2015年安顺市中考数学试题答案
- 格式:pdf
- 大小:2.84 MB
- 文档页数:4
2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
安顺中考数学试题及答案本文将为您提供安顺中考数学试题及答案。
试题与答案将按照合适的格式进行呈现,以帮助您更好地理解和应对中考数学题。
**一、选择题(每题4分,共50分)**1. 在一个等差数列中,首项为2,公差为3,前n项和为50,则n 的值是:A. 5B. 8C. 10D. 12答案:C2. 若a:b = 2:3,且b:c = 4:5,则a:b:c的比值为:A. 8:12:15B. 4:6:10C. 6:9:10D. 8:12:16答案:A3. 下列哪个图形不是一个正多边形?A. 正三角形B. 正方形C. 正五边形D. 正六边形答案:D(...以下省略部分选择题...)**二、填空题(每题4分,共40分)**1. 一个线段上有5个点,它们把这个线段分成了几份?答案:42. 两个互为倒数的数的乘积等于多少?答案:-13. 已知等差数列的前两项分别为a1和a4,公差为d,那么a5是多少?答案:a5 = a4 + d(...以下省略部分填空题...)**三、解答题(共40分)**1. 某商店打折促销,原价500元的商品打8.8折,求打折后的价格。
解答:打折后的价格 = 原价 ×打折比例打折后的价格 = 500元 × 0.88 = 440元2. 某车行共有150辆汽车,其中30%为SUV车型,剩下的都为轿车。
求轿车的数量。
解答:轿车的数量 = 总数量 - SUV车的数量轿车的数量 = 150辆 - 30% × 150辆= 150辆 - 0.3 × 150辆= 150辆 - 45辆= 105辆(...以下省略部分解答题...)希望以上提供的安顺中考数学试题及答案能够对您有所帮助。
祝您在中考中取得优异的成绩!。
安顺市2014-2015学年度第一学期期末教学质量检测九年级数学试卷(总分:150分 时间:120分钟)一、 选择题(本大题共10题 共30分)1、下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2、下列事件为不可能事件的是( )A .某射击运动员射击一次,命中靶心B .掷一次骰子,向上一面是3点C .找到一个三角形,其内角和是200ºD .经过城市中某一有交通信号灯的路口遇到绿灯3、如图(1),△OAB 绕点O 逆时针旋转80º到△OCD 已知∠AOB=45º,则∠AOD 等于( ) A .35º B .40º C .45º D .55º图(1)B4、如图(2),点A 、B 、C 在⊙O 上,∠OCB=40º, 则∠A 的度数等于( )A .20ºB .40ºC .50ºD .100º5、在平面直角坐标系中,将抛物线22-=x y 先向右平移2个单位,再向上平移3个单位,得到的抛物线的解析式是( )A .()122++=x y B .()122--=x yC .()122+-=x y D .()122-+=x y6、正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( ) A .6,23 B .23,3 C .6,3 D .26,237、一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数大4,设个位数字为x ,则方程为( )A .4)4(10)4(22-+-=-+x x x x B .x2+(x-4)2=10(x-4)+x+4C .4)4(10)4(22-++=++x x x x D .x 2+(x+4)28、如图(3)所示,P 为⊙O 外一点,PA 、PB 分别切 ⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点 C 、D ,若PA=15,则△PCD 的周长为( ) A .15 B .12 C .20 D .309、若二次函数y=x 2-6x+c 的图像过A (-1,y 1)、B (2,y 2)、C (5,y 3)三点,则y 1、y 2、y 3大小关系正确的是( )A .y 1>y 2>y 3B .y 1>y 3 > y 2C .y 2>y 1>y 3D .y 3>y 1>y 2图(2)P10yA .B .C .D .二、填空题 (本大题共8题 共32分)11、()6522+--=x y 的顶点坐标是 。
2015年贵州省安顺市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. (2015贵州省安顺市,1,3分)|-2015|等于()A. 2015B. -2015C. ±2015D.1 2015【答案】A2. (2015贵州省安顺市,2,3分)餐旧边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。
据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A. 5×109千克B. 50×109千克C. 5×1010千克D. 0.5×1011千克【答案】C3. (2015贵州省安顺市,3,3分)下列立体图形中,俯视图是正方形的是()【答案】B4. (2015贵州省安顺市,4,3分)点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A. (-3,0)B. (-1,6)C. (-3,-6)D. (-1,0)【答案】A5. (2015贵州省安顺市,5,3分)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图像不经过第()象限。
A. 四B. 三C. 二D.一【答案】D6. (2015贵州省安顺市,6,3分)如图,点O 是矩形ABCD 的中心,E 是AB 上的点,折叠后,点B 恰好与点O 重合,若BC=3。
则折痕CE 的长为()B.32 D.6【答案】A7. (2015贵州省安顺市,7,3分)已知三角形两边的长是3和4,第三边的长是方程x 2-12x+35=0的根,则该三角形的周长是()A.14B.12C.12或14D.以上都不对【答案】B8. jscm (2015贵州省安顺市,8,3分)如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF :FC 等于()A.3:2B. 3:1C. 1:1D. 1:2【答案】D9. jscm (2015贵州省安顺市,9,3分)如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC=4,CD 的长为()B.4 D.8【答案】C10.jscm(2015贵州省安顺市,10,3分)如图为二次函数y=ax2+bx+c=0(a≠0)的图象,则下列说法:①a>0②2a+b=0③a+b+c>0④当-1<x<3时,y>0其中正确的个数为()A.1B.2C.3D.4【答案】C二、填空题(本大题共6小题,每小题3分,满分18分.)11. (2015贵州省安顺市,1,4分)19的平方根是________.【答案】±1 312. (2015贵州省安顺市,12,4分)计算:(-3)2013·(-13)2011=_______.【答案】913. (2015贵州省安顺市,13,4分)分解因式:2a2-4a+2=_______.【答案】2(a-1)214. (2015贵州省安顺市,14,4分)一组数据2,3,x,5,7的平均数是4,则这组数据的众。
