高中数学专项练习:48圆的方程
- 格式:doc
- 大小:476.00 KB
- 文档页数:4
课时作业(四十八) [第48讲 圆的方程][时间:45分钟 分值:100分]基础热身1.圆心在(2,-1)且经过点(-1,3)的圆的标准方程是( )A .(x -2)2+(y +1)2=25B .(x +2)2+(y -1)2=25C .(x -2)2+(y +1)2=5D .(x +2)2+(y -1)2=52.直线y =x +b 平分圆x 2+y 2-8x +2y +8=0的周长,则b =( )A .3B .5C .-3D .-53.若PQ 是圆x 2+y 2=9的弦,PQ 的中点是(1,2),则直线PQ 的方程是( )A .x +2y -3=0B .x +2y -5=0C .2x -y +4=0D .2x -y =04.[2011·厦门质检] 已知抛物线y 2=4x 的焦点与圆x 2+y 2+mx -4=0的圆心重合,则m 的值是________.能力提升5.[2011·安徽卷] 若直线3x +y +a =0过圆x 2+y 2+2x -4y =0的圆心,则a 的值为( )A .-1B .1C .3D .-36.一条线段AB 长为2,两端点A 和B 分别在x 轴和y 轴上滑动,则线段AB 的中点的轨迹是( )A .双曲线B .双曲线的一支C .圆D .半圆7.一条光线从点A (-1,1)出发,经x 轴反射到⊙C :(x -2)2+(y -3)2=1上,则光走过的最短路程为( )A .1B .2C .3D .48.实数x 、y 满足x 2+(y +4)2=4,则(x -1)2+(y -1)2的最大值为( )A .30+226B .30+426C .30+213D .30+4139.已知两点A (-1,0),B (0,2),点P 是圆(x -1)2+y 2=1上任意一点,则△PAB 面积的最大值与最小值分别是( )A .2,12(4-5)B.12(4+5),12(4-5)C.5,4- 5D.12(5+2),12(5-2)10.圆C :x 2+y 2-4x +43y =0的圆心到直线x +3y =0的距离是________.11.[2011·江西九校联考] 经过圆(x -1)2+(y +1)2=2的圆心,且与直线2x +y =0垂直的直线方程是________.12.在平面区域⎩⎨⎧2≤x ≤4,0≤y ≤2内有一个最大的圆,则这个最大圆的一般方程是________________________________________________________________________.13.[2011·牡丹江一中期末] 点P (x ,y )是圆x 2+(y -1)2=1上任意一点,若点P 的坐标满足不等式x +y +m ≥0,则实数m 的取值范围是________.14.(10分)在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切.(1)求圆O 的方程;(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|PA |、|PO |、|PB |成等比数列,求PA →·PB →的取值范围.15.(13分)点A (2,0)是圆x 2+y 2=4上的定点,点B (1,1)是圆内一点,P 、Q 为圆上的动点.(1)求线段AP 的中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 的中点的轨迹方程.难点突破16.(1)(6分)若圆的方程为x 2+y 2+kx +2y +k 2=0,则当圆的面积最大时,圆心为________.(2)(6分)圆心在抛物线y 2=2x (y >0)上,并且与抛物线的准线及x 轴都相切的圆的方程是( )A .x 2+y 2-x -2y -14=0B .x 2+y 2+x -2y +1=0C .x 2+y 2-x -2y +1=0D .x 2+y 2-x -2y +14=0课时作业(四十八)【基础热身】1.A [解析] 因为圆的圆心为(2,-1),半径为r =(2+1)2+(-1-3)2=5,所以圆的标准方程为(x -2)2+(y +1)2=25.故选A.2.D [解析] 圆心为(4,-1),由已知易知直线y =x +b 过圆心,所以-1=4+b ,所以b =-5.故选D.3.B [解析] 由圆的几何性质知,弦PQ 的中点与圆心的连线垂直于弦PQ ,所以直线PQ 的斜率为-12,所以方程为y -2=-12(x -1),即x +2y -5=0,故选B.4.-2 [解析] 抛物线y 2=4x 的焦点为(1,0),所以-m 2=1,得m =-2.【能力提升】5.B [解析] 圆的方程可化为(x +1)2+(y -2)2=5,因为直线经过圆的圆心(-1,2),所以3×(-1)+2+a =0,得a =1.6.C [解析] 由直角三角形斜边上的中线等于斜边的一半,得AB 的中点到原点的距离总等于1,所以AB 的中点轨迹是圆,故选C.7.D [解析] A (-1,1)关于x 轴的对称点B (-1,-1),圆心C (2,3),所以光走过的最短路程为|BC |-1=4.8.B [解析] (x -1)2+(y -1)2表示圆x 2+(y +4)2=4上动点(x ,y )到点(1,1)距离d 的平方,因为26-2≤d ≤26+2,所以最大值为(26+2)2=30+426,故选B.9.B [解析] 如图,圆心(1,0)到直线AB :2x -y +2=0的距离为d =45,故圆上的点P 到直线AB 的距离的最大值是45+1,最小值是45-1.又|AB |=5,故△PAB 面积的最大值和最小值分别是2+52,2-5.故选B.10.2 [解析] 圆C 的圆心是C (2,-23),由点到直线的距离公式得|2-23×3|1+3=2.11.x -2y -3=0 [解析] 圆心为(1,-1),所求直线的斜率为12,所以直线方程为y+1=12(x -1),即x -2y -3=0.12.x 2+y 2-6x -2y +9=0 [解析] 作图知,区域为正方形,最大圆即正方形的内切圆,圆心是(3,1),半径为1,得圆的方程为(x -3)2+(y -1)2=1,即x 2+y 2-6x -2y +9=0.13.[2-1,+∞) [解析] 令x =cos θ,y =1+sin θ,则m ≥-x -y =-1-(sin θ+cos θ)=-1-2sin ⎝⎛⎭⎫θ+π4对任意θ∈R 恒成立,所以m ≥2-1. 14.[解答] (1)依题设,圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =|-4|1+3=2, 所以圆O 的方程为x 2+y 2=4.(2)由(1)知A (-2,0),B (2,0).设P (x ,y ),由|PA |、|PO |、|PB |成等比数列得,(x +2)2+y 2·(x -2)2+y 2=x 2+y 2,即x 2-y 2=2.PA →·PB →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=2(y 2-1),由于点P 在圆O 内,故⎩⎨⎧x 2+y 2<4,x 2-y 2=2,由此得y 2<1,所以PA →·PB →的取值范围为[-2,0).15.[解答] (1)设线段AP 的中点为M (x ,y ),由中点公式得点P 坐标为P (2x -2,2y ).∵点P 在圆x 2+y 2=4上,∴(2x -2)2+(2y )2=4,故线段AP 的中点的轨迹方程为(x -1)2+y 2=1.(2)设线段PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ ,∴|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,∴x 2+y 2+(x -1)2+(y -1)2=4,故线段PQ 的中点的轨迹方程为x 2+y 2-x -y -1=0.【难点突破】 16.(1)(0,-1) (2)D [解析] (1)将圆的方程化为标准方程为⎝⎛⎭⎫x +k 22+(y +1)2=1-3k 24,因为r 2=1-3k 24≤1,所以k =0时r 最大,此时圆心为(0,-1).(2)抛物线y 2=2x (y >0)的准线为x =-12,圆与抛物线的准线及x 轴都相切,则圆心在直线y =x +12(y >0)上,与y 2=2x (y >0),联立可得圆心的坐标为⎝⎛⎭⎫12,1,半径为1,则方程为⎝⎛⎭⎫x -122+(y -1)2=1,化简得x 2+y 2-x -2y +14=0,故选D.。
