-4c 252a 2=135-85e 2,因为-1<cos ∠F 1PF 2<0,所以-1<135-85e 2<0,所以264<e <32.16(2023·上海奉贤·三模)已知双曲线T :x 2a2-y 2b 2=1(a >0,b >0)离心率为e ,圆O :x 2+y 2=R 2R >0 .(1)若e =2,双曲线T 的右焦点为F 2,0 ,求双曲线方程;(2)若圆O 过双曲线T 的右焦点F ,圆O 与双曲线T 的四个交点恰好四等分圆周,求b 2a2的值;(3)若R =1,不垂直于x 轴的直线l :y =kx +m 与圆O 相切,且l 与双曲线T 交于点A ,B 时总有∠AOB =π2,求离心率e 的取值范围.【答案】(1)x 2-y 23=1(2)2+1(3)2,+∞【分析】(1)根据离心率和右焦点即可求出答案.(2)根据对称性分析,∠AOF =45°,则A 22c ,22c,代入曲线方程即可求得结果.(3)根据已知,利用圆心到直线l 距离为m k 2+1=1,得出m 2=k 2+1,再由∠AOB =π2,可得k 2x 1x 2+km x 1+x 2 +m 2x 1x 2=-1,然后联立y =kx +m x 2a2-y 2b 2=1,得出x 1+x 2=2a 2kmb 2-a 2k 2,x 1x 2=-a 2m 2+b 2 b 2-a 2k 2,上式联立化简可得k 2+1 a 2+a 2b 2-b 2 =0,进而利用a ,b ,c 关系,得出ca的范围.【详解】(1)因e =2,双曲线T 的右焦点为F 2,0,则c =2,ca=2,a =1,b 2=c 2-a 2=3,则双曲线方程为x 2-y 23=1.(2)如图所示,因为圆O 与双曲线T 的四个交点恰好四等分圆周,则OA =c ,∠AOF =45°,则A 22c ,22c,代入双曲线方程x 2a 2-y 2b2=1,可得b 2a 2-a 2b 2=2,令x =b 2a2x >0 ,则x -1x =2,解得x =1+2,即b 2a2=2+1.(3)由题知,作图如下,因为直线l :y =kx +m 与圆O 相切,且R =1,则圆心到直线l 距离为mk 2+1=1,化简得m 2=k 2+1,①又∠AOB =π2,设A x 1,y 1 ,B x 2,y 2 ,则k OA ⋅k OB =-1,即y 1x 1⋅y 2x 2=-1,则k 2x 1x 2+km x 1+x 2 +m 2x 1x 2=-1,②联立y =kx +mx 2a2-y 2b2=1得b 2-a 2k 2 x 2-2a 2kmx -a 2m 2-a 2b 2=0,则x 1+x 2=2a 2kmb 2-a 2k2,x 1x 2=-a 2m 2+b 2 b 2-a 2k 2,③联立①②③,得k 2+1 a 2+a 2b 2-b 2 =0,则a 2+a 2b 2-b 2=0,又c 2=a 2+b 2,则c 2a2=c 2-a 2+2=b 2+2>2,则e =ca>2,即离心率e 的取值范围为2,+∞ .【点睛】关键点睛:本题考查双曲线的性质,直线与双曲线和圆的位置关系,训练“点差法”的应用,计算量较大,属于中档题.17(23-24高三上·辽宁朝阳·阶段练习)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,a 2+b 2=1,O 为坐标原点,过F 的直线l 与C 的右支相交于A ,B 两点.(1)若b <22,求C 的离心率e 的取值范围;(2)若∠AOB 恒为锐角,求C 的实轴长的取值范围.【答案】(1)1,2 (2)5-1,2【分析】(1)根据已知条件代入离心率公式计算取值范围即可;(2)设直线l 的方程x =my +1,与双曲线方程联立,以双曲线C 的实半轴长a 和m 表示A ,B 两点坐标,根据∠AOB 恒为锐角,转化为OA ⋅OB>0,代入坐标计算,由关于m 的不等式恒成立,求得a 的取值范围.【详解】(1)因为b <22,所以b 2<12,因为a 2+b 2=1,所以c =1,a 2=1-b 2>12,所以a >22,则C 的离心率e =ca=1a <122=2,又e >1,所以C 的离心率的取值范围是1,2 .(2)因为F 1,0 ,直线l 的斜率不为零,所以可设其方程为x =my +1.结合b 2=1-a 2(0<a <1),联立x =my +1,x 2a2-y 21-a2=1, 得a 2m 2+1 -m 2 y 2+2m a 2-1 y -a 2-1 2=0,设A x 1,y 1 ,B x 2,y 2 由韦达定理,得y 1+y 2=-2m a 2-1a 2m 2+1 -m 2,y 1y 2=-a 2-1 2a 2m 2+1 -m 2,由于A ,B 两点均在C 的右支上,故y 1y 2<0⇒a 2m 2+1 -m 2>0,即m 2<a 21-a2.则OA ⋅OB=x 1x 2+y 1y 2=my 1+1 my 2+1 +y 1y 2=m 2+1 y 1y 2+m y 1+y 2 +1=m 2+1 ⋅-a 2-1 2a 2m 2+1 -m2+m ⋅-2m a 2-1 a 2m 2+1 -m2+1=m 2a 21-a 2 -a 4+3a 2-1a 2m 2+1 -m 2.由∠AOB 恒为锐角,得对∀m 2<a 21-a 2,均有OA ⋅OB >0,即m 2a 21-a 2 -a 4+3a 2-1>0恒成立.由于a 21-a 2 >0,因此不等号左边是关于m 2的增函数,所以只需m 2=0时,-a 4+3a 2-1>0成立即可,解得5-12<a <5+12,结合0<a <1,可知a 的取值范围是5-12,1 .综上所述,C 的实轴长的取值范围是5-1,2 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.18(2023·上海徐汇·一模)已知双曲线E :x 2a2-y 2b 2=1a >0,b >0 的离心率为e .(1)若e =2,且双曲线E 经过点(2,1),求双曲线E 的方程;(2)若a =2,双曲线E 的左、右焦点分别为F 1、F 2,焦点到双曲线E 的渐近线的距离为3,点M 在第一象限且在双曲线E 上,若MF 1 =8,求cos ∠F 1MF 2的值;(3)设圆O :x 2+y 2=4,k ,m ∈R .若动直线l :y =kx +m 与圆O 相切,且l 与双曲线E 交于A ,B 时,总有∠AOB =π2,求双曲线E 离心率e 的取值范围.【答案】(1)x 2-y 2=1;(2)1316;。
专题5.1 求解曲线的离心率的值或范围问题一.方法综述离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①根据题意求出,,a b c 的值,再由离心率的定义椭圆2222222e ===1()c a b b a a a--、 双曲线2222222e ===1()c a b b a a a++直接求解; ②由题意列出含有,,a b c 的方程(或不等式),借助于椭圆222b a c =-、双曲线222b c a =-消去b , 构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解; ④根据圆锥曲线的统一定义求解.解题时要注意椭圆本身所含的一些范围的应用,如椭圆上的点的横坐标0a x a -≤≤等. 二.解题策略类型一 直接求出c a ,或求出a 与b 的比值,以求解e【例1】椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为1F ,2F ,过点1F 的直线l 交椭圆C 于A ,B 两点,已知()21210AF F F AF +⋅=,1143AF F B =,则椭圆C 的离心率为( )A .57B .2 C D .13【来源】河北省秦皇岛市2021届高三二模数学试题 【答案】A【解析】设122F F c =,因为()()()2221212122122120AF F F AF AF F F AF F F AF F F +⋅=+⋅-=-=, 所以2122AF F F c ==,所以122AF a c =-,因为1143AF F B =,所以13()2BF a c =-,所以2322a cBF =+, 设1AF 中点为H ,则2F H AB ⊥,AH a c =-,5()2BH a c =-,222222||||F A AH F B BH -=-代入数据并整理得:2271250c ac a -+=,等式两边同除以2a 得:271250e e -+=,解得:57e =或1e =(舍). 故选:A.【方法点睛】求椭圆离心率或其范围的方法:(1)根据题意求出,,a b c 的值,再由离心率的定义22222221()c a b b e a a a-===-直接求解. (2)由题意列出含有,,a b c 的方程(或不等式),借助于222b a c =-消去b ,然后转化成关于e 的方程(或不等式)求解.解题时要注意椭圆本身所含的一些范围的应用,如椭圆上的点的横坐标0a x a -≤≤等. 【举一反三】1.(2020兰州模拟)平面直角坐标系xOy 中,双曲线:的两条渐近线与抛物线C :交于O ,A ,B 三点,若的垂心为的焦点,则的离心率为 A .B .C .2D .