贵州省安顺市初中毕业生学业招生考试特别提示:1、本卷为数学科试题单,共27个题,满分150分.共4页.考试时间120分钟.2、考试采用闭卷形式,用笔在特制答题卡上答题,不能在本题单上作答.3、答题时请仔细阅读答题卡上的注意事项,并根据本题单各题的编号在答题卡上找到答题的对应位置,用规定的笔进行填涂和书写. 一、单项选择题(共30分,每小题3分)1. (2011贵州安顺,1,3分)-4的倒数的相反数是( )A .-4B .4C .-41D .41【答案】D 2.(2011贵州安顺,2,3分)已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)( )A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米 【答案】B 3.(2011贵州安顺,3,3分)如图,己知AB ∥CD ,BE 平分∠ABC ,∠ CDE =150°,则∠C 的度数是( )A .100°B .110°C .120°D .150°【答案】C 4.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃) 25 26 27 28 天 数1 123 则这组数据的中位数与众数分别是( ) A .27,28 B .27.5,28 C .28,27 D .26.5,27【答案】A5.(2011贵州安顺,5,3分)若不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A .m ≤35B .m <35C .m >35D .m ≥35【答案】A6. (2011贵州安顺,6,3分)如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )第3题图A .B .C .D .【答案】A7. (2011贵州安顺,7,3分)函数1--=x xy 中自变量x 的取值范围是( ) A .x ≥0 B .x <0且x ≠l C .x <0 D .x ≥0且x ≠l【答案】D8. (2011贵州安顺,8,3分)在Rt △ABC 中,斜边AB =4,∠B = 60°,将△ABC 绕点B 按顺时针方向旋转60°,顶点C 运动的路线长是( )A .3πB .32πC .πD .34π 【答案】B9. (2011贵州安顺,9,3分)正方形ABCD 边长为1,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,且AE =BF =CG =DH .设小正方形EFGH 的面积为y ,AE =x . 则y 关于x 的函数图象大致是( )A .B .C .D .【答案】C 10.(2011贵州安顺,10,3分)一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ) A .(4,O) B.(5,0) C .(0,5) D .(5,5)【答案】B二、填空题(共32分,每小题4分) 11.(2011贵州安顺,11,4分)因式分解:x 3-9x = .【答案】x ( x -3 )( x +3 ) 12.(2011贵州安顺,12,4分)小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为 .第10题图【答案】144º 13.(2011贵州安顺,13,4分)已知圆锥的母线长力30,侧面展开后所得扇形的圆心角为120°,则该圆锥的底面半径为 .【答案】10 14.(2011贵州安顺,14,4分)如图,点E (0,4),O (0,0),C (5,0)在⊙A 上,BE 是⊙A 上的一条弦,则tan ∠OBE = .【答案】541 5.(2011贵州安顺,14,4分)某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x 元/立方米,则所列方程为 .【答案】826%)201(50=-+xx16.(2011贵州安顺,16,4分)如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′点,那么△ADC ′的面积是 .【答案】6cm 2 17.(2011贵州安顺,17,4分)已知:如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标第16题图第14题图第12题图为 .【答案】P (3,4)或(2,4)或(8,4) 18.(2011贵州安顺,18,4分)如图,在Rt △ABC 中,∠C =90°,CA =CB =4,分别以A 、B 、C 为圆心,以21AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是 .【答案】π28-三、解答题(本大题共9个小题,共88分)19.(2011贵州安顺,19,8分)计算:23860tan 211231-+-+︒-⎪⎭⎫ ⎝⎛---【答案】原式=3223232-+--+=2 .20.(2011贵州安顺,20,8分)先化简,再求值:⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+-+--142244122a a a a a a a ,其中a =2-3 【答案】原式=a aa a a a a -÷⎥⎦⎤⎢⎣⎡-+---4)2(2)2(12=aa a a a a a a -⋅-+---4)2()2)(2()1(2=2)2(1-a当a =32-时,原式=31.21.(2011贵州安顺,21,8分)一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31°的方向上,沿河岸第18题图第17题图向北前行40米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:tan 31°≈53)【答案】过点C 作CD ⊥AB 于D ,由题意31=∠DAC ,45=∠DBC ,设CD = BD = x 米,则AD =AB +BD =(40+x )米,在Rt ACD ∆中,tan DAC ∠=AD CD ,则5340=+x x ,解得x = 60(米).22.(2011贵州安顺,22,10分)有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-l ,-2和-3.小强从A 布袋中随机取出一个小球,记录其标有的数字为a ,再从B 布袋中随机取出一个小球,记录其标有的数字为b ,这样就确定点Q 的一个坐标为(a ,b ).⑴用列表或画树状图的方法写出点Q 的所有可能坐标; ⑵求点Q 落在直线y =x -3上的概率.【答案】(1)列表或画树状图略,点Q 的坐标有(1,-1),(1,-2),(1,-3),(2,-1),(2,-2),(2,-3);(2)“点Q 落在直线y = x -3上”记为事件,所以3162)(==A P ,即点Q 落在直线y = x -3上的概率为31.23.(2011贵州安顺,23,10分)如图,已知反比例函数xky =的图像经过第二象限内的点A (-1,m ),AB ⊥x 轴于点B ,△AOB 的面积为2.若直线y =ax +b 经过点A ,并且经过反比例函数xky =的图A 第21题图D第21题图象上另一点C (n ,一2).⑴求直线y =ax +b 的解析式;⑵设直线y =ax +b 与x 轴交于点M ,求AM 的长.【答案】(1)∵点A (-1,m )在第二象限内,∴AB = m ,OB = 1,∴221=⋅=∆BO AB S ABO 即:2121=⨯m ,解得4=m ,∴A (-1,4), ∵点A (-1,4),在反比例函数x k y =的图像上,∴4 =1-k,解得4-=k ,∵反比例函数为x y 4-=,又∵反比例函数xy 4-=的图像经过C (n ,2-)∴n42-=-,解得2=n ,∴C (2,-2),∵直线b ax y +=过点A (-1,4),C (2,-2)∴⎩⎨⎧+=-+-=b a b a 224 解方程组得 ⎩⎨⎧=-=22b a∴直线b ax y +=的解析式为22+-=x y ;(2)当y = 0时,即022=+-x 解得1=x ,即点M (1,0)在ABM Rt ∆中,∵AB = 4,BM = BO +OM = 1+1 = 2,由勾股定理得AM =52.24.(2011贵州安顺,24,10分)某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T 恤或一本影集作为纪念品.已知每件T 恤比每本影集贵9元,用200元恰好可以买到2件T 恤和5本影集.⑴求每件T 恤和每本影集的价格分别为多少元? ⑵有几种购买T 恤和影集的方案? 【答案】(1)设T 恤和影集的价格分别为元和元.则x y ⎩⎨⎧=+=-200529y x y x 第23题图解得答:T 恤和影集的价格分别为35元和26元.(2)设购买T 恤件,则购买影集 (50-) 本,则解得,∵为正整数,∴= 23,24,25, 即有三种方案.第一种方案:购T 恤23件,影集27本;第二种方案:购T 恤24件,影集26本;第三种方案:购T 恤25件,影集25本. 25.