课时达标 第48讲[解密考纲]对圆的方程的考查以选择题、填空题的形式出现. 一、选择题1.圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为( A ) A .(x -2)2+(y -1)2=1 B .(x +1)2+(y -2)2=1 C .(x +2)2+(y -1)2=1D .(x -1)2+(y +2)2=1解析 设对称圆的方程为(x -a )2+(y -b )2=1,圆心(1,2)关于直线y =x 的对称点为(2,1),故对称圆的方程为(x -2)2+(y -1)2 =1,故选A .2.圆心在y 轴上,半径长为1,且过点(1,2)的圆的方程是( A ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1解析 设圆心坐标为(0, a ),则(1- 0)2+(2-a )2=1, ∴a =2,故圆的方程为x 2+(y -2)2=1.3.以抛物线y 2=4x 的焦点为圆心,且与双曲线x 216-y 29=1的两渐近线相切的圆的方程为( C )A .x 2+⎝⎛⎭⎫y -1162=125B .x 2+(y -1)2=1625C .(x -1)2+y 2=925D .(x -2)2+y 2=3625解析 抛物线y 2=4x 的焦点为F (1,0),双曲线x 216-y 29=1的渐近线为y =±34x ,即3x ±4y=0.由已知,得圆的半径长等于点F 到直线3x ±4y =0的距离,即r =|3×1|32+42=35,所以所求圆的方程为(x -1)2+y 2=925.4.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是( A )A .3-2B .3+ 2C .3-22 D .3-22解析 圆的标准方程为(x -1)2+y 2=1,直线AB 的方程为x -y +2=0,圆心(1,0)到直线AB 的距离d =|1-0+2|2=322,则点C 到直线AB 的最短距离为322-1.又因为|AB |=22,所以△ABC 面积的最小值为12×22×⎝⎛⎭⎫322-1=3- 2.5.若实数x ,y 满足x 2+y 2-2x +4y =0,则x -2y 的最大值为( B ) A .5 B .10 C .9D .5+2 5解析 原方程可化为(x -1)2+(y +2)2=5,表示以(1,-2)为圆心,5为半径的圆.设x -2y =b ,则x -2y 可看作直线x -2y =b 在x 轴上的截距,当直线与圆相切时,b 取得最大值或最小值,此时|1+4-b |5= 5.∴b =10或b =0,∴x -2y 的最大值是10.6.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =2,右焦点F (c,0),方程ax 2-bx -c =0的两个实数根分别为x 1,x 2,则点P (x 1,x 2)与圆x 2+y 2=8的位置关系为( C )A .点P 在圆外B .点P 在圆上C .点P 在圆内D .不确定解析 ∵e 2=1+⎝⎛⎭⎫b a 2=2,∴⎝⎛⎭⎫b a 2=1,∴b a=1,∴a =b ,c =2a ,∴方程ax 2-bx -c =0 可化为x 2-x -2=0.∴x 1+x 2=1,x 1·x 2=- 2.∴x 21+x 22=(x 1+x 2)2-2x 1x 2=1+22<8,∴点P 在圆内,故选C . 二、填空题7.圆心在直线2x -y =3上,且与两坐标轴均相切的圆的标准方程是__(x -3)2+(y -3)2=9或(x -1)2+(y +1)2=1__.解析 依题意设圆心为(a,2a -3),因为圆与两坐标轴均相切,所以|a |=|2a -3|,解得a =1或a =3,即r =1或3,故圆的标准方程为(x -3)2+(y -3)2=9或(x -1)2+(y +1)2=1.8.若圆C 与圆x 2+y 2+2x =0关于直线x +y -1=0对称,则圆C 的方程是__x 2+y 2-2x -4y +4=0__.解析 设C (a ,b ),因为已知圆的圆心为A (-1,0),由点A ,C 关于直线x +y -1=0对称,得⎩⎨⎧ba +1×(-1)=-1,a -12+b2-1=0.解得⎩⎪⎨⎪⎧a =1,b =2.又因为圆的半径是1,所以圆C 的方程是(x -1)2+(y -2)2=1,即x 2+y 2-2x -4y +4=0.9.若过点P (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围是 (-∞,-3)∪⎝⎛⎭⎫1,32 . 解析 圆的方程可化为(x -a )2+y 2=3-2a ,因为过点P (a ,a )能作圆的两条切线,所以点P 在圆的外部,即⎩⎪⎨⎪⎧a 2+a 2-2a 2+a 2+2a -3>0,3-2a >0,解得a <-3或1<a <32.故a 的取值范围为(-∞,-3)∪⎝⎛⎭⎫1,32. 三、解答题10.(2018·广东湛江模拟)已知△ABC 的顶点坐标分别为A (-1,5),B (-2,-1),C (4,3),M 是BC 的中点.(1)求AB 边所在直线的方程; (2)求以线段AM 为直径的圆的方程.解析 (1)因为A (-1,5),B (-2,-1),所以由两点式得AB 的方程为y -5-1-5=x -(-1)-2-(-1),整理得6x -y +11=0.(2)因为M 是BC 的中点,所以M ⎝⎛⎭⎫-2+42,-1+32,即M (1,1),所以|AM |=(-1-1)2+(5-1)2=25,所以圆的半径为 5. 所以AM 的中点为⎝⎛⎭⎫-1+12,5+12,即中点为(0,3),所以以线段AM 为直径的圆的方程为x 2+(y -3)2=5.11.一圆经过A (4,2),B (-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程.解析 设所求圆的方程为x 2+y 2+Dx +Ey +F =0. 令y =0,得x 2+Dx +F =0,所以x 1+x 2=-D . 令x =0,得y 2+Ey +F =0,所以y 1+y 2=-E . 由题意知-D -E =2,即D +E +2=0.①又因为圆过点A ,B ,所以16+4+4D +2E +F =0.② 1+9-D +3E +F =0.③解①②③组成的方程组得D =-2,E =0,F =-12. 故所求圆的方程为x 2+y 2-2x -12=0.12.(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程; (3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.解析 (1)圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5. 由圆心N 在直线x =6上,可设N (6,y 0).因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7, 圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1. 因此,圆N 的标准方程为(x -6)2+(y -1)2=1. (2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m ,即2x -y +m =0,则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5.因为|BC |=|OA |=22+42=25, 而|MC |2=d 2+⎝⎛⎭⎫|BC |22,所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t,0),TA →+TP →=TQ →,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.①因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.② 将①代入②,得(x 1-t -4)2+(y 1-3)2=25.所以P (x 1,y 1)在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上,即此两圆有公共点, 所以5-5≤[(t +4)-6]2+(3-7)2≤5+5,解得2-221≤t≤2+221.因此,实数t的取值范围是[2-221,2+221].。
课时作业48 圆的方程[基础达标]一、选择题1.经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1 D .(x -1)2+(y -1)2=2解析:由⎩⎪⎨⎪⎧x =1,x +y =2,得⎩⎪⎨⎪⎧x =1,y =1,即所求圆的圆心坐标为(1,1), 又由该圆过点(1,0),得其半径为1, 故圆的方程为(x -1)2+(y -1)2=1. 答案:B2.圆(x +2)2+y 2=5关于原点O (0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5 D .x 2+(y +2)2=5解析:圆上任一点(x ,y )关于原点的对称点(-x ,-y )在圆(x +2)2+y 2=5上,即(-x +2)2+(-y )2=5,即(x -2)2+y 2=5.答案:A3.[2020·福州质检]设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是( )A .原点在圆上B .原点在圆外C .原点在圆内D .不确定解析:将圆的一般方程化成标准方程为(x +a )2+(y +1)2=2a , 因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0, 即0+a2+0+12>2a ,所以原点在圆外.答案:B4.[2020·湖南长沙一模]圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( )A .1+ 2B .2C .1+22D .2+2 2 解析:将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2的距离的最大值为d+1=2+1,故选A.答案:A5.已知方程x 2+y 2+kx +2y +k 2=0所表示的圆有最大的面积,则取最大面积时,该圆的圆心的坐标为( )A .(-1,1)B .(-1,0)C .(1,-1)D .