【答案】B【解析】联立渐近线与抛物线方程得,,抛物线焦点为,由三角形垂心的性质,得,即,所以,所以,所以,所以的离心率为.故选:B .2.已知双曲线()22221,0x y a b a b-=>的左、右焦点分别为1F ,2F ,过点1F 且倾斜角为6π的直线l 与双曲线的左、右支分别交于点A ,B ,且22AF BF =,则该双曲线的离心率为( ) A 2B 3C .22D .23【来源】江西省九江市2021届高三高考数学(理)二模试题 【答案】A【解析】过2F 作2F N AB ⊥于点N ,设22AF BF m ==, 因为直线l 的倾斜角为6π,所以在直角三角形12F F N 中,2NF c =,13NF c , 由双曲线的定义可得122BF BF a -=,所以12BF a m =+,同理可得12AF m a =-,所以114AB BFAF a =-=,即2AN a =,所以132AF c a =-,因此3m c =,在直角三角形2ANF 中,22222AF NF AN =+,所以()22234ca c =+,所以2c a =,则2ce a==. 故选:A.类型二 构造a c ,的齐次式,解出e【例2】在平面直角坐标系xOy 中,点1F ,2F 分别是双曲线C :22221x y a b-=(0a >,0b >)的左,右焦点,过点1F 且与直线l :by x a=-垂直的直线交C 的右支于点M ,设直线l 上一点N (N 在第二象限)满足12F N F N ⊥,且()120F N F M MN +⋅=,则双曲线C 的离心率的值为( ) A 5B 3C 21D .2【来源】江苏省南通市如皋市2021届高三下学期4月第二次适应性考试数学试题 【答案】A【解析】由题意可知,设直线1F M 的方程为()a y x c b =+,则设()00,a M x x c b ⎛⎫+ ⎪⎝⎭,,b N t t a ⎛⎫- ⎪⎝⎭, 因为()1,0F c -,()2,0F c ,且12F N F N ⊥,所以12,,0b b F N F N t c t t c t a a ⎛⎫⎛⎫⋅=+---= ⎪⎪⎝⎭⎝⎭, 即22t c -20b t a ⎛⎫+-= ⎪⎝⎭,解得t a =-,所以(),N a b -,所以()1,F N c a b =-,()200,a F M x c x c b ⎛⎫=-+ ⎪⎝⎭,()00,a MN a x b x c b ⎛⎫=---+ ⎪⎝⎭,则()()()120000,,0a a F N F M MN x a x c b a x b x c b b ⎛⎫⎛⎫+⋅=-++⋅---+= ⎪ ⎪⎝⎭⎝⎭,即()222200a a x b x c b ⎡⎤-+-+=⎢⎥⎣⎦,解得220b a x c -=,所以222,b a ab M c c ⎛⎫- ⎪⎝⎭,因为点M 在双曲线上,所以代入双曲线方程可得,()222222241baaa c c--=,即22241e e e ⎛⎫--= ⎪⎝⎭,解得25e =,e = A【举一反三】1.(2020·重庆八中高三)已知双曲线22221(0,0)x y a b a b-=>>,点A 、F 分别为其右顶点和右焦点12(0,),(0,)B b B b -,若,则该双曲线的离心率为A.1 BCD1【答案】C【解析】依题意()(),0,,0A a F c ,故1221,B F B A b bk k b ac c a-⋅=⋅=-=,22c a ac -=,两边除以2a 得210e e --=,解得e =2.(2020·广东南海中学高考模拟)是P 为双曲线上)0,(1:2222>=-b a by a x C 的点,F 1,F 2分别为C 的左、右焦点,且PF 2⊥F 1F 2,PF 1与y 轴交于Q 点,O 为坐标原点,若四边形OF 2PQ 有内切圆,则C 的离心率为_____. 【答案】2【解析】设2OF c =,可得⎪⎪⎭⎫ ⎝⎛a b c P 2,,则四边形2OF PQ 的内切圆的圆心为,22c c ⎛⎫⎪⎝⎭, 半径为1,2cPF 的方程为2220b x acy b c -+=,圆心到直线1PF 的距离等于2c ,2c =,化简得222320c ac a --=,22320,2e e e --=∴=,答案为2.3.(2020·黑龙江大庆中学高三(理))过双曲线22221(0,0)x y a b a b-=>>的右焦点且垂直于x 轴的直线与双曲线交于,A B 两点,D 为虚轴的一个端点,且ABD ∆为钝角三角形,则此双曲线离心率的取值范围为______.【答案】()()1,222,⋃++∞【解析】设双曲线22221(0,0)x y a b a b-=>>的左焦点F 1(﹣c ,0),令x=﹣c ,可得y=±221ca-=±2b a ,可得A (﹣c ,2b a ),B (﹣c ,﹣2b a ), 设D (0,b ),可得AD =(c ,b ﹣2b a ),AB =(0,﹣22b a),DB =(﹣c ,﹣b ﹣2b a ),由△ABD 为钝角三角形,可能∠DAB 为钝角,可得AD AB ⋅<0,即为0﹣22b a•(b ﹣2b a )<0,化为a>b ,即有a 2>b 2=c 2﹣a 2,可得c 2<2a 2,即e=ca<2,又e >1,可得1<e <2,可得△ADB 中,∠ADB 为钝角,可得AD AB ⋅<0,即为c 2﹣(2b a +b )(2b a﹣b )<0,化为c 4﹣4a 2c 2+2a 4>0,由e=ca,可得e 4﹣4e 2+2>0,又e >1,可得e >22+. 综上可得,e 的范围为(1,2)∪(22+.+∞). 类型三 寻找特殊图形中的不等关系或解三角形【例3】如图,已知双曲线()222210x y b a a b-=>>的左、右焦点分别为1F ,2F ,过右焦点作平行于一条渐近线的直线交双曲线于点A ,若12AF F △的内切圆半径为4b,则双曲线的离心率为( )A .53 B .54 C .43D .32【来源】湖南师范大学附属中学2021届高三下学期月考(七)数学试题 【答案】A【解析】设双曲线的左、右焦点分别为1(,0)F c -,2(,0)F c , 设双曲线的一条渐近线方程为by x a=,可得直线2AF 的方程为()b y x c a =-,与双曲线22221(0)x y b a a b -=>>联立,可得22(2c a A c +,22())2b a c ac-, 设1||AF m =,2||AF n =,由三角形的等面积法可得2211()(2)22422b b c a m n c c ac -⨯++=⨯⋅,化简可得2442c m n a c a+=--,①由双曲线的定义可得2m n a -=,②在三角形12AF F 中22()sin 2b c a n acθ-=,(θ为直线2AF 的倾斜角),由tan ba θ=,22sin cos 1θθ+=,可得sinbc θ==,可得222c a n a-=,③ 由①②③化简可得223250c ac a --=,即为(35)()0c a c a -+=,可得35c a =,则53c e a ==. 故选:C . 【举一反三】1.(2020·辽宁实验中学高三期末(理))设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过2F 的直线与双曲线的右支交于两点,A B ,若1:3:4AF AB =,且2F 是AB 的一个四等分点,则双曲线C 的离心率是( )A B C .52D .5【答案】B【解析】若1:3:4AF AB =,则可设13,4AF m AB m ==,因为2F 是AB 的一个四等分点;若214BF AB =,则22,3BF m AF m ==,但此时12330AF AF m m -=-=,再由双曲线的定义,得122AF AF a -=,得到0a =,这与0a >矛盾;若214AF AB =,则22,3AF m BF m ==,由双曲线的定义,得12112122532{{AF AF m a BF a m a BF BF BF m a -====-=-=⇒,则此时满足22211AF AB BF +=,所以1ABF ∆ 是直角三角形,且190BAF ∠=︒ , 所以由勾股定理,得2222221212(3)(2)AF AF F F a a c +=⇒+=,得e =,故选B. 2.已知圆()()222:0M x m y m m ++=>在椭圆()2222:10x y C a b a b+=>>的内部,点A 为C 上一动点.过A 作圆M 的一条切线,交C 于另一点B ,切点为D ,当D 为AB 的中点时,直线MD的斜率为-,则C 的离心率为( ) A .12B.2CD【来源】2021年全国高中名校名师原创预测卷 理科数学 全国卷Ⅰ(第七模拟) 【答案】C【解析】设()11,A x y ,()22,B x y ,()00,D x y ,则0122x x x =+,0122y y y =+.将A ,B 的坐标分别代入C 的方程,得22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减,得()()222212122211x x y y a b-=--, 所以()()()()2121221212y y y y b x x x x a -+=--+,即()()21202120y y y b x x x a -=--.