(2011贵州安顺,25,10分)如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 上,且AF =CE =AE .⑴说明四边形ACEF 是平行四边形;⑵当∠B 满足什么条件时,四边形ACEF 是菱形,并说明理由.【答案】(1)证明:由题意知∠FDC =∠DCA = 90°.∴EF ∥CA ∴∠AEF =∠EAC ∵AF = CE = AE ∴∠F =∠AEF =∠EAC =∠ECA 又∵AE = EA ∴△AEC ≌△EAF ,∴EF = CA ,∴四边形ACEF 是平行四边形 . (2)当∠B =30°时,四边形ACEF 是菱形 .理由是:∵∠B =30°,∠ACB =90°,∴AC =AB 21,∵DE 垂直平分BC ,∴ BE =CE又∵AE =CE ,∴CE =AB 21,∴AC =CE ,∴四边形ACEF 是菱形.26.(2011贵州安顺,26,12分)已知:如图,在△ABC 中,BC =AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .⑴求证:点D 是AB 的中点;⑵判断DE 与⊙O 的位置关系,并证明你的结论;⑶若⊙O 的直径为18,cosB =31,求DE 的长.⎩⎨⎧==2635y x t t ()15305026351500≤-+≤t t 92309200≤≤t t t 第25题图【答案】(1)证明:连接CD ,则CD AB ⊥, 又∵AC = BC , CD = CD , ∴ACD Rt ∆≌BCD Rt ∆∴AD = BD , 即点D 是AB 的中点.(2)DE 是⊙O 的切线 .理由是:连接OD , 则DO 是△ABC 的中位线,∴DO ∥AC , 又∵DE AC ⊥; ∴DE DO ⊥ 即DE 是⊙O 的切线;(3)∵AC = BC , ∴∠B =∠A , ∴cos ∠B = cos ∠A =31, ∵ cos ∠B =31=BC BD , BC = 18,∴BD = 6 , ∴AD = 6 , ∵ cos ∠A =31=AD AE , ∴AE = 2,在AED Rt ∆中,DE =2422=-AE AD .27.(2011贵州安顺,27,12分)如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值.第26题图第26题图【答案】(1)∵点A (-1,0)在抛物线y =21x 2 + bx -2上,∴21× (-1 )2 + b × (-1) –2 = 0,解得b =23-∴抛物线的解析式为y =21x 2-23x -2. y =21x 2-23x -2 =21 ( x 2 -3x - 4 ) =21(x -23)2-825,∴顶点D 的坐标为 (23, -825).(2)当x = 0时y = -2, ∴C (0,-2),OC = 2。
2015年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1. (4分)(2015?安徽)在-4, 2,- 1, 3这四个数中,比-2小的数是()A . - 4 B. 2 C. - 1 D. 32. (4分)(2015?安徽)计算Fx匚的结果是()A . B. 4 C.卜.| D . 23. (4分)(2015?安徽)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62 亿,其中1.62亿用科学记数法表示为()4 6 8 9A . 1.62 X0B . 1.62 X0C . 1.62X0D . 0.162 X04. (4分)(2015?安徽)下列几何体中,俯视图是矩形的是()5. (4分)(2015?安徽)与1+二最接近的整数是()A . 4B . 3C . 2D . 16. (4分)(2015?安徽)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为X,则下列方程正确的是()1.4 (1+2x) =4.5A . 1.4 (1+x) =4.5 B.C . 1.4 (1+x) 2=4.5 D1.4 (1+x) +1.4 (1+x) 2=4.5.35394244454850成绩(分)人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分& (4分)(2015?安徽)在四边形ABCD中,/ A= / B= / C,点E在边AB上,/ AED=60 °则一定有()A. / ADE=20 B. / ADE=30 C. / ADE= / ADC D. / ADE= / ADC239. (4分)(2015?安徽)如图,矩形ABCD中,AB=8 , BC=4 .点E在边AB上,点F在边CD上,点G、H在对角线AC 上.若四边形EGFH 是菱形,则AE的长是()A . 2 匸B . 3 匸C . 5D . 62 210. (4分)(2015?安徽)如图,一次函数y i=x与二次函数y2=ax +bx+c图象相交于P、Q两点,则函数y=ax + (b-1)x+c的图象可能是()二、填空题(本大题共4小题,每小题5分,满分20分)11. _____________________________________________ (5分)(2015?安徽)-64的立方根是.12. (5分)(2015?安徽)如图,点A、B、C在半径为9的O O上,爲的长为2n,则/ACB的大小是________________________________13. (5分)(2015?安徽)按一定规律排列的一列数:21, 22, 23, 25, 28, 213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是________________________ .14. (5分)(2015?安徽)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c旳,则7 =1 ;3b②若a=3,则b+c=9 ;③若a=b=c,贝U abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是_________________ (把所有正确结论的序号都选上).三、(本大题共2小题,每小题8分,满分16分)/ 1 1 115. (8分)(2015?安徽)先化简,再求值:(「 + ' )?,其中a=-a~1 1 - a a 2y K O16. (8分)(2015?安徽)解不等式:-> 13 o四、(本大题共2小题,每小题8分,满分16分)17. (8分)(2015?安徽)如图,在边长为1个单位长度的小正方形网格中,给出了△ ABC (顶点是网格线的交点)(1)请画出△ ABC关于直线I对称的△ A I B I C I;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△ A2B2C2,使A2B2=C2B2-18. (8分)(2015?安徽)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°底部点C的俯角为30°求楼房CD的高度(换=1.7).五、(本大题共2小题,每小题10分,满分20分)19. (10分)(2015?安徽)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. (10分)(2015?安徽)在O O中,直径AB=6 , BC是弦,/ ABC=30 °点P在BC上,点Q在O O上,且OP丄PQ.(1)如图1,当PQ// AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.七、(本题满分12分)22. (12分)(2015?安徽)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边, 围网在水库中围成了如图所示的 ①②③ 三块矩形区域,而且这三块矩形区域的面积相等•设 矩形区域ABCD 的面积为ym 2.六、(本题满分12分)k 121. ( 12分)(2015?安徽)如图,已知反比例函数 y 与一次函数y=k 2x+b 的图象交于点x(1) 求 k i 、k 2、b 的值; (2)求厶AOB 的面积;k.