(0,-1)解析:由x 2+y 2+kx +2y +k 2=0知所表示圆的半径r =12k 2+4-4k 2=12-3k 2+4,当k =0时,r max =124=1,此时圆的方程为x 2+y 2+2y =0,即x 2+(y +1)2=1,所以圆心为(0,-1). 答案:D 二、填空题6.已知方程x 2+y 2-2mx +2y =3m -5表示圆,则实数m 的取值范围为________. 解析:由D 2+E 2-4F =4m 2+4-4(-3m +5)>0,解得m >1或m <-4. 答案:(-∞,-4)∪(1,+∞)7.[2020·天津七校联考]已知M (0,2),N (2,-2),以线段MN 为直径的圆的标准方程为________.解析:由题意易得圆心的坐标为(1,0),|MN |=22+-2-22=25,所以圆的半径为5,所以圆的方程为(x -1)2+y 2=5.答案:(x -1)2+y 2=58.已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是________.解析:∵圆的方程可化为(x +1)2+(y -2)2=5-a , ∴其圆心为(-1,2),且5-a >0, 即a <5.又圆关于直线y =2x +b 成轴对称, ∴2=-2+b ,∴b =4.∴a -b =a -4<1. 答案:(-∞,1) 三、解答题9.已知圆心为C 的圆经过点A (0,-6),B (1,-5),且圆心在直线l :x -y +1=0上,求圆的标准方程.解析:解法一 设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E 2. 由题意可得⎩⎪⎨⎪⎧-62-6E +F =012+-52+D -5E +F =0,D -E -2=0消去F 得⎩⎪⎨⎪⎧D +E -10=0D -E -2=0,解得⎩⎪⎨⎪⎧D =6E =4,代入求得F =-12,所以圆的方程为x 2+y 2+6x +4y -12=0, 标准方程为(x +3)2+(y +2)2=25. 解法二 因为A (0,-6),B (1,-5), 所以线段AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫12,-112,直线AB 的斜率k AB =-5--61-0=1,因此线段AB 的垂直平分线l 的方程是y +112=-⎝⎛⎭⎪⎫x -12,即x +y +5=0.圆心C 的坐标是方程组⎩⎪⎨⎪⎧x +y +5=0x -y +1=0的解,解得⎩⎪⎨⎪⎧x =-3y =-2,所以圆心C 的坐标是(-3,-2). 圆的半径长r =|AC |=0+32+-6+22=5,所以,圆心为C 的圆的标准方程是(x +3)2+(y +2)2=25. 10.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解析:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22,设m +2n =t ,将m +2n =t 看成直线方程,因为该直线与圆有公共点, 所以圆心到直线的距离d =|2+2×7-t |12+22≤22, 解上式得,16-210≤t ≤16+210, 所以所求的最大值为16+210. (2)记点Q (-2,3), 因为n -3m +2表示直线MQ 的斜率k , 所以直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 由直线MQ 与圆C 有公共点, 得|2k -7+2k +3|1+k2≤2 2. 可得2-3≤k ≤2+3,所以n -3m +2的最大为2+3,最小值为2- 3. [能力挑战]11.[2020·河南豫北名校联考]圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( )A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4解析:设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ),则有⎩⎪⎨⎪⎧ba -2·13=-1,b 2=33·a +22,解得⎩⎨⎧a =1,b =3,则所求圆的方程为(x -1)2+(y -3)2=4.故选D.答案:D12.[2020·湖南雅礼中学月考]若圆x 2+y 2-6x -2y +6=0上有且仅有三个点到直线ax -y +1=0(a 是实数)的距离为1,则a =( )A .±1 B.±24 C .± 2 D .±32解析:由题意知圆心为(3,1),半径是2,因为圆上有且仅有三个点到直线ax -y +1=0的距离为1,所以圆心到直线ax -y +1=0的距离是1,即|3a |a 2+1=1,得a =±24,故选B.答案:B13.已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________.解析:设y -1x -2=k ,则k 表示点P (x ,y )与点(2,1)连线的斜率.当该直线与圆相切时,k 取得最大值与最小值.由|2k |k 2+1=1,解得k =±33.答案:33 -33。
考点48 圆的方程1.(广东省2019届高考适应性考试理)若向量a ,b ,c 满足a b ≠,0c ≠,且()()0c a c b -⋅-=,则a b a bc++-的最小值是()AB .C .2D .32【答案】C 【解析】设向量a OA =,b OB =,c OC =,则由()()0c a c b -⋅-=得0AC BC ⋅=,即C 的轨迹为以AB 为直径的圆,圆心为AB 中点M ,半径为1||2AB , 因此11||||||(||)||22c OC OM r OA OB AB =≤+=++ 1111(||)(||)(||)(||)2222OA OB OA OB a b a b =++-=++- 从而2a b a bc++-≥,选 C.2.(河南省重点高中2019届高三4月联合质量检测数学理)设是圆 上的点,直线与双曲线:的一条斜率为负的渐近线平行,若点到直线距离的最大值为8,则()A .9B .C .9或D .9或【答案】C 【解析】 因为双曲线的一条斜率为负的渐近线的斜率为,所以,解得. 圆的圆心坐标是,半径为,因为圆心到直线距离为, 所以点到直线距离的最大值为,解得或.当时,;当时,.综上,或.故选.3.(广西桂林市、崇左市2019届高三下学期二模联考数学理)过双曲线的右支上一点分别向圆:和圆:作切线,切点分别为,则的最小值为()A.5 B.4 C.3 D.2【答案】A【解析】圆的圆心为,半径为;圆的圆心为,半径为,设双曲线的左右焦点为,,连接,,,,可得.当且仅当为右顶点时,取得等号,即最小值5.故选:.4.(福建省龙岩市2019届高三5月月考数学理)已知点A 在圆22(2)1x y -+=上,点B 在抛物线28y x=上,则||AB 的最小值为( ) A .1 B .2 C .3 D .4【答案】A 【解析】由题得圆()2221x y -+=的圆心为(2,0),半径为1. 设抛物线的焦点为F(2,0),刚好是圆()2221x y -+=的圆心, 由题得|AB|≥|BF|-|AF|=|BF|-1, 设点B 的坐标为(x,y),所以|AB|≥x -(-2)-1=x+1,因为x≥0, 所以|AB|≥1,所以|AB|的最小值为1. 故选:A5.(新疆2019届高三第三次诊断性测试数学理)若直线1ax by +=与圆221x y +=有两个公共点,则点(),P a b 与圆221x y +=的位置关系是( )A .在圆上B .在圆外C .在圆内D .以上都有可能【答案】B 【解析】解:因为直线1ax by +=与圆221x y +=有两个公共点,1<,即1<因为点P 1, 所以点P 在圆外,故选B .6.(河南省焦作市2018-2019学年高三年级第三次模拟考试数学理)已知抛物线E :y 2=2px (p >0)的准线为l ,圆C :(x ﹣2p )2+y 2=4,l 与圆C 交于A ,B ,圆C 与E 交于M ,N .若A ,B ,M ,N 为同一个矩形的四个顶点,则E 的方程为( )A .y 2=xB .y 2C .y 2=2xD .y 2=x【答案】C 【解析】 【分析】 如图,圆C :(x ﹣2p )2+y 2=4的圆心C (2p ,0)是抛物线E :y 2=2px (p >0)的焦点, ∵圆C :(x ﹣2p )2+y 2=4的半径为2, ∴|NC|=2,根据抛物线定义可得:|NA|=|NC|=2. ∵A ,B ,M ,N 为同一个矩形的四个顶点, ∴点A ,N 关于直线x =2p 对称,即22N A P x x P +=⨯=,∴32N x p =, ∴|NA|=322p p ⎛⎫-- ⎪⎝⎭=2,∴2p =2,则E 的方程为y 2=2x . 故选:C .7.(闽粤赣三省十校2019届高三下学期联考数学理)过抛物线24y x =的焦点F 的直线交抛物线于A B 、两点,分别过A B 、作准线的垂线,垂足分别为A B ''、两点,以线段A B ''为直径的圆C 过点(2,3)-,则圆C 的方程为( )A .22(1)(1)5x y ++-=B .22(1)(1)17x y +++=C .22(1)(2)26x y +++=D .22(1)(2)2x y ++-=【答案】A 【解析】由抛物线方程可知:()1,0F ,准线方程为:1x =-设直线AB 方程为:1x my =+,代入抛物线方程得:2440y my --= 设()11,A x y ,()22,B x y ,则124y y m +=,124y y = 又()11,A y '-,()21,B y '-,C 在圆上 0A C B C ''∴⋅=即()()()()1211330y y -⨯-+--= ()12121030y y y y ⇒-++= 即101240m -+= 12m ⇒=∴圆心坐标为:()1,2m -,即()1,1-=∴圆的方程为:()()22115x y ++-=本题正确选项:A .8.