当D 为AB的中点时,MD k =-,则1AB MDk k =-=,故1212y y x x -=-. 如图,设E 为C 的左顶点,连接OD ,则2DME DOM ∠=∠,所以tan tan 2DME DOM ∠=∠22tan 1tan DOMDOM∠==-∠,整理得2tan 0DOM DOM ∠+∠=,解得tan DOM ∠=或tan DOM ∠=,则00tan 2ODy k DOM x =-∠=-=,所以2242b a ⎛⨯-=- ⎝⎭,所以2214b a =,故C 的离心率13142e =-=. 故选:C.3.(2020·湖北高三期末)已知双曲线C :2222x y 1(a b 0)a b-=>>右支上非顶点的一点A 关于原点O 的对称点为B ,F 为其右焦点,若AF FB ⊥,设ABF θ∠=,且ππθ,124⎛⎫∈ ⎪⎝⎭,则双曲线C 离心率的取值范围是______. 【答案】()2,∞+【解析】设双曲线的左焦点为,连接,,AF FB ⊥,可得四边形为矩形,设AF m =,BF n =,即有,且222m n 4c +=,n m 2a -=,m tan θn=, 22222222222c 4c m n 11e 2mn 2a 4a m 2mn n 11m n m n n m+=====-+--++1211tan θtan θ=-+, 由ππθ,124⎛⎫∈⎪⎝⎭,可得()t tan θ23,1=∈, 则()1t 2,4t+∈,可得21,112t t ⎛⎫∈ ⎪⎝⎭+,即有2110,12t t⎛⎫-∈ ⎪⎝⎭+,则()12,211tan θtan θ∞∈+-+,即有)e 2,∞∈+.故答案为:)2,∞+.类型四 利用平面几何性质或圆锥曲线性质【例4】(2020·四川高三期末(理))已知双曲线C :22221x y a b-=(0a >,0b >)的左、右顶点分别为A ,B ,左焦点为F ,P 为C 上一点,且PF x ⊥轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点N ,直线MB 与y 轴交于点H ,若2ON OH =(O 为坐标原点),则C 的离心率为( ) A .3 B .2C .32D .43【答案】A【解析】∵NAO MAF ∽, ∴ON OA aMF AF c a==-,又∵BOH BFM ∽, ∴OH BO aFMBFa c==+,而2ON OH =, ∴2a ac a c a=-+, ∴3c a =, ∴离心率3ce a==,故选:A .【例5】已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A .若15F A b =,则该双曲线离心率的取值范围为( )A .()1,2B .32,2⎛⎫ ⎪⎝⎭C .()2,3D .3,32⎛⎫⎪⎝⎭【答案】B【解析】如图所示:1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,延长2F A 交1PF 于点Q ,PA 是12F PF ∠的角平分线,2PQ PF ∴=,又点P 在双曲线上,122PF PF a ∴-=,112PF PQ QF a -==,又O 是的12F F 中点,A 是2F Q 的中点,OA ∴是12F F Q △的中位线,122QF a OA ∴==,即OA a =,在1F OA △中,OA a =,15F A b =,1OF c =, 由三角形两边之和大于第三边得:5a c b +>, 两边平方得:()225a c b +>, 即()222225a c ac c a++>-,两边同除以2a 并化简得:2230e e --<,解得:312e -<<, 又1e >,312e ∴<<, 在1F OA △中,由余弦定理可知,22222111112cos 2AF FO AO AF AF FO O +-∠==⋅ 在12F AF中,22211221112cos 2AF F F AF AF AF F F O +-==∠⋅,222=又222b c a =-,解得:222273AF a c =-,又22OAF π∠>,2222OA AF OC ∴+<,即222273a a c c +-<,∴e >综上所述:32e ⎫∈⎪⎭. 故选:B. 【方法点睛】求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 【举一反三】1.(2020·四川高三期末)双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为12,F F P 、是E 左支上一点,且112PF F F =,直线2PF 与圆222x y a +=相切,则E 的离心率为__________.【答案】53【解析】设直线1PF 与圆222x y a +=相切于点M ,则1,OM a OM PF =⊥ ,取1PF 的中点N ,连接2NF ,由于112PF FF 2c ==,则211,NF PF NP NF ⊥= , 由2||22NF OM a ==,则2NP b =,即有1||4PF b =,由双曲线的定义可得12||||2PF PF a -=,即422b c a -=,即2b c a =+,224()b c a =+,即2224()()c a c a -=+,4()c a c a -=+,即35c a =,则53e =.2.(2020·山东高考模拟)过双曲线2222x y a b-=1(a >b >0)右焦点F 的直线交两渐近线于A ,B 两点,∠OAB =90°,O 为坐标原点,且△OAB 内切圆半径为3a,则双曲线的离心率为 . 【答案】52【解析】因为0a b >>,所以双曲线的渐近线如图所示,设内切圆圆心为M ,则M 在AOB ∠平分线Ox 上,过点M 分别作MN OA ⊥于N ,MT AB ⊥于T ,由FA OA ⊥得四边形MTAN 为正方形,由焦点到渐近线的距离为b 得FA b =,又OF c =,所以OA a =,13NA MN a ==,所以23NO a =,所以1tan 2MN b AOF a NO =∠==,得52e =.. 3.(2020·湖北高三期末(理))已知F 1,F 2是双曲线2222C :1(00)x y a b a b -=>>,的左右焦点,若直线3y x =与双曲线C 交于P,Q 两点,且四边形F 1PF 2Q 是矩形,则双曲线的离心率为【答案】31+ 【解析】由题意,矩形的对角线长相等,把3y x =代入22221(00)x y a b a b-=>>,,可得22222222333a b a b x y b a b a=±=±⋅--, ,∴222224 3a b c b a=-, ∴4a 2b 2=(b 2-3a 2)c 2, ∴4a 2(c 2-a 2)=(c 2-4a 2)c 2, ∴e 4-8e 2+4=0,∵e >1,∴242331e e =+∴=+,. 故选:B . 4.(2020永州模拟)已知为坐标原点,是椭圆的左焦点,分别为椭圆的左、右顶点和上顶点,为上一点,且轴,过点的直线与直线交于,若直线与线段交于点,且,则椭圆的离心率为_____.【答案】【解析】由题意,作出图像如下:因为是椭圆的左焦点,所以,又轴,所以,因为分别为椭圆的左、右顶点和上顶点,直线与线段交于点,且,所以,,由题意易得,,所以,,因此,整理得,所以离心率为.【指点迷津】1.对于求离心率的题,重要的是根据几何关系,或代数关系建立关于或的等式,再进一步求出离心率.2.常构建等式的方法有:(1)利用圆锥曲线定义(2)利用几何关系(3)利用点在曲线上.3. 本题由题意作出图形,先由是椭圆的左焦点,得到的坐标,求出的长度,根据,表示出的长度,再由,表示出的长度,列出等式,求解即可得出结果.三.强化训练1.(2020吉林长春市实验中学高三)如图,F1,F2分别是双曲线22221x ya b-=(a>0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支交于A,B两点,若△F2AB是等边三角形,则双曲线的离心率为()A .3B .2C .31-D .31+【答案】D【解析】连接1AF ,依题意知:213AF AF =,12122c F F AF ==,所以2112(31)a AF AF AF =-=- 11231(31)AF ce a AF ===+-. 2.(2020安徽铜陵模拟)已知,分别为椭圆的左、右焦点,点是椭圆上位于第二象限内的点,延长交椭圆于点,若,且,则椭圆的离心率为( ) A .B .C .D .【答案】A【解析】PF 2⊥PQ 且|PF 2|=|PQ |,可得△PQF 2为等腰直角三角形, 设|PF 2|=t ,则|QF 2|= ,由椭圆的定义可得|PF 1|=2a ﹣t ,则t =2(2﹣)a ,在直角三角形PF 1F 2中,可得t 2+(2a ﹣t )2=4c 2, 4(6﹣4)a 2+(12﹣8)a 2=4c 2,化为c 2=(9﹣6)a 2, 可得e ==.故选A.3.