(3) 若M (X 1, y 1)、N (X 2, y 2)是比例函数y=—-图象上的两点,且 X 1V X 2, y 1 <y 2,A (1 , 8)、B (- 4, m ).指出点M 、 N 各位于哪个用总长为80m 的BC 的长度为xm,B区域①EH G域区域②③A E B(1) 求y与x之间的函数关系式,并注明自变量x的取值范围;(2) x为何值时,y有最大值?最大值是多少?八、(本题满分14分)23. (14分)(2015?安徽)如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线, 过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且/ AGD= / BGC .(1)求证:AD=BC ;(2)求证:△ AGD EGF;(3)如图2,若AD、BC所在直线互相垂直,求 "的值.2015年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(4分)(2015?安徽)在-4, 2,- 1, 3这四个数中,比-2小的数是()A . - 4 B. 2 C. - 1 D. 3考点:有理数大小比较.分析::根据有理数大小比较的法则直接求得结果,再判定正确选项.解答::解:•••正数和0大于负数,•••排除2和3.•••|-2|=2, |- 1|=1 , |-4|=4,• 4> 2> 1,即-4|> |- 2|> - 1|,•••- 4v- 2V- 1. 故选:A .点评:考查了有理数大小比较法则•正数大于绝对值大的反而小.0, 0大于负数,正数大于负数;两个负数,2. (4 分)(2015?安徽)计算■■■ .:■:■: X「的结果是()A . B. 4C. D. 2考点:二次根式的乘除法.分析:.直接利用二次根式的乘法运算法则求出即可.解答:解: 'X ?= -,=4.故选:B.点评:此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.3. (4分)(2015?安徽)移动互联网已经全面进入人们的日常生活•截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A. 4 61.62 X0 B. 1.62 X08C . 1.62X09D . 0.162 X0考点:科学记数法一表示较大的数.分析:科学记数法的表示形式为a X0n的形式,其中1弓a|v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解答::解:将1.62亿用科学记数法表示为 1.62 X 08.故选C .点评:.此题考查科学记数法的表示方法.科学记数法的表示形式为a X0n的形式,其中1弓a|v 10, n为整数,表示时关键要正确确定a的值以及n的值.4. (4分)(2015?安徽)下列几何体中,俯视图是矩形的是()考点:简单几何体的三视图.分析:根据简单和几何体的三视图判断方法,判断圆柱、圆锥、三棱柱、球的俯视图,即可解答.解答:解: A、俯视图为圆,故错误;_|B、俯视图为矩形,正确;C、俯视图为三角形,故错误;D、俯视图为圆,故错误;故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键.5. (4分)(2015?安徽)与1+ 「最接近的整数是()A . 4 B. 3 C. 2 D. 1考点:估算无理数的大小.分析:由于4V 5V 9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+匸最接近的整数即可求解.解答::解:v4V5V9,2V V 3.又5和4比较接近,5最接近的整数是2, •••与1+二最接近的整数是3, 故选:B.点评:. 此题主要考查了无理数的估算能力,估算无理数的时候,夹逼法”是估算的一般方法,也是常用方法.6. (4分)(2015?安徽)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为X,则下列方程正确的是()A . 1.4 (1+x) =4.5B. 1.4 (1+2x) =4.52C. 1.4 (1+x) 2=4.5D.-- ---- ------- ----- 21.4 (1+x) +1.4 (1+x) =4.5考点:由实际问题抽象出一兀二次方程. 专题:增长率问题.分析:;根据题意可得等量关系:2013年的快递业务量(1+增长率)2=2015年的快递业务量,根据等量关系列出方程即可.解答:解:设2014年与2013年这两年的平均增长率为x,由题意得:21.4 (1+x)=4.5 ,故选:C.点评:此题主要考查了由实际问题抽象出一兀二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1ix)2=b.A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D •该班学生这次考试成绩的平均数是45分考点:众数;统计表;加权平均数;中位数.分析::结合表格根据众数、平均数、中位数的概念求解. 解答::解:该班人数为:2+5+6+6+8+7+6=40 , 得45分的人数最多,众数为 45,第20和21名同学的成绩的平均值为中位数,中位数为:二'工=45,2平均数为:35 X 姑39X 硏42X 気44 X &+45X E+48X7+50X6 =44 425 40 故错误的为D . 故选D .点评: 本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.考点:: 多边形内角与外角;三角形内角和定理. 分析::利用三角形的内角和为 180°四边形的内角和为 360°分别表示出/ A ,/ B ,/ C , 根据/ A= / B= / C ,得到/ ADE= ' / EDC ,因为21g 1/ ADC= / ADE+ / EDC= — / EDC+ / EDC= / EDC ,所以/ ADC= — / ADC ,即可解2 2 3答.8 (4分)(2015?安徽)在四边形 ABCD 中, A . / ADE=20 ° B . / ADE=30 °定有( )C . / ADE=2 / ADCD./ ADE=_1 / ADC23/ A= / B= / C ,点 E 在边 AB 上,/ AED=60 °,解答:: 解:如图,n在厶AED 中,/ AED=60 °•••/ A=180 °-Z AED -/ ADE=120 ° -/ ADE ,在四边形DEBC 中,/ DEB=180 °-/ AED=180 °- 60°=120 °•••/ B= / C= (360°-/ DEB -/ EDC)吃=120°-—/EDC ,2•// A= / B= / C,•• 120°-/ ADE=120。
2015年贵州省安顺市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2015•安顺)|﹣2015|等于()A. 2015 B.﹣2015 C.±2015 D.2.(3分)(2015•安顺)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×109千克 B.50×109千克 C.5×1010千克 D.0.5×1011千克3.(3分)(2015•安顺)下列立体图形中,俯视图是正方形的是()A. B. C. D.4.(3分)(2015•安顺)点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0) B.(﹣1,6) C.(﹣3,﹣6) D.(﹣1,0)5.(3分)(2015•安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四 B.三 C.二 D.一6.(3分)(2015•安顺)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A. B. C. D. 67.(3分)(2015•安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A. 14 B. 12 C. 12或14 D.以上都不对8.(3分)(2015•安顺)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A. 3:2 B. 3:1 C. 1:1 D. 1:29.