(东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟数学理)Rt ABC ∆中,090ABC ∠=,AB =4BC =,ABD ∆中,0120ADB ∠=,则CD 的取值范围是( ) A.2,2] B.(4,2] C.2,2]+ D.2,2]【答案】C 【解析】由题,以点B 为坐标原点,AB 所在直线为x 轴,BC 所在直线为y轴建立直角坐标系;(0,0);(0,4)B A C设点(,)D x y ,因为0120ADB ∠=,所以由题易知点D 可能在直线AB 的上方,也可能在AB 的下方; 当点D 可能在直线AB 的上方;直线BD 的斜率1yk x=;直线AD的斜率2k =由两直线的夹角公式可得:2121tan12011k k k k x-=⇒=+⋅化简整理的22((1)4x y ++=可得点D的轨迹是以点1)M -为圆心,半径2r =的圆,且点D 在AB 的上方,所以是圆在AB 上方的劣弧部分;此时CD的最短距离为:22CM r -== 当当点D 可能在直线AB 的下方;同理可得点D的轨迹方程:22((1)4x y +-=此时点D的轨迹是以点N 为圆心,半径2r =的圆,且点D 在AB 的下方,所以是圆在AB 下方的劣弧部分;此时CD的最大距离为:22CN r +==所以CD的取值范围为2⎡⎤⎣⎦.9.(湖北省黄冈市2019届高三上学期元月调研理)已知圆关于对称,则的值为A .B.1 C.D.0【答案】A【解析】化圆为.则圆心坐标为,圆关于对称,所以直线经过圆心,,得.当时,,不合题意,.故选A.10.(北京市朝阳区2018-2019学年度高三期末)在平面直角坐标系xOy中,过A(4,4),B(4,0),C (0,4)三点的圆被x轴截得的弦长为()A.2 B.C.4 D.【答案】C【解析】根据题意,设过三点的圆为圆,其方程为,又由,则由,解得,即圆,令,得,解得,即圆M与轴的交点坐标分别为,所以圆M被轴截得的弦长为4,故选C.11.(江西省名校学术联盟2019届高三年级教学质量检测考试12月联考)数学理)已知点,,则以线段为直径的圆的方程为A .B .C .D .【答案】D 【解析】 圆心为的中点,半径为,则以线段为直径的圆的方程为.故选D.12.(四川省南充市2018-2019学年上学期高2019届高三年级第一次高考适应性考试)点,是圆上的不同两点,且点,关于直线对称,则该圆的半径等于A .B .C .1D .3【答案】D 【解析】圆x 2+y 2+kx+2y-4=0的圆心坐标为(,因为点M ,N 在圆x 2+y 2+kx+2y-4=0上,且点M ,N 关于直线l :x-y+1=0对称, 所以直线l :x-y+1=0经过圆心, 所以.所以圆的方程为:x 2+y 2+4x+2y-4=0,圆的半径为:故选:C .13.(2017届四川省成都市石室中学高三二诊模拟考试数学理)在直角坐标系xOy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上,若圆C 上存在唯一一点M ,使2M A M O =,则圆心C 的非零横坐标是__________. 【答案】125【解析】圆心在l 上,设(),24C a a -,点(),M x y ,因为2MA MO ==,化简得:()2214x y ++=,所以点(),M x y 在以()0,1D -为圆心,以2为半径的圆上,又点(),M x y 在圆C 上,所以圆C 与圆D 有唯一公共点,即两圆相切,211CD =-=,或者213CD =+=,即251280a a -+=或25120a a -=,解得0a =(舍)或125,故填125. 14.(广东省肇庆市2019届高中毕业班第三次统一检测数学理)已知椭圆C :2212x y +=,直线l :1y x =-与椭圆C 交于A ,B 两点,则过点A ,B 且与直线m :43x =相切的圆的方程为______. 【答案】2211639x y ⎛⎫+-= ⎪⎝⎭. 【解析】解:椭圆C :2212x y +=,直线l :1y x =-与椭圆C 交于A ,B 两点,联立可得:22121x y y x ⎧+=⎪⎨⎪=-⎩,消去y 可得,2225848y xy x xy x +--+,解得0x =或43x =,可得(0,1)A -,41(,)33B , 过点A ,B 且与直线m :43x =相切的圆切点为B ,圆的圆心1(0,)3,半径为:43.所求圆的方程为:2211639x y ⎛⎫+-= ⎪⎝⎭.故答案为:2211639x y ⎛⎫+-= ⎪⎝⎭. 15.(宁夏石嘴山市第三中学2019届高三四模考试数学理)点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为_____. 【答案】1 【解析】曲线C 可整理为:()22225x y -+= 则曲线C 表示圆心为()2,0,半径为5的圆()()2222+121215066222t x y x y a x y a =+---=++---设d =d 表示圆上的点到()6,6-的距离则max 515d ==2max 15222t a b ∴=--=,整理得:14a b ++=()111111*********b a a b a b a b a b +⎛⎫⎛⎫∴+=+++=⨯+++ ⎪ ⎪+++⎝⎭⎝⎭又121b a a b ++≥=+(当且仅当11b a a b +=+,即1a =,2b =时取等号) 1114114a b ∴+≥⨯=+,即111a b ++的最小值为1 本题正确结果:116.(贵州省贵阳市2019年高三5月适应性考试二理)圆与曲线相交于,,,四点,为坐标原点,则__________.【答案】.【解析】 ∵圆的圆心为M (-3,2), ∴圆关于M (-3,2)中心对称,又曲线,关于(-3,2)中心对称, ∴圆与曲线的交点关于(-3,2)中心对称,不妨设与,与关于(-3,2)中心对称,则,,∴,故答案为.17.(北京市房山区2019年高考第一次模拟测试数学理)已知点A (-2,0),B (0,2),若点P 在圆(x-3)2+(y+1)2=2上运动,则面积的最小值为______.【答案】4 【解析】∵点A (-2,0),B (0,2),∴AB 的直线方程为=1,即x-y+2=0.圆心C (3,-1)到直线AB 的距离为d=,因为点P 在圆(x-3)2+(y+1)2=2上运动,所以点P到直线AB距离的最小值为:=,且.则ABP面积的最小值为.故答案为:4.18.(湖南省长沙市第一中学2018届高三下学期高考模拟卷三数学理)已知直线过定点,线段是圆的直径,则________.【答案】7.【解析】直线可化为,联立,解得点,∵线段是圆的直径,∴19.(广西桂林市、崇左市2019届高三下学期二模联考数学理)以抛物线:的顶点为圆心的圆交于两点,交的准线于两点.已知,,则等于__________.【答案】.【解析】如图:,,,,,,,,解得:,故答案为:.20.(北京市大兴区2019届高三4月一模数学理)在极坐标系下,点π(1,)2P 与曲线2cos ρθ=上的动点Q距离的最小值为_________.1 【解析】由题得点P 的直角坐标为(0,1),222222cos 2cos +201)1x y x x y ρθρρθ=∴=∴-=∴-+=,,,(,所以曲线是以点(1,0)为圆心,以1为半径的圆,所以点P 11-=.1.21.(江苏省南京市、盐城市2019届高三第二次模拟考试)在平面直角坐标系xOy 中,已知点()1,0A -,()5,0B .若圆()()22:44M x y m -+-=上存在唯一点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为______.【答案】【解析】根据题意,设P 的坐标为(,)a b ,直线PA 的方程为(1)1by x a =++,其在y 轴上的截距为1b a +, 直线PB 的方程为(5)5b y x a =--,其在y 轴上的截距为55b a --,若点P 满足使得直线PA ,PB 在y 轴上的截距之积为5,则有5()()515b b a a ⨯-=+-, 变形可得22(2)9b a +-=,则点P 在圆22(2)9x y -+=上,若圆22:(4)()4M x y m -+-=上存在唯一点P ,则圆M 与22(2)9x y -+=有且只有一个公共点,即两圆内切或外切,2,则两圆只能外切, 则有2425m +=,解可得:m =故答案为:22.(湖北省十堰市2019届高三年级元月调研考试理)已知圆22:(6)(6)16M x y -+-=,点(8,4)A ,过点A 的动直线与圆M 交于P ,Q 两点,线段PQ 的中点为N ,O 为坐标原点,则OMN ∆面积的最大值为______. 【答案】12 【解析】由题可知MN PQ ⊥,所以点N 在以线段AM 为直径的圆上,OMN ∆的边OM =N 到直线OM 的距离最大时,OMN ∆的面积最大,以线段AM 为直径的圆的圆心为()7,5,直线OM的方程为0x y -=,点()7,5到直线OM=所以N 到直线OM 的距离的最大值为故OMN ∆的面积的最大值为1122⨯=. 故答案为:1223.(江西省名校学术联盟2019届高三年级教学质量检测考试12月联考数学理)已知圆与轴相切于点,与轴正半轴交于点,,且,设点是圆上的动点,则的取值范围是__________. 【答案】【解析】由题意,可设圆C 的方程为,则,,所以, 则圆C 的方程为,即,可得,设,则== =,由题意可知,,所以.