(2020银川一模)椭圆的左右焦点为,,若在椭圆上存在一点,使得的内心I 与重心满足,则椭圆的离心率为( )A .B .C .D .【答案】D 【解析】设,又,,则的重心.因为∥所以内心I 的纵坐标为.即内切圆半径为.由三角形面积,,及椭圆定义得,解得,故选D.4.(2020·甘肃兰州一中高三)已知椭圆221112211:1(0)x y C a b a b +=>>与双曲线222222222:1(0,0)x y C a b a b -=>>有相同的焦点12,F F ,若点P 是1C 与2C 在第一象限内的交点,且1222F F PF =,设1C 与2C 的离心率分别为12,e e ,则21e e -的取值范围是( )A .13⎡⎫+∞⎪⎢⎣⎭,B .13⎛⎫+∞ ⎪⎝⎭,C .12⎡⎫+∞⎪⎢⎣⎭,D .12⎛⎫+∞ ⎪⎝⎭,【答案】D【解析】如图所示:设椭圆与双曲线的焦距为122F F c =,1PF t =,由题意可得122,2t c a t c a +=-=122,2t a c t a c ∴=-=+ ,1222a c a c ∴-=+ ,即12a a c -= 12111e e ∴-=,即2121e e e =+2222122222211111e e e e e e e e e ∴-=-==++⎛⎫+ ⎪⎝⎭,由21e >可知2101e <<,令21(0,1)x e =∈,2(0,2)y x x ∴=+∈,所以2112e e ->,故选D.5.(2020泰安高三一模)已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M ,若.则该双曲线的离心率为A . 2B .3C .D .【答案】 D 【解析】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,,即,,因为圆的半径为,是圆的半径,所以,因为,,,,所以,三角形是直角三角形,因为,所以,,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,,将点坐标带入双曲线中可得,化简得,,,,故选 D.6.(2020兰州一模)已知椭圆的右焦点为,左顶点为,上顶点为,若点在直线上,且轴,为坐标原点,且,若离心率,则的取值范围为 A .B .C .D .【答案】A【解析】由题意得,直线的方程为,所以,直线的方程为,所以,故.由可得,整理得 ,显然函数在上单调递增,所以,即.故选A .7.(2020·河北高三月考)双曲线22221x y a b-=(0a >,0b >)的左右焦点为1F ,2F ,渐近线分别为1l ,2l ,过点1F 且与1l 垂直的直线分别交1l 及2l 于P ,Q 两点,若满足11122OP OF OQ =+,则双曲线的离心率为( ) A 2 B 3C .2D 5【答案】C【解析】∵22221x y a b-=(a >0,b >0)的左右焦点为F 1,F 2,∴F 1(﹣c ,0),F 2(c ,0), 双曲线的两条渐近线方程为y b a =-x ,y ba=x , ∵过F 1的直线分别交双曲线的两条渐近线于点P ,Q . ∵11122OP OF OQ =+, ∴点P 是线段F 1Q 的中点,且PF 1⊥OP ,∴过F 1的直线PQ 的斜率k PQ ab =, ∴过F 1的直线PQ 的方程为:y ab=(x +c ),解方程组()b y x a a y x c b ⎧=-⎪⎪⎨⎪=+⎪⎩,得P (2a c -,abc ),∴|PF 1|=|PQ |=b ,|PO |=a ,|OF 1|=|OF 2|=|OQ |=c ,|QF 2|=2a , ∵tan ∠QOF 2b a =,∴cos ∠QOF 2ac=,由余弦定理,得cos ∠QOF 2222242c c a c +-==1222a ac c-=, 即e 2﹣e ﹣2=0,解得e =2,或e =﹣1(舍) 故选C .9.(2020·湖南长郡中学高考模拟(理))如图所示,直线l 为双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线,1F ,2F 是双曲线C 的左、右焦点,1F 关于直线l 的对称点为1F ',且1F '是以2F 为圆心,以半焦距c 为半径的圆上的一点,则双曲线C 的离心率为( )A 2B 3C .2D .3【答案】C【解析】设焦点()1,0F c -关于渐近线:bl y x a=的对称点为()1',F m n ,则22222n b m c b a m a c n a ab n m c b c -⎧-⎧=⋅=⎪⎪⎪⎪⇒⎨⎨⎪⎪=-=-⎪⎪+⎩⎩,又点()1',F m n 在圆()222x c y c -+=上,222222b a ab c c c c ⎛⎫-⎛⎫∴-+-= ⎪ ⎪⎝⎭⎝⎭22244,2a c e e ⇒=⇒=∴=,故选C. 10.(2020·四川棠湖中学高考模拟(理))已知双曲线()2222:10,0x y C a b a b -=>>的左,右焦点分别为12,F F ,抛物线()220=>y px p 与双曲线C 有相同的焦点.设P 为抛物线与双曲线C 的一个交点,且12sin PF F ∠=,则双曲线C 的离心率为( ) AB或3C .2D .2或3【答案】D【解析】不妨设P 在第一象限且()00,P x y ,则1,02p F ⎛⎫- ⎪⎝⎭,2,02p F ⎛⎫⎪⎝⎭, 过P 作直线2px =-(抛物线的准线)的垂线,垂足为E , 则112F PE PF F ∠=∠,故112sin sin F PE PF F ∠=∠=因1F PE ∆为直角三角形,故可设,2p E ⎛⎫- ⎪⎝⎭,()0P x 且25PE PF k ==,17PF k =所以02052242p x k k px ⎧+=⎪⎨⎪=⎩,解得043p k x k =⎧⎨=⎩或062p k x k =⎧⎨=⎩, 若043p k x k =⎧⎨=⎩,则124F F k =, 22752k e k k ==-; 若062p k x k =⎧⎨=⎩,则126F F k =,33752ke k k ==-; 综上,选D.11.已知椭圆C :2222x y a b+=1(a >b >0)的左右顶点分别为A 和B ,P 是椭圆上不同于A ,B 的一点.设直线AP ,BP 的斜率分别为m ,n ,则当2393(ln ||ln ||)32a m nb mn mn ⎛⎫-+++ ⎪⎝⎭取最小值时,椭圆C 的离心率为( ) A.3B .45C.2D .15【来源】安徽省池州市2021届高三下学期4月普通高中教学质量统一监测文科数学试题 【答案】A【解析】A (-a ,0),B (a ,0),设()00,P x y ,则()222202b a x y a -=,而0000,y y m n x a x a==+-,则2202220y b mn x a a==--,又2393(ln ||ln ||)32a m nb mn mn ⎛⎫-+++ ⎪⎝⎭22222339ln 3a bb bb a a a ⎛⎫ ⎪=-++ ⎪ ⎪--⎪⎝⎭322339ln 3a a a b b b b a ⎛⎫⎛⎫⎛⎫=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令1at b =>,则322()339ln 3f t t t t t =-+-, 所以()232(3)232639()t t t t t f t t t-+-+-==', 故min ()(3)f t f =,即3a b =,从而3e ==. 故选:A.12.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别是1F ,2F ,点P 是双曲线C 右支上异于顶点的点,点H 在直线x a =上,且满足1212PF PF PH PF PF λ⎛⎫ ⎪=+ ⎪⎝⎭,R λ∈.若125430HP HF HF →++=,则双曲线C 的离心率为( ) A .3B .4C .5D .6【来源】四川省成都市蓉城名校联盟2021届高三第三次联考理科数学试题 【答案】C【解析】由1212PF PF PH PF PF λ⎛⎫⎪=+ ⎪⎝⎭,R λ∈,则点H 在12F PF ∠的角平分线上, 由点H 在直线x a =上,则H 是12PF F △的内心,由125430HP HF HF →++=,由奔驰定理(已知P 为△ABC 内一点,则有S △PBC ·PA +S △PAC ·PB +S △PAB ·PC =0.)知,1212::5:4:3HF F HF P HF P S S S =△△△,即1212111||:||:||5:4:3222F F r PF r PF r ⋅⋅⋅=则1212::5:4:3F F PF PF =,设125F F λ=,14PF λ=,23PF λ=, 则125252F F c c λλ==⇒=,1222PF PF a a λλ-==⇒=,则5ce a ==.故选:C13.已知P 为双曲线22221x y a b -=(0a >,0b >)左支上一点,1F ,2F 为其左右焦点,若221PF PF 的最小值为11a ,则双曲线的离心率为( ) ABCD .92【来源】河南省名校联盟2020-2021学年高三下学期4月联考(二) 数学(文科)试题 【答案】B 【解析】设2PF m =,1PF n =,则由双曲线的定义得:2m n a -=,∴()22221244PF a n a n a PF nn+==++,[),n c a ∈-+∞.