(3分)(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A. 2 B. 4 C. 4 D. 810.(3分)(2015•安顺)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A. 1 B. 2 C. 3 D. 4二、填空题(共8小题,每小题4分,共32分)11.(4分)(2015•安顺)的算术平方根是.12.(4分)(2015•安顺)计算:= .13.(4分)(2015•安顺)分解因式:2a2﹣4a+2= .14.(4分)(2015•安顺)一组数据2,3,x,5,7的平均数是4,则这组数据的众数是.15.(4分)(2015•安顺)不等式组的最小整数解是.16.(4分)(2015•安顺)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).17.(4分)(2015•安顺)如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为.18.(4分)(2015•安顺)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为(用含n的式子表示).三、解答题(共8小题,共88分)19.(8分)(2015•安顺)计算:(﹣)﹣2﹣(3.14﹣π)0+|1﹣|﹣2sin45°.20.(10分)(2015•安顺)先化简,再求值:÷(x﹣2+),其中x=﹣1.21.(10分)(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?22.(10分)(2015•安顺)如图,在平面直角坐标系xOy中,一次函数y=kx+b 的图象与反比例函数的图象交于A(2,3)、B(﹣3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P是y轴上一点,且满足△PAB的面积是5,直接写出OP的长.23.(12分)(2015•安顺)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)24.(12分)(2015•安顺)如图,已知点D在△ABC的BC边上,DE∥AC交AB 于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.25.(12分)(2015•安顺)如图,等腰三角形ABC中,AC=BC=10,AB=12,以BC 为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求cos∠E的值.26.(14分)(2015•安顺)如图,抛物线y=ax2+bx+与直线AB交于点A(﹣1,0),B(4,),点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的解析式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标.2015年贵州省安顺市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2015•安顺)|﹣2015|等于()A. 2015 B.﹣2015 C.±2015 D.考点:绝对值.分析:一个数到原点的距离叫做该数的绝对值.一个负数的绝对值是它的相反数.解答:解:|﹣2015|=2015,故选A.点评:此题考查绝对值问题,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2015•安顺)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×109千克 B.50×109千克 C.5×1010千克 D.0.5×1011千克考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将500亿用科学记数法表示为:5×1010.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•安顺)下列立体图形中,俯视图是正方形的是()A. B. C. D.考点:简单几何体的三视图.分析:俯视图是从物体上面看,所得到的图形.解答:解:A、圆柱的俯视图是圆,故此选项错误;B、正方体的俯视图是正方形,故此选项正确;C、三棱锥的俯视图是三角形,故此选项错误;D、圆锥的俯视图是圆,故此选项错误;故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(3分)(2015•安顺)点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0) B.(﹣1,6) C.(﹣3,﹣6) D.(﹣1,0)考点:坐标与图形变化-平移.分析:根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.解答:解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选A.点评:此题考查了平移时,点的坐标变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.5.(3分)(2015•安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四 B.三 C.二 D.一考点:根的判别式;一次函数图象与系数的关系.分析:根据判别式的意义得到△=(﹣2)2+4m<0,解得m<﹣1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m﹣1图象经过的象限.。
25 6 6 8 人数(人)年安徽省中考数学试卷2015根据上表中的信息判断,下列结论中错误的是()40一、选择题(本大题共10小题,每小题4分,满分40名同学A.该班一共有.、D四个选项,其中只有B 该班学生这次考试成绩的众数是45分分)每小题都给出A、B、C .一个是正确的. C 该班学生这次考试成绩的中位数是454班学生这次考试成绩的平均数是,(1.4分)(2015?安徽)在﹣42,﹣1,3这四个数中比小的数是3 2 .2015.(4分)D(?安徽)在四边形ABCD ﹣4 A.﹣B.C.1 中,8 ,则一定°,点E在边AB上,∠AED=60∠∠A=B=∠C)有()?4.(分)(2015安徽)计算×的结果是(242.D..A.B C ADE=∠ADC∠ B.ADE=30° C.∠A.∠ADE=20°安徽)移动互联网已经全面进入人们?4.(分)(20153 ADC∠ADE=∠D.用户总数达到4G全国2015截止年3月,的日常生活.) 1.621.62亿,其中亿用科学记数法表示为(9684,ABCD中,.C.AB=820159.(4分)D(.?安徽)如图,矩形BA.1101.62×.62.162×10 101010.62××在G、HBC=4.点E在边AB上,点F在边CD上,点的长是EGFH是菱形,则AE对角线AC上.若四边形安徽)下列几何体中,分).(44(2015?俯视图是矩形)(的是()5.CA.B .32C. A. B..DC A.B..D.)2015?安徽)与1+最接近的整数是(45.(分)(14 3 2 ..DA.B.C年的快递业务量为2013分)(2015?6.(4安徽)我省与二次y=x(2015?安徽)如图,一次函数10.(4分)亿件,受益于电子商务发展和法治环境改善等多重1.4122+y=ax、Q两点,则函数函数y=ax+bx+c图象相交于P若2014因素,年增速位居全国第一.快递业务迅猛发展,2)x+c的图象可能是((b﹣1)2013年与4.5亿件,设20142015年的快递业务量达到,则下列方程正确的是x年这两年的平均增长率为)(=4.51+2x)(.1.41+x A.1.4()=4.5 B22C.D .1.4(1+x)+1.4(1+x1.4()1+x=4.5 )=4.57.(4分)(2015?安徽)某校九年级(1)班全体学生二、填空题(本大题共4小题,每小题5分,满分202015年初中毕业体育考试的成绩统计如下表:分)48 50 45 42 39 44 35成绩(分)..2015?