故答案为:. 24.(江苏省苏州市2018届高三调研测试理)在平面直角坐标系中,已知过点的圆和直线相切,且圆心在直线上,则圆的标准方程为__________. 【答案】【解析】根据题意,设圆C 的圆心为(m ,n ),半径为r ,则圆C 的标准方程为(x ﹣m )2+(y ﹣n )2=r 2,则有, 解可得:m =1,n =﹣2,r,则圆C 的方程为:(x ﹣1)2+(y +2)2=2, 故答案为:(x ﹣1)2+(y +2)2=225.(东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟数学理)已知椭圆1C :2214x y +=的左、右两个顶点分别为,A B ,点P 为椭圆1C 上异于,A B 的一个动点,设直线,PA PB 的斜率分别为12,k k ,若动点Q 与,A B 的连线斜率分别为34,k k ,且3412(0)kk kk λλ=≠,记动点Q的轨迹为曲线2C .(1)当4λ=时,求曲线2C 的方程;(2)已知点1(1,)2M ,直线AM 与BM 分别与曲线2C 交于,E F 两点,设AMF ∆的面积为1S ,BME ∆的面积为2S ,若[1,3]λ∈,求12S S 的取值范围. 【答案】(1) 224(2)x y x +=≠± (2) []5,7【解析】(1)设()00,P x y ()02x ≠±,则220014x y +=,因为()()2,0,2,0A B -,则2020001222000011422444x y y y k k x x x x -=⋅===-+---(),Q x y 设 ()2x ≠±所以2341222244y y y k k k k x x x λλ=⋅===-+--,整理得 2214x y λ+= ()2x ≠±.所以,当4λ=时,曲线2C 的方程为 ()2242x y x +=≠±.(2)设()()1122,,,E x y F x y . 由题意知,直线AM 的方程为:62x y =-,直线BM 的方程为:22x y =-+.由(Ⅰ)知,曲线2C 的方程为2214x y λ+= ()2x ≠±,联立 ()2262244x y x x y λλ=-⎧≠±⎨+=⎩,消去x ,得()29160y y λλ+-=,得 1691y λλ=+ 联立()2222244x y x x y λλ=-+⎧≠±⎨+=⎩,消去x ,得()2120y y λλ+-=,得 221y λλ=+2212111111sin 91222211111sin 2222MA MF AMF y y MA MF S S MB ME MB ME BME y y λλ∠--+=====+∠-- 设()918911g ,λλλλ+==-++ 则()g λ在[]1,3上递增 又()()15,37g g ==,12S S ∴的取值范围为[]5,7 26.(四川省成都市高新区2019届高三上学期“一诊”模拟考试数学理)已知抛物线,过点的直线与抛物线相切,设第一象限的切点为. (Ⅰ)证明:点在轴上的射影为焦点; (Ⅱ)若过点的直线与抛物线相交于两点,圆是以线段为直径的圆且过点,求直线与圆的方程.【答案】(I )详见解析;(II )详见解析. 【解析】(Ⅰ)由题意知可设过点的直线方程为,由消去整理得,又因为直线与抛物线相切, 所以,解得.当时,直线方程为,可得点坐标为,又因为焦点,所以点在轴上的射影为焦点. (Ⅱ)设直线的方程为,由,其中恒成立.设,,则,所以,.由于圆是以线段为直径的圆过点,则,所以所以,解得或.当时,直线的方程为,圆的方程为;当时,直线的方程为,圆的方程为.27.(江西省抚州市七校2019届高三10月联考数学理)已知圆与直线相切于点,圆心在轴上.(1)求圆的方程;(2)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记的面积分别是.求的取值范围.【答案】(1);(2).【解析】(1)由题可知,设圆的方程为,,解得,,所以圆的方程为.(2)由题意知,,设直线的斜率为,则直线的方程为,由,得,解得或,则点的坐标为.又直线的斜率为,同理可得点的坐标为.由题可知,,.因此,又,同理,所以,当且仅当时取等号.又,所以的取值范围是.。
第48讲 圆的方程[解密考纲]对圆的方程的考查以选择题、填空题的形式出现. 一、选择题1.圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为( A ) A .(x -2)2+(y -1)2=1 B .(x +1)2+(y -2)2=1 C .(x +2)2+(y -1)2=1D .(x -1)2+(y +2)2=1解析 设对称圆的方程为(x -a )2+(y -b )2=1,圆心(1,2)关于直线y =x 的对称点为(2,1),故对称圆的方程为(x -2)2+(y -1)2=1,故选A .2.圆心在y 轴上,半径长为1,且过点(1,2)的圆的方程是( A ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1解析 设圆心坐标为(0, a ),则-2+-a2=1,∴a =2,故圆的方程为x 2+(y -2)2=1.3.以抛物线y 2=4x 的焦点为圆心,且与双曲线x 216-y 29=1的两渐近线相切的圆的方程为( C )A .x 2+⎝ ⎛⎭⎪⎫y -1162=125B .x 2+(y -1)2=1625C .(x -1)2+y 2=925D .(x -2)2+y 2=3625解析 抛物线y 2=4x 的焦点为F (1,0),双曲线x 216-y 29=1的渐近线为y =±34x ,即3x ±4y=0.由已知,得圆的半径长等于点F 到直线3x ±4y =0的距离,即r =|3×1|32+42=35,所以所求圆的方程为(x -1)2+y 2=925. 4.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是( A )A .3- 2B .3+ 2C .3-22D .3-22解析 圆的标准方程为(x -1)2+y 2=1,直线AB 的方程为x -y +2=0,圆心(1,0)到直线AB 的距离d =|1-0+2|2=322,则点C 到直线AB 的最短距离为322-1.又因为|AB |=22,所以△ABC 面积的最小值为12×22×⎝ ⎛⎭⎪⎫322-1=3- 2.5.若实数x ,y 满足x 2+y 2-2x +4y =0,则x -2y 的最大值为( B ) A . 5 B .10 C .9D .5+2 5解析 原方程可化为(x -1)2+(y +2)2=5,表示以(1,-2)为圆心,5为半径的圆.设x -2y =b ,则x -2y 可看作直线x -2y =b 在x 轴上的截距,当直线与圆相切时,b 取得最大值或最小值,此时|1+4-b |5= 5.∴b =10或b =0,∴x -2y 的最大值是10.6.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率e =2,右焦点F (c,0),方程ax 2-bx -c=0的两个实数根分别为x 1,x 2,则点P (x 1,x 2)与圆x 2+y 2=8的位置关系为( C )A .点P 在圆外B .点P 在圆上C .点P 在圆内D .不确定解析 ∵e 2=1+⎝ ⎛⎭⎪⎫b a 2=2,∴⎝ ⎛⎭⎪⎫b a 2=1,∴b a=1,∴a =b ,c =2a ,∴方程ax 2-bx -c =0可化为x 2-x -2=0.∴x 1+x 2=1,x 1·x 2=- 2.∴x 21+x 22=(x 1+x 2)2-2x 1x 2=1+22<8,∴点P 在圆内,故选C . 二、填空题7.圆心在直线2x -y =3上,且与两坐标轴均相切的圆的标准方程是__(x -3)2+(y -3)2=9或(x -1)2+(y +1)2=1__.解析 依题意设圆心为(a,2a -3),因为圆与两坐标轴均相切,所以|a |=|2a -3|,解得a =1或a =3,即r =1或3,故圆的标准方程为(x -3)2+(y -3)2=9或(x -1)2+(y +1)2=1.8.若圆C 与圆x 2+y 2+2x =0关于直线x +y -1=0对称,则圆C 的方程是__x 2+y 2-2x -4y +4=0__.解析 设C (a ,b ),因为已知圆的圆心为A (-1,0),由点A ,C 关于直线x +y -1=0对称,得⎩⎪⎨⎪⎧b a +1-=-1,a -12+b2-1=0.解得⎩⎪⎨⎪⎧a =1,b =2.又因为圆的半径是1,所以圆C 的方程是(x -1)2+(y -2)2=1,即x 2+y 2-2x -4y +4=0.9.若过点P (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围是 (-∞,-3)∪⎝ ⎛⎭⎪⎫1,32 .解析 圆的方程可化为(x -a )2+y 2=3-2a ,因为过点P (a ,a )能作圆的两条切线,所以点P 在圆的外部,即⎩⎪⎨⎪⎧a 2+a 2-2a 2+a 2+2a -3>0,3-2a >0,解得a <-3或1<a <32.故a 的取值范围为(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32. 三、解答题10.(2018·广东湛江模拟)已知△ABC 的顶点坐标分别为A (-1,5),B (-2,-1),C (4,3),M 是BC 的中点.(1)求AB 边所在直线的方程; (2)求以线段AM 为直径的圆的方程.解析 (1)因为A (-1,5),B (-2,-1),所以由两点式得AB 的方程为y -5-1-5=x ---2--,整理得6x -y +11=0.