记()244a n a n f n =++,[),n c a ∈-+∞,()2241a f n n '=-,令()22410f n a n ='-=,得2n a =.(1)当2c a a -≤时,[),2n c a a ∈-,()22410a f n n '=-<,()y f n =单调递减;()2,n a ∈+∞,()22410a f n n'=->,()y f n =单调递增,∴()()min 28f n f a a ==,不合题意,舍去;(2)当2c a a ->时,()22410a f n n'=->恒成立,∴()()n2mi 43a c y n f c c a a a=++=--, ∴24311a c a a c a ++=-,∴229120c ac a -+=,解得c a =⎝⎭或c a =⎝⎭.∵92c a ⎛=⎝⎭不满足2c a a ->,应舍去.∴92c a ⎛+= ⎝⎭,离心率92e +=故选:B .14.设点1F ,2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点.点A ,B 分别在双曲线C 的左,右支上,若21225AB F A AF AB AF ==⋅,,且22AF BF <,则双曲线C 的离心率为( )AB C .135D .177【来源】河南省六市2021届高三第二次联考(二模)数学(文科)试题 【答案】B 【解析】15AB F A =,∴1,,F A B 共线,且15AB F A =,2222222222()AF AB AF AF F B AF AF F B AF =⋅=+⋅=+⋅,∴220F B AF ⋅=,则22F B AF ⊥,故有22222AF BF AB +=,设1F A m =,则5AB m =,16BF m =,由双曲线的定义可得222222226225AF m a m BF aAF BF m ⎧-=⎪⎪-=⎨⎪⎪+=⎩∴222(2)(62)25m a m a m ++-=,整理得()(32)0m a m a --=,解得:m a =或23m a =,若23m a =,则283AF a =,22BF a =,不满足22AF BF <,舍去;若m a =,2234AF a BF a =<=,符合题意,则16BF a =,5AB a =,此时22cos 5||445a BF A a BF AB ∠===,在12F BF 中,22212121222cos F F BF BF BF BF ABF =+-⋅∠,即2224361664542c a a a a =+-⨯⨯⨯,得到222175c e a ==,即22175c a =, ∴5c e a ==. 故选:B .15.已知双曲线()2222:10,0x y C a b a b-=>>的右顶点、右焦点分别为A ,F ,过点A 的直线l 与C 的一条渐近线交于点Q ,直线QF 与C 的一个交点为B ,若AQ AB AQ FB ⋅=⋅,且3BQ FQ =,则C 的离心率为( ) A .2B 51C 25+D .25+【来源】全国卷地区(老高考)2021届高三下学期4月冲刺联考理科数学试题 【答案】C【解析】由已知得(),0A a ,设(),0F c ,由AQ AB AQ FB ⋅=⋅,得()0AQ AB BF AQ AF ⋅+=⋅=, 所以l x ⊥轴,即:l x a =, 不妨设点Q 在第一象限,则(),Q a b .设()00,B x y ,由3BQ FQ =,得2BF FQ =,()()00,2,c x y a c b ∴--=-,00322x c a y b =-⎧∴⎨=-⎩,即()32,2B c a b --,点()00,B x y 在双曲线上,()()22223221c a b ab--∴-=,整理得229120c ac a --=,291210e e ∴--=, 解得25e +=,或25e -=(负值舍去).故选C. 故选:C16.已知椭圆()222210x y a b a b +=>>的右焦点和上顶点分别为点()(),0F c b c >和点A ,直线:65280l x y --=交椭圆于,P Q 两点,若F 恰好为APQ 的重心,则椭圆的离心率为( )ABCD【答案】C【解析】由题设()()()()1122,0,0,,,,,F c A b P x y Q x y ,则线段PQ 的中点为()00,B x y , 由三角形重心的性质知2AF FB =,即()00,2,()c b x c y -=-,解得:003,22c b x y ==- 即3,22c b B ⎛⎫- ⎪⎝⎭代入直线:65280l x y --=,得592802b c +-=①. 又B 为线段PQ 的中点,则12123,x x c y y b +=+=-,又,P Q 为椭圆上两点,2222112222221,1x y x y a b a b∴+=+=,以上两式相减得()()()()12121212220x x x x y y y y a b +-+-+=,所以221212221212365PQy y x x b b c k x x a y y a b -+==-⋅=-⨯=-+-,化简得225a bc =② 由①②及222a b c =+,解得:42a b c ⎧=⎪=⎨⎪=⎩,即离心率e =. 故选:C.17.已知双曲线1C :()222210,0x y a b a b -=>>,若存在斜率为1的直线与1C 的左、右两支分别交于点P ,Q ,且线段PQ 的中点在圆2C :()22425x y +-=上,则1C 的离心率的最小值为( ) ABC .2D【答案】B【解析】设1122(,),(,)P x y Q x y ,则2211221x y a b -=①,2222221x y a b-=②①-②得 22221212220x x y ya b---=化简得2121221212y y y y b x x x x a -+⋅=-+, 因为直线斜率为1,所以212212y y b x x a +=+, 设00(,)M x y 为,P Q 中点,则2020y b x a = ③,其中1202x x x +=,1202y y y +=, 因为M 在圆上,则()2200425x y +-=④ ③代入④可得244004416()405a y b b y b -+=+,方程有解可得84416164()540b a b b ∆=-+⋅≥,即444544b a b ≥+,解得2222c a a-≥,即223c a ≥,所以e ≥ B 18.已知双曲线2222:1x y C a b-=,(0,0)a b >>过C 的右焦点F 作垂直于渐近线的直线l 交两渐近线于A 、B 两点A 、B 两点分别在一、四象限,若12AF BF =,则双曲线C 的离心率为( ) AB .2CD【来源】江西省南昌市八一中学、洪都中学、十七中三校2021届高三上学期期末联考数学(理)试题 【答案】A【解析】由题意知:双曲线的右焦点(),0F c ,渐近线方程为b y x a=±, 即0bx ay ±=, 如下图所示:由点到直线距离公式可知:22bc FA b b a==+,又222c a b =+,OA a ∴=,12AF BF=, 即2BF b =, 设AOF α∠=,由双曲线对称性可知2AOB α∠=, 而tan baα=,3tan 2AB b OA a α==, 由正切二倍角公式可知:222222tan 2tan 21ta 1n bb ab a a b a ααα⎛⎫- ⎪⎝⎭⨯===--, 即2232b ab a a b =-, 化简可得:223a b ,即2213b a =, 由双曲线离心率公式可知:22123113c b e a a ==+=+=. 故选:A.19.(2020·江苏高三月考(理))如图,已知椭圆22221(0)x y a b a b+=>>的左顶点为A ,左焦点为F ,上顶点为B ,若,则该椭圆的离心率是 .【答案】【解析】依题意可得,,,OA a OF c OB b ===因为90BAO BFO BAO ABO ∠+∠==∠+∠,所以BFO ABO ∠=∠ 所以Rt AOB Rt BOF ∆~∆ 所以OB OF OAOB=,即b ca b=,故222b ac a c ==- 解得,15c -±=因为0c a <<,所以15c -+=,则15c e a -+==20.(2020·山东高考模拟)已知椭圆:22221(0)x y a b a b+=>>的左右焦点分别为12F F 、,P 为椭圆上的一点2PF 与椭圆交于Q 。