安徽)﹣64的立方根是11.(5分)(在半径为、CA、B(5分)(2015?安徽)如图,点12.的大小,则∠ACB的长为29的⊙Oπ上,.是1,2?安徽)按一定规律排列的一列数:.(5分)(201513 135238表示这列数中的、z,…,若,22,x,2、,2y218.(8分)(2015?.安徽)如图,平台AB高为12m,在连续三个数,猜想x、y、z满足的关系式是B处测得楼房CD顶部点D的仰角为45°,底部点C的,满足a+b=ab=cb分)(5(2015?安徽)已知实数a、、c14.的高度(=1.7)CD.,求楼房俯角为30°有下列结论:,则+=1;①若c≠0 ②若a=3,则;b+c=9 ;,则abc=0③若a=b=c .c、b、中只有两个数相等,则a+b+c=8④若a(把所有正确结论的序号都其中正确的是选上).三、(本大题共2小题,每小题8分)分,满分16)(+分)15.(8(2015?安徽)先化简,再求值:五、(本大题共2小题,每小题10分,满分20分)a=﹣?,其中19.(10分)(2015?安徽)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.﹣.?20151安徽)解不等式:>(816.(分)(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.1682四、(本大题共小题,每小题分,满分分)个单位长度1?(8.17(分)2015安徽)如图,在边长为(顶点是网格线的交ABC的小正方形网格中,给出了△点).(A对称的l 关于直线△)请画出ABC△;CB1111个单)(2将线段5再向下平移3向左平移AC个单位,并以它为一边作一个格A画出平移得到的线段位,C,2220.(10分)(2015?安徽)在⊙O中,直径AB=6,BC ,使C=CBA△点BBA.2222222是弦,∠ABC=30°,点P在BC上,点Q在⊙O 上,且OP⊥PQ.的长度;PQ时,求AB∥PQ,当1)如图1(.(2)如图2,当点P在BC上移动时,求PQ长的最大(2)x为何值时,y有最大值?最大值是多少?值.八、(本题满分14分)23.(14分)(2015?安徽)如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、、DG,且∠AGD=∠BGCCG.(1)求证:AD=BC;六、(本题满分12分)(2)求证:△AGD∽△EGF;y=(.21(12分)2015?安徽)如图,已知反比例函数所在直线互相垂直,求的AD、BC(3)如图2,若,的图象交于点与一次函数y=kx+bA(14B)、(﹣,82值..m)、kb的值;、)求(1k21 AOB(2)求△的面积;图(Nxy=y,)是比例函数)x3()若M(,y、2112各位于y<,<象上的两点,且xxy,指出点MN、2121哪个象限,并简要说明理由.2015年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40 分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(4分)(2015?安徽)在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()2 C 12七、(本题满分分).﹣.B ﹣4 .1 A 安徽)为了节省材料,某水产养殖2015?(12.22(分)考点:有理数大小比较.80m为一边,(岸堤足够长)户利用水库的岸堤用总长为分析:根据有理数大小比较的法则直接求得结果,①②③的围网在水库中围成了如图所示的三块矩形再判定正确选项.的长度BC区域,而且这三块矩形区域的面积相等.设2解答:解:∵正数和0大于负数,ymABCDxm为,矩形区域的面积为.∴排除2和3.∵|﹣2|=2,|﹣1|=1,|﹣4|=4,∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,∴﹣4<﹣2<﹣1.故选:A.点评:考查了有理数大小比较法则.正数大于0,0大于负数,正绝对值大的反而小.的y)求1(x与之间的函数关系式,并注明自变量x取值范围;)的结果是(×安徽)计算?2015(分)4(.2.4 2 9,由此根据算术平方根的概念可以找到分由于D<4B.C.<.5 A.析:接近的两个完全平方数,再估算与1+最接近的5整数即可求解.次根式的乘除法.考点:二解解:∵4<5<分析:直接利用二次根式的乘法运算法则求出即可.9,答:解答:2<<3.:×=解=4.比较接近故选题主要考查了二次根式的乘法运算,正确化简二点评:此∴最接近的整数是2,次根式是解题关键.∴与1+最接近的整数是3,故选:安徽)移动互联网已经全面进入人们2015?B.3.(4分)(点4G截止2015年3月,全国用户总数达到此题主要考查了无理数的估算能力,估算无理数的时的日常生活.评:候,“夹逼法”)1.62亿,其中1.62亿用科学记数法表示为(是估算的一般方法,也是常用方法.94686.(4分)D(.2015 ?.A .B C.安徽)我省2013年的快递业务量为010.162 10.62×1D..C..AB2析:长率)=2015年的快递业务量,根据等量关系列出方程即可.解解:设2014年与2013年这两年的平均增长率为x,由答:题意得:21.4(1+x)=4.5,故选:C.点此题主要考查了由实际问题抽象出一元二次方程,关键D评:是掌握平均变化率的方法,若设变化前的量为a,变化考点:简单几何体的三视图.后的量为b,平均变化率为x,则经过两次变化后的数量分析:根据简单和几何体的三视图判断方法,判断圆柱、2关系为a(1±x)=b.圆锥、三棱柱、球的俯视图,即可解答.7.(4分)(2015?安徽)某校九年级(1)班全体学生解答:解:A、俯视图为圆,故错误;2015年初中毕业体育考试的成绩统计如下表:B、俯视图为矩形,正确;35 39 42 44 45 48 50 成绩(分)C、俯视图为三角形,故错误;2 5 6 6 8 7 6 人数(人)D、俯视图为圆,故错误;根据上表中的信息判断,下列结论中错误的是()故选:B.A.该班一共有40名同学点评:本题考查了几何体的三种视图,掌握定义是关键.该班学生这次考试成绩的众数是45分B.5.(4分)(2015?安徽)与1+最接近的整数是()该班学生这次考试成绩的中位数是45分C. 4 3 2 1 A.B.C.D.D.该班学生这次考试成绩的平均数是45分考估算无理数的大小.考点:众数;统计表;加权平均数;中位数.点:合表格根据众数、平均数、中位数的概念求解.结分析:解答:解:该班人数为:2+5+6+6+8+7+6=40,∴∠ADE=∠ADC,,得45分的人数最多,众数为45故选:20和21名同学的成绩的平均值为中位数,中D.第,位数为:=45=44.425平均数为:.故错误的为D.故选D.点评:本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.8.(4分)(2015?安徽)在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()点本题考查了多边形的内角和,解决本题的关键是根据ADE=2 ADE=3 C评用三角形的内角和18,四边形的内角和36ADEADE 分别表示出∠A,∠B,∠C.∠ADC ∠ADC考多边形内角与外角;三角形内角和定理.9.(4分)(2015?安徽)如图,矩形ABCD中,AB=8,点:BC=4.点E在边AB上,点F在边CD上,点G、H在分利用三角形的内角和为180°,四边形的内角和为360°,对角线AC上.若四边形EGFH是菱形,则AE的长是析:分别表示出∠A,∠B,∠C,根据∠A=∠B=∠C,得()到∠ADE=∠EDC,因为∠ADC=∠ADE+∠EDC=∠EDC+∠EDC=∠EDC,ADC,即可解答.所以∠ADC=∠ 5 A.CB..23解:如图,解答:考点:菱形的性质;矩形的性质.分析:连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO=AC=2,根据△AOE∽△ABC,在△AED中,∠AED=60°,A=180°﹣∠AED,°﹣∠ADE﹣∠ADE=120∴∠即可得到结果.