2017_2018学年高中数学第2章参数方程2.3参数方程化成普通方程学案北师大版选修4_4
- 格式:doc
- 大小:324.00 KB
- 文档页数:8
三 直线的参数方程[对应学生用书P27]1.直线的参数方程(1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)(2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离. (1)当M 0M ―→与e (直线的单位方向向量)同向时,t 取正数. (2)当M 0M ―→与e 反向时,t 取负数,当M 与M 0重合时,t =0.[对应学生用书P27][例1] 已知直线l 的方程为3x -4y +1=0,点P (1,1)在直线l 上,写出直线l 的参数方程,并求点P 到点M (5,4)的距离.[思路点拨] 由直线参数方程的概念,先求其斜率,进而由斜率求出倾斜角的正、余弦值,从而得到直线参数方程.[解] 由直线方程3x -4y +1=0可知,直线的斜率为34,设直线的倾斜角为α,则tan α=34,sin α=35,cos α=45.又点P (1,1)在直线l 上,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =1+35t (t 为参数).因为3×5-4×4+1=0,所以点M 在直线l 上.由1+45t =5,得t =5,即点P 到点M 的距离为5.理解并掌握直线参数方程的转化,弄清参数t 的几何意义,即直线上动点M 到定点M 0的距离等于参数t 的绝对值是解决此类问题的关键.1.设直线l 过点A (2,-4),倾斜角为5π6,则直线l 的参数方程为________________.解析:直线l的参数方程为⎩⎪⎨⎪⎧x =2+t cos5π6,y =-4+t sin 5π6(t 为参数),即⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数).答案:⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数)2.一直线过P 0(3,4),倾斜角α=π4,求此直线与直线3x +2y =6的交点M 与P 0之间的距离.解:设直线的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =4+22t ,将它代入已知直线3x +2y -6=0, 得3(3+22t )+2(4+22t )=6. 解得t =-1125,∴|MP 0|=|t |=1125.[例2] 已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积.[思路点拨] (1)由直线参数方程的概念可直接写出方程;(2)充分利用参数几何意义求解.[解] (1)∵直线l 过点P (1,1),倾斜角为π6,∴直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =1+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =1+12t 为所求.(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A ,B 的坐标分别为A (1+32t 1,1+12t 1),B (1+32t 2,1+12t 2), 以直线l 的参数方程代入圆的方程x 2+y 2=4整理得到t 2+(3+1)t -2=0,① 因为t 1和t 2是方程①的解,从而t 1t 2=-2. 所以|PA |·|PB |=|t 1t 2|=|-2|=2.求解直线与圆或圆锥曲线有关的弦长时,不必求出交点坐标,根据直线参数方程中参数t 的几何意义即可求得结果,与常规方法相比较,较为简捷.3.直线l 通过P 0(-4,0),倾斜角α=π6,l 与圆x 2+y 2=7相交于A 、B 两点.(1)求弦长|AB |; (2)求A 、B 两点坐标.解:∵直线l 通过P 0(-4,0),倾斜角α=π6,∴可设直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =t 2.代入圆方程,得(-4+32t )2+(12t )2=7. 整理得t 2-43t +9=设A 、B 对应的参数分别t 1和t 2, 由根与系数的关系得t 1+t 2=43,t 1t 2=9 ∴|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=2 3.解得t 1=33,t 2=3,代入直线参数方程 ⎩⎪⎨⎪⎧x =-4+32t ,y =12t ,得A 点坐标(12,332),B 点坐标(-52,32).4.如图所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求:(1)P ,M 间的距离|PM |; (2)点M 的坐标.解:(1)由题意,知直线l 过点P (2,0),斜率为43,设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45,∴直线l 的参数方程的标准形式为 ⎩⎪⎨⎪⎧x =2+35t ,y =45t(t 为参数). *∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中, 整理得8t 2-15t -50=0,Δ=152+4×8×50>0. 设这个二次方程的两个根为t 1,t 2,由根与系数的关系得t 1+t 2=158,t 1t 2=-254.由M 为线段AB 的中点, 根据t 的几何意义,得|PM | =⎪⎪⎪⎪⎪⎪t 1+t 22=1516.(2)因为中点M 所对应的参数为t M =1516,将此值代入直线l 的参数方程的标准形式(*),得⎩⎪⎨⎪⎧x =2+35×1516=4116,y =45×1516=34,即M ⎝⎛⎭⎪⎫4116,34.[对应学生用书P28]一、选择题1.直线的参数方程为⎩⎪⎨⎪⎧x =-1+t 2,y =2-32t ,M 0(-1,2)和M (x ,y )是该直线上的定点和动点,则t 的几何意义是( )A .有向线段M 0M 的数量B .有向线段MM 0的数量C .|M 0M |D .以上都不是解析:参数方程可化为⎩⎪⎨⎪⎧x =-1+-12-t ,y =2+32-t答案:B2.