微专题六:圆锥曲线离心率取值范围问题寒假材料一、单选题1.已知双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别为1F 、2F ,圆2222+x y a b =+与双曲线在第一象限和第三象限的交点分别为A ,B ,四边形21AF BF 的周长p 与面积S 满足p = )A B C .2D 【答案】C 【分析】 由双曲线的定义知122AF AF a -=,结合四边形的周长知122p AF AF +=,得到1AF ,2AF 的长度,从而得到矩形21AF BF 的面积,再利用p =2221212AF AF F F +=得到,a c 关系,即可求得离心率.【详解】 由双曲线的定义可知122AF AF a -=, 又OA OB =,12OF OF =,可知四边形21AF BF 是平行四边形,所以122p AF AF += 联立解得14p AF a =+,24p AF a =-, 又线段12F F 为圆的直径,由双曲线的对称性可知四边形21AF BF 为矩形,所以四边形21AF BF 的面积221216p S AF AF a =⋅=-,又p =232p S =,即2223216p p a ⎛⎫=- ⎪⎝⎭,解得2232p a =,由2221212AF AF F F +=,得222248p a c +=,即2232a c =,即e =. 故选:C.【点睛】 关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的等量关系,考查了学生的运算求解能力,逻辑推理能力,属于中档题.2.已知F 是椭圆E :()222210x y a b a b+=>>的左焦点,经过原点O 的直线l 与椭圆E 交于P ,Q 两点,若3PF QF =,且120PFQ ∠=︒,则椭圆E 的离心率为( )A .4B .12CD .2【答案】A【分析】根据题意设椭圆的右焦点,根据正弦定理即可求得a 和c 的关系,即可求得椭圆的离心率.【详解】解:设椭圆的右焦点F ',连接PF ',QF ',根据椭圆对称性可知四边形PFF Q '为平行四边形, 则QF PF '=,且由120PFQ ∠=︒,可得60FPF '∠=︒, 所以42PF PF PF a ''+==,则12PF a '=,32PF a = 由余弦定理可得 ()()222222cos603c PF PF PF PF PF PF PF PF ''''=+-︒=+-, 即2222974444c a a a =-=,∴椭圆的离心率4e ===, 故选:A .【点睛】本题考查椭圆离心率的求解,其中涉及到椭圆的定义以及余弦定理,对学生的分析与计算能力要求较高,难度较难.3.如图,焦点在x 轴上的椭圆22213x y a +=(0a >)的左、右焦点分别为1F ,2F ,P 是椭圆上位于第一象限内的一点,且直线2F P 与y 轴的正半轴交于A 点,1APF ∆的内切圆在边1PF 上的切点为Q ,若14FQ =,则该椭圆的离心率为( )A .14B .12C .4D .4【答案】D【解析】由椭圆定义可得122PF PF a +=,即122QF QP PF a ++=,因为PT PQ =,所以122QF TP PF a ++=,即21224TF a QF a =-=-,又112SF QF TF ==,故244a -=,也即2a =,由于23b c =⇒=,故椭圆的离心率为c e a ==C . 4.已知双曲线22221(0,0)x y a b a b -=>>的左右焦点分别为12,F F ,过点1F 且垂直于x 轴的直线与该双曲线的左支交于,A B 两点,22,AF BF 分别交y 轴于,P Q 两点,若2PQF ∆的周长为12,则ab 取得最大值时该双曲线的离心率为( )AB C .3 D .2【答案】C【解析】 由题意,得2112b AF BF AB a+== ①,且,P Q 分别为22,AF BF 的中点.由双曲线定义,知212AF AF a -= ②,212BF BF a -= ③,联立①②③,得22224b AF BF a a+=+.因为2PQF ∆的周长为12,所以2ABF ∆的周长为24,即24424b a a+=,亦即226b a a =-,所以()2346ab a a =-.令()346f a a a =-,则()23918442f a a a a a ⎛⎫=-=- ⎝'⎪⎭,所以()f a 在90,2⎛⎫ ⎪⎝⎭上单调递增,在9,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以当92a =时,()f a取得最大值,此时2299276224b ⎛⎫=⨯-= ⎪⎝⎭,所以c ==c e a ==,故选C . 点睛:本题主要考查双曲线的定义及几何性质,以双曲线为载体,通过利用导数研究的单调性,考查逻辑思维能力、运算能力以及数形结合思想.双曲线的离心率问题,主要是有两类试题:一类是求解离心率的值,一类是求解离心率的范围.基本的解题思路是建立椭圆和双曲线中,,a b c 的关系式,求值问题就是建立关于,,a b c 的等式,求取值范围问题就是建立关于,,a b c 的不等式. 5.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆上不与左右顶点重合的任意一点,I ,G 分别为12PF F ∆的内心和重心,当IG x ⊥轴时,椭圆的离心率为( )A .13B .12CD 【答案】A【分析】结合图像,利用P 点坐标以及重心性质,得到G 点坐标,再由题目条件GI x ⊥轴,得到I 点横坐标,然后两次运用角平分线的相关性质得到MN ME 的比值,再结合MIN ∆与MPE ∆相似,即可求得I 点纵坐标,也就是内切圆半径,再利用等面积法建立关于,,a b c 的关系式,从而求得椭圆离心率.【详解】如图,令P 点在第一象限(由椭圆对称性,其他位置同理),连接PO ,显然G 点在PO 上,连接PI 并延长交x 轴于点M ,连接GI 并延长交x 轴于点N ,GI x ⊥轴,过点P 作PE 垂直于x 轴于点E ,设点00(,)P x y ,12(,0),(,0)F c F c -,则00,OE x PE y ==,因为G 为12PF F ∆的重心,所以00(,)33x y G , 因为IG x ⊥轴,所以I 点横坐标也为03x ,03x ON =, 因为PM 为12F PF ∠的角平分线, 则有01212122()()23x PF PF F N NF FO ON OF ON ON -=-=+--==, 又因为12+2PF PF a =,所以可得0012,33x x PF a PF a =+=-, 又由角平分线的性质可得,0110223=3x a F M PF x F M PF a +=-,而12=F M c OM F M c OM +- 所以得03cx OM a=, 所以0()3a c x MN ON OM a -=-=,0(3)3a c x ME OE OM a-=-=, 所以3IN MNa c PE ME a c -==-,即0()3a c y IN a c-=-, 因为1212121211()22PF F S PF PF F F IN F F PE ∆=++= 即00()11(22)(2)232a c y a c c y a c -+=-,解得13c a =,所以答案为A. 【点睛】本题主要考查离心率求解,关键是利用等面积法建立关于,,a b c 的关系式,同时也考查了重心坐标公式,以及内心的性质应用,属于难题.椭圆离心率求解方法主要有:(1)根据题目条件求出,a c ,利用离心率公式直接求解.(2)建立,,a b c 的齐次等式,转化为关于e 的方程求解,同时注意数形结合.6.设1F ,2F 分别是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,直线l 过1F 交椭圆C 于A ,B 两点,交y 轴于C 点,若满足1132FC AF =且1230CF F ∠=,则椭圆的离心率为( ) A.3 B.6 C .13 D .16【答案】A【分析】根据椭圆中线段关系,表示出1AF =,122F F c =,22AF a =由余弦定理即可求得a 与c 的关系,进而求得离心率.。
圆锥曲线离心率归类目录题型01 离心率基础题型02 第一定义求离心率题型03 中点型求离心率题型04 点差法型求离心率(第三定义型)题型05 渐近线型离心率题型06 渐近线中点型求离心率题型07 构造a、b、c齐次式型题型08 焦半径型离心率题型09 焦点三角形求离心率题型10 双焦点三角形余弦定理型题型11 焦点三角形双角度型题型12 共焦点型椭圆双曲线离心率题型13 借助均值不等式求共焦点型题型14 焦点三角形内心型求离心率题型15 焦点三角形重心型求离心率题型16 小题大做型求离心率高考练场题型01离心率基础【解题攻略】求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得a,c得值,根据离心率的定义求解离心率e;2、齐次式法:由已知条件得出关于a,c的二元齐次方程或不等式,然后转化为关于e的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.1P是椭圆x2a2+y2b2=1(a>b>0)上的一点,F为椭圆的右焦点,PF⊥x轴,过点P作斜率为13的直线恰好经过左顶点,则椭圆的离心率为()A.16B.13C.23D.56【答案】C【分析】如图所示,求出|PF |=b 2a ,|AF |=a +c ,化简方程b 2aa +c =13即得解.