﹣°中,∠DEB=180°﹣∠AED=180DEBC在四边形,解解答:;连接EF交AC于O =120°,60°是菱形,∵四边形EGFH﹣)÷2=120°EDC°∠∴∠B=C=(360﹣∠DEB﹣∠⊥∴EFAC,OE=OF,∵四边形ABCD是矩形,EDC,∠∥CD,AB∠∴∠B=D=90°,∵∠A=C,∠∠B= ,CAB∴∠ACD=∠EDC﹣ADE=120°∴120﹣∠°∠,△在CFO与△中,,AOE EDCADE=∴∠∠,,≌△∴△CFOAOE AO=CO∴,EDC∠EDC=ADE+∠ADC=∵∠∠∠EDC+EDC=∠,=4AC=∵,2解图象相交+bx+c与二次函数y=ax解:∵一次函数y=x21,∴AO=AC=2 QP、两点,答:于2,B=90°∠CAB,∠AOE=∠∵∠CAB= )x+c=0有两个不相等的根,ax+(b﹣1∴方程2,∽△ABC∴△AOE x轴有两个交点,y=ax∴函数+(b﹣1)x+c与2x,(∵方程ax+b﹣1)x+c=0的两个不相等的根x>021,∴>0,,∴,﹣>0∴x+x=21∴AE=5.,∴﹣>0 故选C.2,>0x+c的对称轴x=﹣∴函数y=ax+(b﹣1),开口向上,>0∵符合条件故本题考查了二次函数的图象,直线和抛物线的交点,题考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟点评评点坐标和方程的关系以及方程和二次函数的关系等,运用定理是解题的关键练掌握二次函数的性质是解题的关键.与二次y=x(2015?安徽)如图,一次函数10.(4分)122205分,满分二、填空题(本大题共4小题,每小题+则函数y=ax、Q两点,函数y=ax+bx+c 图象相交于P2分))b﹣1)x+c的图象可能是((11.(5分)(2015?安徽)﹣64的立方根是﹣4.立方根根据立方根的定义求解即可析6解:∵(答:∴﹣64的立方根是﹣4.故选﹣4.点此题主要考查了立方根的定义,求一个数的立方根,应评:先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.考二次函数的图象;正比例函数的图象.12.(5分)(2015?安徽)如图,点A、B、C在半径为点:9的⊙O上,的长为2π,则∠ACB的大小是20°.2分由一次函数y=x与二次函数y=ax+bx+c图象相交212析:P、Q两点,得出方程ax+(b﹣1)x+c=0有两于2个不相等的根,进而得出函数y=ax+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出2>0,的对称轴1)x+cx=﹣﹣(y=ax函数+b即可进行判断.考弧长的计算;圆周角定理.:点.分其中正确的是①③④(把所有正确结论的序号都,利用弧长计算2π连结OA、OB.先由的长为选上).析:,再根据在同圆或等圆中,同°公式求出∠AOB=40考点:分式的混合运算;解一元一次方程.弧或等弧所对的圆周角相等,都等于这条弧所对的分析:按照字母满足的条件,逐一分析计算得出答案,进一步比°.圆心角的一半得到∠ACB=∠AOB=20解答:解:①∵a+b=ab≠0,∴+=1,此选项正确;.AOB=n°、解解:连结OAOB.设∠答:②∵a=3,则3+b=3b,b=,c=,∴b+c=+=6,此选,2π∵的长为2③∵a=b=c,则2a=a=a,∴a=0,abc=0,此选项正确;,=2π∴2④∵a、b、c中只有两个数相等,不妨a=b,则2a=a,aa=2,则b=2,c=4,,∴a+b+c=8,此选项正确.∴n=40其中正确的是①③④∴∠AOB=40°,.故答案为①③AOB=2ACB∴点评题考查分式的混合运算,一元一次方程的运用,灵活正确的方法解决问题.故答案为20°.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2015?安徽)先化简,再求值:(+)点本题考查了弧长公式:l=(弧长为l,圆心?,其中a=﹣.评:,同时考查了圆周角R)角度数为n,圆的半径为考分式的化简求值.定理.1点:,按一定规律排列的一列数:2(2015?安徽)13.(5分)235813专计算题.2,2,2,2,2,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是xy=z.题:分原式括号中第二项变形后,利用同分母分式的减法法考点:规律型:数字的变化类.析:则计算,约分得到最简结果,把a的值代入计算即可分析:首项判断出这列数中,2的指数各项依次为1,2,3,5,求出值.8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列解解:原式=(﹣)数中的连续三个数,满足xy=z,据此解答即可.答:1232353585813解答:,…,22×=2=2:∵22×,=22,22×解=2×,2∴x、y、z满足的关系式是:xy=z.?=?故答案为:xy=z.点评:此题主要考查了探寻数列规律问题,考查了同底=,当a=﹣时,原式=数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z﹣1.的指数的特征.点此题考查了分式的化简求值,熟练掌握运算法则是解本14.(5分)(2015?安徽)已知实数a、b、c满足a+b=ab=c,评:题的关键.有下列结论:①若c≠0,则+=1;16.(8分)(2015?安徽)解不等式:>1﹣.,则若②a=3b+c=9;考解一元一次不等式.abc=0a=b=c③若,则;点中只有两个数相等,则c、、a若④ba+b+c=8:.先去分母,然后移项并合并同类项,最后系数化为分.析:1 即可求出不等式的解集.解解:去分母,得2x>6﹣x+3,答:移项,得2x+x>6+3,合并,得3x>9,系数化为1,得x>3.点本题考查了一元一次不等式的解法,解答本题的关评:键是熟练掌握解不等式的方法步骤,此题比较简单.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2015?安徽)如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).点评:此题主要考查了轴对称变换以及平移变换,根据图形的性;△△ABC关于直线l对称的ABC(1)请画出11键将线A向左平个单位再向下平个并以它为一边作一个画出平移得到的线位,2218.(8分)(2015?安徽)如图,平台AB高为12m,在B=C.,使△点ABCAB2222222B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).解直角三角形的应仰角俯角问题点:-作图轴对称变换;作图-平移变换.:考点分首先分析图形,根据题意构造直角三角形.本题涉及多个直1(分析:)利用轴对称图形的性质得出对应点位置进而析:得出答案;角三角形,应利用其公共边构造关系式求解.解解:如图,过点B作BE直接利用平移的性质得出平移后对应点位置进2()⊥CD于点E,答:根据题意,∠DBE=45°而得出答案.,∠CBE=30°.∵AB⊥AC,解答:CD⊥AC,B△1:解()如图所示:A,即为所求;C111∴四边形ABEC 为矩形.∴CE=AB=12m.A)如图所示:2(△BC,即为所求.222在Rt△CBE中,cot∠CBE=,∴BE=CE?cot30°=12×=12.在Rt△BDE中,由∠DBE=45°,得DE=BE=12.∴CD=CE+DE=12(+1)≈32.4..32.4m的高度约为CD答:楼房∵共有8种等可能的结果,三次传球后,球恰在A手中的考查了解直角三角形的应用﹣仰角俯角问题,本题点∴三次传球后,球恰在A手中的概率为:=.评:要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.点评:此题考查了列表法或树状图法求概率.用到的知识点为:数之比2分1(本大题小题,每小分,满五三人玩篮球传球游、CB、.(10分)(2015?安徽)A1920.(10分)(2015?安徽)在⊙O中,直径AB=6,BC、将球随机地传给戏,游戏规则是:第一次传球由AB是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且两人中的某一人,以后的每一次传球都是由上次的传COP⊥PQ.球者随机地传给其他两人中的某一人.(1)如图1,当PQ∥AB时,求PQ的长度;1()求两次传球后,球恰在B手中的概率;(2)如图2,当点P在BC上移动时,求PQ长的最大手中的概率.A(2)求三次传球后,球恰在值.