(2)因为M 是BC 的中点,所以M ⎝ ⎛⎭⎪⎫-2+42,-1+32,即M (1,1), 所以|AM |=-1-2+-2=25,所以圆的半径为 5.所以AM 的中点为⎝ ⎛⎭⎪⎫-1+12,5+12,即中点为(0,3),所以以线段AM 为直径的圆的方程为x 2+(y -3)2=5.11.一圆经过A (4,2),B (-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程.解析 设所求圆的方程为x 2+y 2+Dx +Ey +F =0. 令y =0,得x 2+Dx +F =0,所以x 1+x 2=-D . 令x =0,得y 2+Ey +F =0,所以y 1+y 2=-E . 由题意知-D -E =2,即D +E +2=0.①又因为圆过点A ,B ,所以16+4+4D +2E +F =0.② 1+9-D +3E +F =0.③解①②③组成的方程组得D =-2,E =0,F =-12. 故所求圆的方程为x 2+y 2-2x -12=0.12.(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程; (3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.解析 (1)圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5. 由圆心N 在直线x =6上,可设N (6,y 0).因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7, 圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1. 因此,圆N 的标准方程为(x -6)2+(y -1)2=1. (2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m ,即2x -y +m =0,则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为|BC |=|OA |=22+42=25, 而|MC |2=d 2+⎝ ⎛⎭⎪⎫|BC |22,所以25=m +25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t,0),TA →+TP →=TQ →,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.①因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.② 将①代入②,得(x 1-t -4)2+(y 1-3)2=25.所以P (x 1,y 1)在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上,即此两圆有公共点, 所以5-5≤t +-6]2+-2≤5+5,解得2-221≤t ≤2+221.因此,实数t 的取值范围是[2-221,2+221].。
圆的方程(简答题:一般)1、求圆心在直线上,与轴相切,且被直线截得的弦长为的圆的方程。
2、(1)求过点且在两个坐标轴上截距相等的直线方程。
(2)已知圆心为的圆经过点和,且圆心在直线上,求圆心为的圆的标准方程.3、(1)已知圆的圆心是与轴的交点,且与直线相切,求圆的标准方程. (2)若点在圆上,求的最大值.4、已知为圆上的动点,,为定点.(1)求线段中点M的轨迹方程;(2)若,求线段中点N的轨迹方程.5、求圆心在直线上,且过两圆,交点的圆的方程.6、已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积7、已知圆过,,且圆心在直线上.(Ⅰ)求此圆的方程.(Ⅱ)求与直线垂直且与圆相切的直线方程.(Ⅲ)若点为圆上任意点,求的面积的最大值.8、已知直线与相较于点,直线.(1)若点在直线上,求的值;(2)若直线交直线分别为点和点,且点的坐标为,求的外接圆的标准方程。
9、已知圆的圆心在直线上,且圆在轴、轴上截得的弦长和分别为和.(1)求圆的方程;(2)若圆心位于第四象限,点是圆内一动点,且,满足,求的范围.10、已知圆经过,两点,且圆心在直线上.(1)求圆的方程;(2)动直线:过定点,斜率为的直线过点,直线和圆相交于,两点,求的长度.11、已知圆的圆心在直线上,且与直线相切于点,(1)求圆方程;(2)是否存在过点的直线与圆交于两点,且的面积是(为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.12、(1)求与圆心在直线上,且过点A(2,-3),B(-2,-5)的圆C的方程.(2)设是圆C上的点,求的最大值和最小值.13、已知方程表示一个圆.(1)求实数的取值范围;(2)求该圆半径的取值范围;(3)求该圆心的纵坐标的最小值.14、如图,经过点作两条互相垂直的直线和,直线交轴正半轴于点,直线交轴正半轴于点.(1)如果,求点的坐标.(2)试问是否总存在经过,,,四点的圆?如果存在,求出半径最小的圆的方程;如果不存在,请说明理由.15、已知为圆上任一点,且点.(1)若在圆上,求线段的长及直线的斜率.(2)求的最大值和最小值.(3)若,求的最大值和最小值.16、求圆心在直线上,且与直线相切于点的圆的方程.17、若直线与两坐标轴的交点分别为,,求以为直径的圆的方程.18、已知圆过点,圆心在直线上且圆心在第一象限,圆被轴截得的弦长为.(I)求圆的方程.(II)过点作圆的切线,求切线的方程.19、在平面直角系中,已知两点,,直线关于直线对称.()求直线的方程.()圆的圆心在直线上,且与轴相切于点,求圆的方程.20、已知圆的半径为,圆心在第一象限,且与直线和轴都相切.(Ⅰ)求圆的方程.(Ⅱ)过的直线与圆相交所得的弦长为,求直线的方程.21、求半径为2,圆心在直线上,且被直线:所截弦的长为的圆的方程.22、如图,l1,l2是通过某城市开发区中心O的两条南北和东西走向的街道,连结M、N两地之间的铁路线是圆心在l2上的一段圆弧.若点M在点O正北方向,且|MO|=3 km,点N到l1,l2的距离分别为4 km和5 km.(1)建立适当的坐标系,求铁路线所在圆弧的方程;(2)若该城市的某中学拟在点O正东方向选址建分校,考虑环境问题,要求校址到点O的距离大于4 km,并且铁路线上任意一点到校址的距离不能少于km,求该校址距点O的最近距离.(注:校址视为一个点)23、如图,已知矩形四点坐标为A(0,-2),C(4,2),B(4,-2),D(0,2).(1)求对角线所在直线的方程;(2)求矩形外接圆的方程;(3)若动点为外接圆上一点,点为定点,问线段PN中点的轨迹是什么,并求出该轨迹方程。
圆的方程(选择题:较易)1、若圆与轴相切于点,与轴的正半轴交于两点,且,则圆的标准方程是()A. B.C. D.2、方程表示一个圆,则的范围是()A. B.C. D.3、与圆同圆心,且过的圆的方程是()A. B.C. D.4、已知圆的圆心与点关于直线对称.直线与圆相交于两点,且,则圆的方程为A. B.C. D.5、在平面直角坐标系中,动点的坐标满足方程,则点的轨迹经过()A.第一、二象限 B.第二、三象限C.第三、四象限 D.第一、四象限6、圆的圆心坐标和半径分别为()A.(0,2),2 B.(2,0),2 C.(-2,0),4 D.(2,0),47、以为圆心,且与两条直线与同时相切的圆的标准方程为()A. B.C. D.8、圆心为且过点的圆的方程是()A. B.C. D.9、点A(1,0)在圆上,则a的值为()A.1 B.-2 C.1或-2 D.2或-210、方程表示的圆()A.关于x轴对称B.关于y轴对称C.关于直线对称D.关于直线对称11、已知点P(x,y)为圆C:x2+y2﹣6x+8=0上的一点,则x2+y2的最大值是()A.2 B.4 C.9 D.1612、圆心在轴上,半径为1,且过点(1,2)的圆的方程是()A. B.C. D.13、圆:与圆:的位置关系是( )A.相交 B.外切 C.内切 D.相离14、已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.15、圆的圆心坐标和半径分别是()A. B. C. D.16、由曲线围成的图形的面积为()A. B. C. D.17、点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=118、若直线过圆的圆心,则实数的值为()A. B. C. D.19、圆,那么与圆有相同的圆心,且经过点的圆的方程是().A. B.C. D.20、圆的方程为,则其圆心坐标及半径分别为().A., B., C., D.,21、若圆与圆关于原点对称,则圆的方程为().A. B.C. D.22、圆的圆心坐标与半径是()A. B.C. D.23、已知A(-4,-5)、B(6,-1),则以线段AB为直径的圆的方程( )A.(x+1)2+(y-3)2=29 B.(x-1)2+(y+3)2=29C.(x+1)2+(y-3)2=116 D.