【详解】如图所示,|PF |=b 2a,|AF |=a +c ,由题得b 2aa +c =13,∴3b 2=a 2+ac ,∴3a 2-3c 2=a 2+ac ,所以3c 2+ac -2a 2=0,∴3e 2+e -2=0,∴e =23.故选:C 2(2021秋·山西晋城·高三晋城市第一中学校校考阶段练习)双曲线y =kx(k >0)的离心率用e =f (k )来表示,则f (k )()A.在(0,+∞)上是增函数B.在(0,+∞)上是减函数C.在(0,1)上是增函数,在(1,+∞)上是减函数D.是常数【答案】D【分析】根据双曲线y =kx(k >0)的渐近线为坐标轴,结合等轴双曲线的离心率为定值,即可求解.【详解】由题意,双曲线y =kx(k >0)的渐近线为x 轴和y 轴,即坐标轴,其中坐标轴互相垂直,即该双曲线为等轴双曲线,所以双曲线y =kx(k >0)的离心率为e =2,即f (k )=2(常数).故选:D .3(2023秋·高三课时练习)实轴长和虚轴长相等的双曲线称为等轴双曲线,则等轴双曲线的离心率为()A.2B.2C.3D.3【答案】A【分析】依题意可得a =b ,即可得到c ,从而求出离心率.【详解】依题意可得等轴双曲线中a =b ,则c =a 2+b 2=2a ,所以离心率e =ca=2.故选:A4已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,点P 为C 上一点,若PF 2⊥F 1F 2,且∠PF1F2=30°,则椭圆C的离心率为()A.16B.36C.13D.33【答案】D【分析】先根据PF2⊥F1F2,且∠PF1F2=30°求得PF2=23a,PF1=43a,再根据勾股定理列出关于a,c的方程,解出e即可【详解】∵P点椭圆C上的点,∴PF1+PF2=2aPF2⊥F1F2,且∠PF1F2=30°∴PF2=23a,PF1=43a在△PF 1F2中,F1F22+PF22=PF12即(2c)2+23a2=43a2,整理得:c2=13a2即e2=13,∴e=33故选:D5已知椭圆C:x2a2+y2b2=1a>b>0的左、右焦点分别为F1,F2,P为椭圆C上一点,若△PF1F2的周长为18,长半轴长为5,则椭圆C的离心率为( ).A.34B.45C.23D.225【答案】B【分析】因为△PF1F2的周长为18,所以2a+2c=18,结合题意可得a=5,c=4,代入离心率公式e=ca运算求解.【详解】设焦距为2c.因为△PF1F2的周长为18,所以2a+2c=18,所以a+c=9.因为长半轴长为5,即a=5,c=4所以椭圆C的离心率为e=ca=45故选:B.题型02 第一定义求离心率【解题攻略】解题时要把所给的几何特征转化为a,b,c的关系式.求离心率的常用方法有:(1)根据条件求得a,b,c,利用e=ca或e=1+b2a2求解;(2)根据条件得到关于a,b,c的方程或不等式,利用e=ca将其化为关于e的方程或不等式,然后解方程或不等式即可得到离心率或其范围.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (5,0),点A ,B 为C 上关于原点对称的两点,且AF ⊥BF ,|AF ||BF |=43,则C 的离心率为.【答案】57【分析】根据题意可得AB =10,结合|AF ||BF |=43,AF ⊥BF 求得|AF |=8,|BF |=6,继而可求出a ,求得答案.【详解】因为点A ,B 为C 上关于原点对称的两点,故连接AB ,则AB 过原点O ,又因为AF ⊥BF ,|OF |=5,故AB =10,又|AF ||BF |=43,所以|AF |=8,|BF |=6,取C 的左焦点为F ,连接AF ,则AF =|BF |=6,所以|AF |+AF =14=2a ,所以a =7,所以C 的离心率为c a =57,故答案为:572设椭圆E :x 2a 2+y 2b2=1(a >b >0)的一个焦点F (2,0)点A (-2,1)为椭圆E 内一点,若椭圆E 上存在一点P ,使得PA +PF =8,则椭圆E 的离心率的取值范围是()A.49,47B.49,47C.29,27D.29,27【答案】A 【解析】记椭圆的左焦点为F 1=-1,0 ,则AF 1 =1,∵PF 1 ≤PA +AF 1 ∴2a =PF 1 +PF ≤PA +AF 1 +PF ≤1+8=9,即a ≤92,∵PF 1 ≥PA -AF 1 ,∴2a =PF 1 +PF ≥PA -AF 1 +PF ≥8-1=7,即a ≥72,∵c =2,∴292≥e =c a ≥272,即49≤e ≤47,椭圆E 的离心率的取值范围是49,47,故选A .3椭圆C :x 2a 2+y 2b 2=1a >b >0 的左右焦点分别为F 1、F 2,直线l :y =kx 与C 交于A 、B 两点,若F 2O =12AB ,∠BAF 2=θ,当θ∈π12,π6时,C 的离心率的最小值为()A.2-1B.22C.63D.3-1【答案】D【分析】结合题干条件得到F 2A ⊥F 2B ,表达出F 2A =2c ⋅cos θ,F 2B =2c ⋅sin θ,利用椭圆定义得到a ,c 关系,结合θ的范围求出离心率的最小值.【详解】连接AF 1,由题知点A 、B 关于原点对称,AF 1 =BF 2 ,AB =2OF 2 =2c ,F 2A ⊥F 2B ,则F 2A =2c ⋅cos θ,F 2B =2c ⋅sin θ,又F 2A +F 2B =F 2A +F 1A =2a ,即2c ⋅cos θ+2c ⋅sin θ=2a ,e =ca=1sin θ+cos θ=12sin θ+π4,由θ∈π12,π6 得2sin θ+π4 ∈62,3+12 ,所以e min =3-1,D 正确.故选:D4已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (5,0),点A ,B 为C 上关于原点对称的两点,且AF ⊥BF ,|AF ||BF |=43,则C 的离心率为.【答案】57【分析】根据题意可得AB =10,结合|AF ||BF |=43,AF ⊥BF 求得|AF |=8,|BF |=6,继而可求出a ,求得答案.【详解】因为点A ,B 为C 上关于原点对称的两点,故连接AB ,则AB 过原点O ,又因为AF ⊥BF ,|OF |=5,故AB =10,又|AF ||BF |=43,所以|AF |=8,|BF |=6,取C 的左焦点为F ,连接AF ,则AF =|BF |=6,所以|AF |+AF =14=2a ,所以a =7,所以C 的离心率为c a =57,故答案为:575设椭圆x 2a 2+y 2b2=1的左右焦点分别为F 1,F 2,焦距为2c ,点Q c ,a2 在椭圆的内部,点P 是椭圆上的动点,且PF 1 +PQ <5F 1F 2 恒成立,则椭圆的离心率的取值范围为()A.14,22B.13,32C.13,22D.14,1【答案】A【分析】利用点Q c ,a2在椭圆的内部,以及PF 1 +PQ <5F 1F 2 列不等式,化简后求得椭圆的离心率的取值范围.【详解】因为点Q c ,a 2 在椭圆的内部,所以c 2a 2+a 24b 2<1①,而a 2=b 2+c 2②,,由①②得a 4<4b 4,即a 2<2b 2.所以e =1-b a 2<1-12=22.因为PF 1 +PQ <5F 1F 2 ,而PF 1 +PF 2 =2a ,所以2a -PF 2 +PQ <10c ,即PQ -PF 2 <10c -2a ,由三角形的性质可得PQ -PF 2 <QF 2 =a 2,因为P 是椭圆C 上的动点,且PF 1 +PQ <5F 1F 2 恒成立,所以PQ -PF 2 <QF 2 =a 2<10c -2a ,所以a <4c ,即e =c a >14,所以椭圆离心率的取值范围是14,22 .故选:A题型03 中点型求离心率【解题攻略】直线与曲线相交,涉及到交线中点的题型,多数用点差法。
专题6 圆锥曲线离心率及范围问题离心率在圆锥曲线问题中有着重要应用,它的变化会直接导致曲线类型和形状的变化,同时它又是圆锥曲线统一定义中的三要素之一.有关求解圆锥曲线离心率的试题在历年高考试卷中均有出现.关于圆锥曲线离心率(范围)问题处理的主体思想是:建立关于一个,,a b c的方程(或不等式),然后再解方程或不等式,要注意的是建立的方程或不等式应该是齐次式.一般建立方程有两种办法:○1利用圆锥曲线的定义解决;○2利用题中的几何关系来解决问题。
另外,不能忽略了圆锥曲线离心率的自身限制条件(椭圆、双曲线离心率的取值范围不一致),否则很容易产生增根或者扩大所求离心率的取值范围.一、圆锥曲线的离心率方法1:利用定义法求离心率知识储备:椭圆和双曲线的第一定义。
方法技巧:一般情况题中出现圆锥曲线上的点与焦点联系在一起时,尽量转化为定义去考虑,会更简单!例1.(2015年浙江15题)椭圆22221x ya b+=(0a b>>)的右焦点(),0F c关于直线by xc=的对称点Q在椭圆上,则椭圆的离心率是.法一:(当时网上的主流解法)大家上网看到的基本上就是这种解法,此方法入手很容易,但是后期的运算量会很大,并且此题高次方程的因式分解要求很高(对大部分学生来说高次方程分解本来就是一个盲区)。