考表法与树状图法然后由树状图求首先根据题意画出树状图分析手中球恰所有等可能的结果与两次传球后情况,再利用概率公式即可求得答案然后由树状图求首先根据题意画出树状图手中球恰所有等可能的结果与三次传球后情况,再利用概率公式即可求得答案解答)画树状图得考圆周角定理;勾股定理;解直角三角形.点:专计算题.题:分(1)连结OQ,如图1,由PQ∥AB,OP⊥PQ得到OP⊥AB,∵共有4种等可能的结果,两次传球后,球恰在B手中析:Rt△OBP中,利用正切定义可计算出OP=3tan30°在=,的只有1种情况,然后在Rt△OPQ中利用勾股定理可计算出PQ=;(2)连结OQ,如图2,在Rt△OPQ中,根据勾股定理∴两次传球后,球恰在B手中的概率为:;得到PQ=,则当OP的长最小时,PQ的长最大,(2)画树状图得:根据垂线段最短得到OP⊥BC,则OP=OB=,所以PQ.=长的最大值1,)连结OQ,如图解解:(1考点:反比例函数与一次函数的交点问题.,OP⊥PQ,答:∵PQ∥AB分析:⊥AB,∴OP(1)先把A点坐标代入y=可求得k=8,则可得到反比1B=,在Rt△OBP中,∵tan∠4,m)代入反比例函数求得m,得到B点坐标,然后利用解析式即可求得结果;=,∴OP=3tan30°,OQ=3在Rt△OPQ中,∵OP=,(2)由(1)知一次函数y=kx+b的图象与y轴的交点坐2∴PQ==;S=×6×2+×6×1=9;AOB△(,3)根据反比例函数的性质即可得到结果.,如图(2)连结OQ2解答:,PQ==中,在Rt△OPQ解:(1)∵反比例函数y=与一次函数y=kx+b 的图象2m),PQOP的长最小时,的长最大,当=(,OBOPO此B,则解,解得;长的最大值为=.∴PQ)由)知一次函y=x+的图象轴的交点2∴S=S+S=×6×4+×6×1=15;AOCAOB△△△COB(3)∵比例函数y=的图象位于一、三象限,∴在每个象限内,y随x的增大而减小,本题考查了圆周角定理:在同圆或等圆中,同弧或等点∵x<x,y<y,评:弧所对的圆周角相等,都等于这条弧所对的圆心角的2211∴M,N在不同的象限,一半.也考查了勾股定理和解直角三角形.∴M(x,y)在第三象限,N(x,y)在第一象限.2121分)12六、(本题满分y=21?2015安徽)已知反比例函数如图,(12.(分),(﹣B4、81A的图象交于点x+by=k与一次函数(,)2)m.b、、k1()求k的值;21△2()求的面积;AOB图)若(3MN、,x(y)是比例函数y=)y,x(2112各位于N、,指出点Mxy<y,x<象上的两点,且2211点评:本题考查了反比例函数与一次函数的交点问题,求哪个象限,并简要说明理由.三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.七、(本题满分12分)22.(12分)(2015?安徽)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度2.ym的面积为ABCD,矩形区域xm为(1)求y与x之间的函数关系式,并注明自变量x的过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠取值范围;BGC.(1)求证:(2)x为何值时,y有最大值?最大值是多少?AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.考二次函数的应用应用题:面)根据三个矩形面积相等,得到矩AEF1面积倍相似形综合题BE=可得AE=2BBCF析是矩,进而表示则AE=2,表示2关系式,并求的范围即可)由线段垂直平分线的性质得GA=GGD=G析)利用二次函数的性质求的最大值,以及SA证AG≌BG,得出对应边相等即可2时x的值即可.(2)先证出∠AGB=∠DGC,由,证出解:解(1)∵三块矩形区域的面积相等,2倍,面积的∴矩形AEFD面积是矩形BCFE答:△AGB∽△DGC,得出比例式,再证出,∴AE=2BE∠AGD=∠EGF,即可得出△AGD,设BE=a,则AE=2a ∽△EGF;(3)延长AD,∴8a+2x=80 交GB于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,,﹣∴a=x+102a=,﹣x+20再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,2,x=)﹣x+30xx+10x+)(﹣∴y=x+20(﹣的值.,即可得出EGF∽△AGD△,由求出∵a=,>x+10﹣0 ,40<∴x2<<(+30x﹣则y=x0x40);22<﹣()20x(+30x=x﹣﹣+300<x0y=)∵2(,<,且二次项系数为﹣)400 平方米.有最大值,最大值为y时,∴当x=20300熟练掌此题考查了二次函数的应用,点以及列代数式,握二次函数的性质是解本题的关键.评:(本题满分八、14分)中,14(.231安徽)如图?2015分)(ABCD,在四边形的垂线,AB 作E过点的中点,CD、AB分别是F、E点.的垂直平分线,GE是AB1解()证明:∵,∴GA=GB答:,同理:GD=GC 中,和△BGC在△AGD,,(SAS)∴△AGD≌△BGC ;∴AD=BC ,∠BGC(2)证明:∵∠AGD= ,∠DGC∴∠AGB=,DGC中,△AGB和△DG∴AG∽,∴,又∵∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF;(3)解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AH⊥BH,∵△AGD≌△BGC,∴∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∴∠AGB=∠AHB=90°,∴∠AGE=∠AGB=45°,∴,又∵△AGD∽△EGF,∴==.点本题是相似形综合题目,考查了线段垂直平分线的性评:质、全等三角形的判定与性质、相似三角形的判定与性质、三角函数等知识;本题难度较大,综合性强,特别是(3)中,需要通过作辅助线综合运用(1)(2)的结论和三角函数才能得出结果.。
一、选择题(共30分,每小题3分)1. D 2 .B 3. C 4. C 5.A 6.B 7.A 8.A 9.D 10.D二、填空题(共32分,每小题4分)11、-1 12、2 13、))((b a b a a -+ 14、25 15、6 16、76 17、B 18,30三、解答题(共88分)19.解:3235322(6')12(8')2222=∙-∙+=-+=原式 20.解:()()()()()()2222242(3')6'2222x x x x x x -+-⎡⎤-=∙+=⎢⎥-⎣⎦原式或 ()2254415(8')222x x --===时,21.解:解①得2<x (3′) 解②得1-≥x(6′) ∴12x -≤<(7′) ∴所求不等式组的整数解为:-1. 0.1 . (8′) 22.解:(1)50,20 (4′) (2)103(7′)(3)依题意,有= 18 . (8′)解得x ≈530 . 经检验,x =530是原方程的解.答:每张乒乓球门票的价格约为530元. (10′)说明:学生答案在区间[528,530]内都得满分。
23.解:(1)∵点A (1,1)在反比例函数x 2ky =的图象上,∴k=2.∴反比例函数的解析式为:x 1y =. (3′)一次函数的解析式为:b x 2y +=.∵点A (1,1)在一次函数b x 2y +=的图象上 ∴1b -=.∴一次函数的解析式为1x 2y -= (6′)(2)∵点A (1,1) ∴∠AOB=45o .∵△AOB 是直角三角形 ∴点B 只能在x 轴正半轴上.① 当∠OB 1A=90 o 时,即B 1A ⊥OB 1.∵∠AOB 1=45o ∴B 1A= OB 1 . ∴B 1(1,0).(8′)② 当∠O A B 2=90 o 时,∠AOB 2=∠AB 2O=45o ,∴B 1 是OB 2中点, ∴B 2(2,0). (10′)综上可知,B 点坐标为(1,0)或(2,0).24. 解:(1)设成人人数为x 人,则学生人数为(12-x)人. 则 (1′)35x + 235(12 –x )= 350 (4′)解得:x = 8 (7′)故:学生人数为12 – 8 = 4 人, 成人人数为8人. (8′)(2)如果买团体票,按16人计算,共需费用:35×0.6×16 = 336元336﹤350 所以,购团体票更省钱。