(x-1)2+(y+3)2=11624、若表示圆,则实数的取值范围是()A. B. C. D.25、对于,直线恒过定点,则以为圆心,2为半径的圆的方程是()A. B.C. D.26、已知圆:,圆与圆关于直线对称,则圆的方程为()A. B.C. D.27、已知圆的方程为,则圆的半径为()A.3 B.9 C. D.28、已知圆心,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.29、圆的圆心坐标与半径是()A. B.C. D.30、经过圆x2+y2+2y=0的圆心C,且与直线2x+3y-4=0平行的直线方程为()A.2x+3y+3=0 B.2x+3y-3=0 C.2x+3y+2=0 D.3x-2y-2=031、以点A为圆心,且与轴相切的圆的方程为()A. B.C. D.32、方程x2+y2+x+y-m=0表示一个圆,则m的取值范围是().A.m>- B.m<- C.m≤- D.m≥-33、在平面直角坐标系中,以点为圆心且与直线相切的所有圆中,半径最大的圆的标准方程为()A. B. C. D.34、圆的圆心坐标和半径分别为A.圆心 B.圆心C.圆心 D.圆心35、过点P(2 ,1)且被圆C:x 2+y2– 2x+4y =" 0" 截得弦长最长的直线l的方程是()A.3x – y– 5 = 0 B.3x +y– 7 = 0C.x –3y+5 = 0 D.x +3y– 5 = 036、过点、点且圆心在直线上的圆的方程是()A.B.C.D.37、圆关于直线对称的圆的方程为()A. B.C. D.38、已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B. C. D.39、若直线(,),经过圆的圆心,则的最小值是()A. B. C. D.40、抛物线与坐标轴的交点在同一个圆上,则交点确定的圆的方程为()A. B.C. D.41、圆与轴相切于,与轴正半轴交于两点,且,则圆的标准方程为()A.B.C.D.42、过,圆心在轴上的圆的方程为()A. B.C. D.43、方程x2+y2+4x-2y+5=0表示的曲线是()A.两直线 B.圆 C.一点 D.不表示任何曲线44、如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于y=x对称,则必有()A.D=E B.D=F C.F=E D.D=E=F45、圆x2+y2+4x-6y-3=0的圆心和半径分别为()A.(4,-6),r=16 B.(2,-3),r=4C.(-2,3),r=4 D.(2,-3),r=1646、若方程x2+y2-4x+2y+5k=0表示圆,则实数k的取值范围是()A.R B.(-∞,1) C.(-∞,1] D.[1,+∞)47、已知圆的方程为,过点的该圆的所有弦中,最短的弦长为()A. B. C.2 D.448、若圆始终平分圆的周长,则满足的关系是()A. B.C. D.49、已知圆心在x轴上的圆C与x轴交于两点A(1,0),B(5,0),此圆的标准方程为( ) A.(x-3)2+y2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=450、已知点P(a,a+1)在圆x2+y2=25内部,那么a的取值范围是( )A.-4<a<3 B.-5<a<4 C.-5<a<5 D.-6<a<451、圆心是(4,-1),且过点(5,2)的圆的标准方程是( )A.(x-4)2+(y+1)2=10B.(x+4)2+(y-1)2=10C.(x-4)2+(y+1)2=100D.(x-4)2+(y+1)2=52、点P(a,5)与圆x2+y2=24的位置关系是( )A.点在圆外 B.点在圆内 C.点在圆上 D.不确定53、圆和圆的公共弦长为()A. B.C. D.54、方程表示的曲线为()A.一条直线和一个圆 B.一条线段与半圆C.一条射线与一段劣弧 D.一条线段与一段劣弧55、已知直线是圆的对称轴,过点作圆的一条切线,切点为,则=()A.2 B.C.6 D.56、已知圆,圆,圆与圆的位置关系为()A.外切 B.内切C.相交 D.相离57、设圆的方程是,若,则原点与圆的位置关系是()A.原点在圆上 B.原点在圆外C.原点在圆内 D.不确定58、已知圆,直线上至少存在一点,使得以点为圆心,半径为的圆与圆有公共点,则的最小值是()A. B.C. D.59、过两点的面积最小的圆的方程为()A.B.C.D.60、已知两圆的圆心距=" 3" ,两圆的半径分别为方程的两根,则两圆的位置关系是()A.相交 B.相离 C.相切 D.内含61、与圆及圆都外切的圆的圆心在()A.一个椭圆上 B.双曲线的一支上C.一条抛物线上 D.一个圆上62、圆与圆的位置关系是()A.相交 B.外切C.内切 D.相离63、已知圆的方程为是该圆内一点,过点的最长弦和最短弦分别为和,则四边形的面积是()A. B.C. D.64、已知圆的方程为是该圆内一点,过点的最长弦和最短弦分别为和,则四边形的面积是()A. B.C. D.65、已知圆心,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.66、以为圆心,4为半径的圆的方程为()A. B.C. D.67、两圆与的位置关系为()A.内切 B.外切C.相交 D.相离68、过点且圆心在直线上的圆的方程是()A.B.C.D.69、若圆与圆的公共弦的长为,则()A.2 B.1C. D.70、动点与定点的连线的斜率之积为,则点的轨迹方程是()A.B.C.D.参考答案1、C2、A3、B4、A5、A.6、B7、A8、D9、B10、D11、D12、A13、A14、C15、D16、B17、A18、A19、B20、D21、A22、D23、B24、B25、A26、B27、A28、B29、D30、A31、A32、A33、B34、B35、A36、C37、D38、C39、B40、D41、A42、D43、C44、A45、C46、B47、C48、C49、A50、A51、A52、A53、A54、D55、C56、C57、B58、A59、A60、D61、B62、D63、D64、D65、D66、C67、D68、C69、B70、C【解析】1、设中点为,则∴故选C.2、试题分析:由圆的一般式方程可知考点:圆的方程3、试题分析:把原圆的方程写成标准方程为,由于两圆共圆心,可设另一个圆方程为:,把代入所设方程,得:,所以所求的圆的方程为,化简为:,故选B.考点:1、圆的一般式方程;2、圆的标准方程的.4、试题分析:易知关于直线的对称点为,即,圆心到直线的距离为,所以,圆方程为.故选A.考点:圆的标准方程.5、试题分析:由题意得,点在以为圆心,为半径的圆上,如下图所示,故可知点在第一、二象限,故选A.考点:圆的标准方程.6、试题分析:,所以圆心坐标和半径分别为(2,0)和2,选B.考点:圆标准方程7、试题分析:因为两条直线与的距离为,所以所求圆的半径为,所以圆心到直线的距离为即或,又因为圆心到直线的距离也为,所以,所以所求的标准方程为,故应选.考点:直线与圆的位置关系.8、试题分析:由圆的标准方程可知所求圆为考点:圆的方程9、试题分析:因为点在圆上,故解得.考点:圆的一般方程.10、试题分析:圆心,即圆心坐标满足方程,所以圆关于直线对称,考点:圆的性质11、试题分析:将圆C化为标准方程,找出圆心与半径,作出相应的图形,所求式子表示圆上点到原点距离的平方,根据图形得到当P与A重合时,离原点距离最大,求出所求式子的最大值即可.解:圆C化为标准方程为(x﹣3)2+y2=1,根据图形得到P与A(4,0)重合时,离原点距离最大,此时x2+y2=42=16.故选D考点:圆的一般方程.12、试题分析:设圆的标准方程为,由题可知,a=0,r=1,将(1,2)代入方程,可求得b=2,因此圆的标准方程为。
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
课时规范练48 圆的方程基础巩固组1.与圆(x1)2+y2=4圆心相同且过点P(2,4)的圆的标准方程为()A.(x1)2+y2=17B.(x+1)2+y2=25C.(x+1)2+y2=17D.(x1)2+y2=252.若点P(1,1)在圆C:x2+y2+xy+k=0外,则实数k的取值范围是()A.(2,+∞)B.C. D.(2,2)3.点M(0,1)与圆x2+y22x=0上的动点P之间的最近距离为()A. B.2C.+1D. 14.已知实数x,y满足x2+y2+4x6y+12=0,则x的最大值是()A.3B.2C.1D.35.(多选)已知圆M的一般方程为x2+y28x+6y=0,则下列说法中正确的是()A.圆M的圆心为(4,3)B.圆M截x轴所得的弦长为8C.圆M的半径为25D.圆M截y轴所得的弦长为66.(多选)已知圆C关于y轴对称,过点(1,0),且被x轴分成两段,弧长比为1∶2,则圆C的方程可能为()A.x2+y+2=B.x2+y2=C.(x)2+y2=D.(x+)2+y2=7.(2022河北唐山二模)若圆C:x2+y2+Dx+2y=0的圆心在直线x2y+1=0上,则C的半径为.8.(2022山西晋中一模)已知圆E的圆心为(a,2),直线l1:xy+1=0,l2:xy1=0与圆E分别交于点A,B 与C,D,若四边形ABCD是正方形,则圆E的标准方程为.9.在平面直角坐标系xOy中,已知圆P截x轴所得的线段长为2,截y轴所得的线段长为2.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为,求圆P的方程.综合提升组10.圆C为过点P(4,3),Q(2,5)的圆中最小的圆,则圆C上的任意一点M到原点O距离的取值范围为()A.[2,5]B.[3,6]C.[52,5+2]D.[5,5+]11.(多选)实数x,y满足x2+y2+2x=0,则下列关于的判断正确的是()A.的最大值为B.的最小值为C.的最大值为D.的最小值为12.已知等腰三角形ABC的底边BC对应的顶点是A(4,2),底边的一个端点是B(3,5),则底边另一个端点C的轨迹方程是.13.在△ABC中,AB=4,AC=2,A=,动点P在以点A为圆心,半径为1的圆上,求的最小值.14.