【解析】设左焦点为1F ,由F 关于直线by x c=的对称点Q 在椭圆上, 得到OM QF ⊥且M 为QF 中点,又O 为F 1F 的中点,所以OM 为中位线,且1F Q QF ⊥。
由点到线的距离公式计算得到:,bc MF a=再由tan b FOM c ∠=得到:2c OM a =. 所以2,bcQF a=212c QF a =, 据椭圆定义:12QF QF a +=得到:2222bc c a a a+=,化简得: b c =,即22e =.通过比较我们发现法二(定义法)计算过程更加简洁,不易出错。
我在给学生讲题的时候学生经常会问我,哪个时候用定义法,其实大家只要看到有曲线上的点和焦点有联系时,就可以往定义法多思考一些。
例2.(2020成都市高三模拟). 已知点P 是双曲线22221x y a b-= (0,0)a b >>左支上一点,12,F F 是双曲线的左右两个焦点,且120PF PF ⋅=,线段2PF 的垂直平分线恰好是该双曲线的一条渐近线,则离心率为 23255【解析】由焦点到渐近线的距离为b ,得出22PF b = 再根据题意,得出2112,tan bF P PF PF F a⊥∠=,所以12PF a = 根据椭圆定义:212,PF PF a -=即222b a a -=得到:2b a =, 即离心率为5e =例3. (2018年新课标Ⅱ卷11题)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1-B.2CD1-1【解析】设椭圆焦点在x 轴上,则椭圆方程为()222210,0x ya b a b+=>>.因为2190F PF ∠=,2160PF F ∠=,122F F c =,所以2PF c =,1PF 设1F 为椭圆右焦点,2F 为椭圆左焦点,则122PF PF a +=,所以)12c a =,所以211c e a ====.故选D.方法2:利用几何关系求离心率:知识储备:初高中平面几何的全部知识都可以涉及。
例1、(2019年新课标II 文12)设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q两点.若|PQ |=|OF |,则C 的离心率为 ABC .2D【答案】A【解析】解法一:由题意,把2c x =代入222x y a +=,得PQ =再由PQ OF =,得c =,即222a c =,所以222c a=,解得c e a ==故选A .解法二:如图所示,由PQ OF =可知PQ 为以OF 为直径圆的另一条直径, 所以,22c c P ⎛⎫±⎪⎝⎭,代入222x y a +=得222a c =, 所以222c a=,解得c e a ==故选A .解法三:由PQ OF=可知PQ为以OF为直径圆的另一条直径,则122OP a OF c===,cea==故选A.例2、(2018年新课标Ⅱ12题)已知,是椭圆的左、右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为A.B.C.D.【答案】D【解析】由题意可得椭圆的焦点在x轴上,如图所示,设12||2=F F c,所以12∆PF F为等腰三角形,且12=120∠F F P,∴212||||2PF F F c==,∵2||OF c=,∴点P坐标为(2cos60,2sin60)c c c+,即点(2)P c.∵点P在过点A=14ca=.∴14e=,故选D.易错点:很多同学将点P画在了椭圆上,利用定义法求解导致错误。
例3. (2020年湖南永州市高三三模11题)已知双曲线C:()222210,0x ya ba b-=>>的左、右顶点分别为1F2F22221(0)x yC a ba b+=>>:A C P A12PF F△12120F F P∠=︒C23121314OyxPF2F1AA ,B ,左焦点为F ,P 为C 上一点,且PF x ⊥轴,过点A 的直线l 与线段PF 交于点M (异于P ,F ),与y 轴交于点N ,直线MB 与y 轴交于点H ,若3HN OH =-(O 为坐标原点),则C 的离心率为( ) A. 2 B. 3C. 4D. 5【答案】D【解析】不妨设P 在第二象限,FM m =,()()0,0H h h >,由3HN OH =-知()0,2N h -,由AFM △与AON △相似,得2m c ah a -=(1), 由BOH △与BFM △相似,得h am c a=+(2)(1),(2)两式相乘得12c ac a-=+,即3c a =,离心率为3.选B.点评:此题类似于2016年新课标3卷12题例4.已知椭圆()222210x y a b a b +=>>的半焦距为()0c c >,左焦点为F ,右顶点为A ,抛物线()2158y a c x =+与椭圆交于,B C 两点,若四边形ABFC 是菱形,则椭圆的离心率是( ) A .415 B .815 C .12 D .23【答案】C【解析】由题意得,椭圆222210x y a b a b+=>>(,c 为半焦距), 的左焦点为F ,右顶点为A ,则()(),0,,0A a F c -, 抛物线()2158y a c x =+于椭圆交于,B C 两点, ,B C ∴两点关于x 轴对称,可设()(),,,B m n C m n -,四边形ABFC 是菱形,,2BC AF m a c ∴⊥=-,则()12m a c =-, 将(),B m n 代入抛物线方程得,()()()()22215151581616n a c m a c a c a c =+=+-=-,221516n b ∴=,则不妨设()12B a c ⎛⎫- ⎪ ⎪⎝⎭,再代入椭圆方程()22221151416a c b a b -⋅+=, 化简得()22116a c a -=,由c e a =,即有24830e e -+=,解得12e =或32(舍去),故选C.方法3:定义法+几何关系结合例1.(2020年衡水中学高三模拟16题)设椭圆C 的两个焦点是1F 、2F ,过1F 的直线与椭圆C 交于P 、Q ,若212PF F F =,且1156PF FQ =,则椭圆的离心率为__________. 5【解析】由定义可知12122PF PF QF QF a +=+=,122F F c =. ∵212PF F F =,∴22PF c =,∴()12PF a c =-. ∵1156PF FQ =,∴()115563QF PF a c ==-,∴2533a cQF =+. 在12PF F △中,由余弦定理可得12cos 2a cPF F c -∠=, 在12QF F △中,由余弦定理可得1223cos 5a cQF F c-∠=. ∵1212180PF F QF F ∠+∠=︒∴1212cos cos PF F QF F ∠=-∠, ∴2325a c a c c c --=-,整理得911a c =,∴911c e a ==,例2、(2019绵阳南山中学模拟)已知A ,B ,C 是双曲线22221(0,0)x y a b a b-=>>上的三个点,直线AB 经过原点O ,AC 经过右焦F ,若BF AC ⊥,且3AF CF =,则该双曲线的离心率为( )10 B.5210 D.23【答案】A【解析】设左焦点为F ′,连接AF ′,BF ′,CF ′,由OA =OB ,OF =OF ′,BF ⊥AC ,可得四边形AFBF ′为矩形,设AF =m ,则FC =3m ,由双曲线定义知:CF ′=5m , AF ′= FB =3m ,由双曲线定义知:AF ′-AF =2m =2a ,解得m =a ,在△FAF ′中,AF 2+AF ′2=FF ′2,即a 2+(3a )2=(2c )2,即4c 2=10a 2,即c =102a ,所以102e = 例3、(2019年长郡中学高三模拟12题)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =. 则该双曲线的离心率为( ) A. 2B. 3C.2D.3【答案】D【解析】根据题意可画出以下图像,过M 点作12F F 垂线并交12F F 于点H ,因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知122MF MF a -=, 即2232MF MF a -=,2MF a =因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为22222,,,OM b MF a OF c a b c ===+=, 所以290OMF ∠=︒,三角形2OMF 是直角三角形,因为2MH OF ⊥,所以,22,ab OF MH OM MF MH c ⨯=⨯=,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得22,,b b ab x M c c c ⎛⎫=⎪⎝⎭, 将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b a a c -=,()222422c aa a c --=,223c a =,ce a==,选D.二、圆锥曲线离心率的取值范围方法1:利用三角形三边关系建立不等式。