已知圆O:x2+y2=1,点A(1,0),B(1,0),且点P是圆O上异于A,B的动点.(1)证明:k AP k BP是定值;(2)过点P作x轴的垂线,垂足为点Q,点M满足2=,求点M的轨迹方程;(3)在(2)的条件下证明:k AM k BM是定值.创新应用组15.现有△ABC,AC=6,sin C=2sin A,则当△ABC的面积最大时,BC的长为.课时规范练48圆的方程1.D解析:由圆(x1)2+y2=4的方程可知圆心为(1,0).设所求圆的方程为(x1)2+y2=r2,r>0,将(2,4)代入,得(21)2+42=r2,解得r=5,所以圆的标准方程为(x1)2+y2=25.故选D.2.C解析:由题意得解得2<k<.故选C.3.D解析:将圆x2+y22x=0化为标准方程,得(x1)2+y2=1,圆心为(1,0),半径为1,所以点M到圆心的距离为,所以点M与圆上的动点P之间的最近距离为1.故选D.4.C解析:方程可化为(x+2)2+(y3)2=1,所以(x,y)在圆心(2,3),半径r=1的圆上,所以x的最大值是2+1=1.故选C.5.ABD解析:由x2+y28x+6y=0,得(x4)2+(y+3)2=25,所以圆M的圆心坐标为(4,3),半径为5,圆M截x 轴所得的弦长为8,圆M截y轴所得的弦长为6.故选ABD.6.AB解析:由已知得圆C的圆心在y轴上,且被x轴所截得的劣弧所对的圆心角为.设圆心坐标为(0,a),半径为r,则r sin=1,r cos=|a|,解得r=,即r2=,|a|=,即a=±.故圆C的方程为x2+y+2=或x2+y2=.故选AB.7.解析:圆C:x2+y2+Dx+2y=0的圆心为,1,则有2×(1)+1=0,则D=6,则C的半径为.8.(x2)2+(y2)2=1解析:设半径为r,圆E的标准方程为(xa)2+(y2)2=r2.由题意知,圆心E在直线xy=0上,所以a=2.又l1,l2两直线间的距离d=,且四边形ABCD是正方形,所以2r=d==2,解得r=1,所以圆E的标准方程为(x2)2+(y2)2=1.9.解(1)设P(x,y),圆P的半径为r,则y2+2=r2,x2+3=r2,有y2+2=x2+3,即y2x2=1,圆心P的轨迹方程为y2x2=1.(2)设P点的坐标为(x0,y0),则,即|x0y0|=1,即y0x0=±1,即y0=x0±1.①当y0=x0+1时,由=1,得(x0+1)2=1,解得故r2=3.圆P的方程为x2+(y1)2=3.②当y0=x01时,由=1,得(x01)2=1,解得故r2=3.圆P的方程为x2+(y+1)2=3.综上所述,圆P的方程为x2+(y1)2=3或x2+(y+1)2=3.10.D解析:过点P,Q,以线段PQ为直径的圆最小,则圆心为C(3,4),半径为.圆心到原点的距离为5,故点M到原点O距离的取值范围为[5,5+].故选D.11.CD解析:由题意可得方程x2+y2+2x=0表示圆心为点C(1,0),半径为1的圆,则为圆上的点到定点P(1,0)的斜率.设过P(1,0)的直线为y=k(x1),即kxyk=0,则圆心到直线kxyk=0的距离d=r,即=1,整理可得3k2=1,解得k=±,所以,即的最大值为,最小值为.故选CD.12.(x4)2+(y2)2=10(去掉(3,5),(5,1)两点)解析:设C(x,y).由题意知,|AB|=.因为△ABC是以BC为底边的等腰三角形,所以|CA|=|AB|=,即点C的轨迹是以点A为圆心,为半径的圆.又点A,B,C构成三角形,所以三点不可共线,所以轨迹中需去掉点B(3,5)及点B关于点A对称的点(5,1),所以点C的轨迹方程为(x4)2+(y2)2=10(去掉(3,5),(5,1)两点).13.解如图,以点A为原点,AB边所在直线为x轴建立平面直角坐标系,则A(0,0),B(4,0),C(1,).设P(x,y),则=(4x,y),=(1x,y),所以=(4x)(1x)y(y)=x25x+y2y+4=3.因为表示圆A上的点P与点M之间的距离|PM|的平方,由图得|PM|min=|AM|1=1=1,所以的最小值为(1)23=52.14.(1)证明由题意可知直线AP,BP的斜率均存在.因为线段AB是圆O的直径,所以AP⊥BP,所以k AP k BP=1,即k AP k BP是定值.(2)解设P(m,n),M(x,y),则Q(m,0),所以=(0,n),=(xm,yn).因为2=,所以所以①因为点P在圆O上,所以m2+n2=1.②将①代入②,得x2+=1.又点P异于A,B两点,所以m≠±1,即点M的轨迹方程为x2+=1(x≠±1).(3)证明由题可知直线AM,BM的斜率均存在.由M(x,y),得k AM=,k BM=.由(2)可知x21=,所以k AM k BM==9,即k AM k BM是定值.15. 2解析:如图所示,以线段AC的中点为原点,AC边所在直线为x轴建立平面直角坐标系.因为AC=6,所以A(3,0),C(3,0).设B(x,y).因为sin C=2sin A,由正弦定理可得|AB|=2|BC|,所以(x+3)2+y2=4(x3)2+4y2,化简得(x5)2+y2=16,且x≠1,x≠9,所以圆的位置如图所示,圆心为(5,0),半径r=4.观察可得,在三角形底边长AC不变的情况下,当B点位于圆心D的正上方或正下方时,高最大,此时△ABC的面积最大,B点坐标为(5,4)或(5,4),所以BC==2.。
48 圆的方程
一、基础训练
1.圆22(2)(3)16x y -++=的圆心坐标为 ,半径为 .圆22240x y x y +-+=的圆心坐标为 ,半径为 .
2.若曲线222610x y x y ++-+=上相异的两点,P Q 关于直线40kx y +-=对称,则k 的值为 .
3.动圆2222220x y x k k +--+-=的半径的取值范围是 .
4.过点(1,1)A -,(1,1)B -,且圆心在直线20x y +-=上的圆的方程是 .
5.以直线34120x y -+=夹在两坐标轴间的线段为直径的圆的方程是 .
6.关于曲线220x y ++-=对称性的判断:
○1关于直线y =成轴对称;○2关于直线y x =-成轴对称;○3关于点(成中心对称;
○
4关于点(成中心对称. 其中正确的是 .(写出所有正确判断的序号)
7.若圆22
2410x y x y ++-+=关于直线220ax by -+=(,a b R ∈)对称,则ab 的取值范围是 .
8.圆22(1)(3)1x y -+-=关于直线250x y ++=对称的圆的方程是 .
二、例题精讲
例1.已知圆C 和直线6100x y --=相切于点(4,1)-,且经过点(9,6),求圆C 的方程.
例2.一圆经过(3,2)A -,(2,1)B 两点,求分别满足下列条件的圆的方程.
(1)圆心在直线230x y --=上;
(2)在两坐标轴上的四个截距之和为2.
例3.求过直线240x y ++=和圆222410x y x y ++-+=的交点,且面积最小的圆的方程.
例4.在平面直角坐标系xOy 中,设二次函数2()2f x x x b =++(x R ∈)的图像与两个坐标轴有三个交点,经过这三个交点的圆记为C .
(1)求实数b 的取值范围;
(2)求圆C 的方程;
(3)问圆C 是否经过定点[更多资料加q465010203](其坐标与b 无关)?请证明你的结论.
三、巩固练习
1.方程224250x y mx y m ++-+=表示圆的充要条件是 .
2.经过点(1,1)C -和(1,3)D ,圆心在x 轴上的圆的标准方程为 .
3.若PQ 是圆O :229x y +=的弦,PQ 的中点是(1,2)M ,则直线PQ 的方程是 .
4.方程22x y x y +=+表示封闭的曲线所围成图形的面积是 .
四、要点回顾
1.“选形式,求参数”是确定圆方程的基本方法.圆心是圆的定为条件,半径是圆的定形条件.方程220x y Dx Ey F ++++=只有当22
40D E F +->时才表示圆,用配方法可化为圆的标准方程.
2.求圆的方程有两种方法:○
1代数法,即用“待定系数法”求圆的一般方程.○2几何法,通过圆的性质,直线与圆的关系求出圆心、半径,进而写出圆的标准方程.
圆的方程作业
1.把圆的方程()()()()32240x x y y -++-+=化为圆的标准方程是 .
2.圆()2225x y ++=关于原点()0,0对称的圆的方程为 . 3.已知两点(1,0)A -,(0,2)B ,点P 是圆()2
211x y -+=上任意一点,则PAB ∆面积最大值是 .
4.圆心在直线20x y +=上,且与直线10x y +-=相切于点(2,1)-的圆的方程是 .
5.方程
1x -=表示的曲线是 .
6.经过点(2,4)P -,且以两圆2260x y x +-=和224x y +=的公共弦为一条弦的圆的方程是 .
7.如图是某拱桥的一孔示意图,该圆拱跨度20AB =m ,拱高4OP =m ,在建造时每隔4m 需用一根支柱支撑,求支柱22
A P 的长度.(精确到0.01m )
8.试判断四点(1,2)A ,(0,1)B ,(1,6)C -,(4,3)D 是否在同一圆上.
9.如图,平面直角坐标系xOy 中,AOB ∆和COD ∆为两等腰直角三角形,(2,0)A -,(,0)C a (0a >).设AOB ∆和COD ∆的外接圆圆心分别为,M N .
(1)若圆M 与直线CD 相切,求直线CD 的方程;
(2)是否存在这样的圆N ,使得圆N
上有且只有三个点到直线AB 此时圆N 的标准方程;若不存在,请说明理由.
10.已知(,)P t t ,t R ∈,点M 是圆1O :()22114x y +-=上的动点,点N 是圆2O :()22124x y -+=上的动点,求PN PM -的最大值.。