曲线的参数方程为⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(t 是参数),则曲线是( )A .线段B .双曲线的一支C .圆D .射线解析:由y =t 2-1得y +1=t 2,代入x =3t 2+2, 得x -3y -5=0(x ≥2).故选D. 答案:D3.直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t(t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10D .2 2解析:因为题目所给方程不是参数方程的标准形式,参数t 不具有几何意义,故不能直接由1-0=1来得距离,应将t =0,t =1分别代入方程得到两点坐标(2,-1)和(5,0),由两点间距离公式来求出距离,即-2+-1-2=10.答案:B4.若直线⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,那么直线倾斜角α为( )A.π6 B.π4 C.π3D.π6或5π6解析:直线化为y x=tan α,即y =tan α·x , 圆方程化为(x -4)2+y 2=4, ∴由|4tan α|tan 2α+1=2⇒tan 2α=13, ∴tan α=±33,又α∈[0,π),∴α=π6或5π6. 答案:D 二、填空题5.直线⎩⎪⎨⎪⎧x =2+22t ,y =-3-22t (t 为参数)上到点M (2,-3)的距离为2且在点M 下方的点的坐标是________.解析:把参数方程化成标准形式为⎩⎪⎨⎪⎧x =2-22-t ,y =-3+22-t ,把-t 看作参数,所求的点在M (2,-3)的下方,所以取-t =-2,即t =2,所以所求点的坐标为(3,-4).答案:(3,-4)6.若直线l 的参数方程为⎩⎪⎨⎪⎧x =1-35t ,y =45t(t 为参数),则直线l 的斜率为______.解析:由参数方程可知,cos θ=-35,sin θ=45.(θ为倾斜角).∴tan θ=-43,即为直线斜率.答案:-437.已知直线l 1:⎩⎪⎨⎪⎧x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =____________;若l 1⊥l 2,则k =________.解析:将l 1,l 2的方程化为普通方程,得l 1:kx +2y -4-k =0,l 2:2x +y -1=0, l 1∥l 2⇒k 2=21≠4+k1⇒k =4.l 1⊥l 2⇒(-2)·(-k2)=-1⇒k =-1.答案:4 -1 三、解答题8.设直线的参数方程为⎩⎪⎨⎪⎧x =5+3t ,y =10-4t(t 为参数).(1)求直线的普通方程;(2)将参数方程的一般形式化为参数方程的标准形式. 解:(1)把t =x -53代入y 的表达式 得y =10-x -3,化简得4x +3y -50=0,所以直线的普通方程为4x +3y -50=0. (2)把参数方程变形为⎩⎪⎨⎪⎧x =5-35-5t ,y =10+45-5t ,令t ′=-5t ,即有⎩⎪⎨⎪⎧x =5-35t ′,y =10+45t ′(t ′为参数)为参数方程的标准形式.9.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,求弦AB 的长度.解:因为直线l 的斜率为1,所以直线l 的倾斜角为π4.椭圆x 24+y 2=1的右焦点为(3,0),直线l 的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =22t (t 为参数),代入椭圆方程x 24+y 2=1,得⎝ ⎛⎭⎪⎫3+22t 24+⎝ ⎛⎭⎪⎫22t 2=1,整理,得5t 2+26t -2=0. 设方程的两实根分别为t 1,t 2, 则t 1+t 2=-265,t 1·t 2=-25,|t 1-t 2|=t 1+t 22-4t 1t 2=⎝ ⎛⎭⎪⎫-2652+85=85, 所以弦AB 的长为85.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值. 解:(1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3.。
海南省陵水县高中数学第2章参数方程 2.3 参数方程化成普通方程教案北师大版选修4-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(海南省陵水县高中数学第2章参数方程 2.3 参数方程化成普通方程教案北师大版选修4-4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为海南省陵水县高中数学第2章参数方程 2.3参数方程化成普通方程教案北师大版选修4-4的全部内容。
1。
1 极坐标与直角坐标的互化教学目的知识目标掌握极坐标和直角坐标的互化关系式能力目标会实现极坐标和直角坐标之间的互化教学重点对极坐标和直角坐标的互化关系式的理解教学难点互化关系式的掌握授课类型新授课教学模式启发、诱导发现教学。
教具多媒体、实物投影仪教学过程一、复习引入情境1:若点作平移变动时,则点的位置采用直角坐标系描述比较方便;情境2:若点作旋转变动时,则点的位置采用极坐标系描述比较方便问题1:如何进行极坐标与直角坐标的互化?问题2:平面内的一个点的直角坐标是)3,1(,这个点如何用极坐标表示?学生回顾理解极坐标的建立及极径和极角的几何意义正确画出点的位置,标出极径和极角,借助几何意义归结到三角形中求解二、讲解新课直角坐标系的原点O为极点,x轴的正半轴为极轴,且在两坐标系中取相同的长度单位。
平ρ,则由三面内任意一点P的直角坐标与极坐标分别为),(θ,(yx和)角函数的定义可以得到如下两组公式:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ说明1上述公式即为极坐标与直角坐标的互化公式2通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2。
2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程学习目标:1.了解圆锥曲线参数方程的推导过程.2.掌握圆和圆锥曲线的参数方程.(易错易混点)3.能用圆、椭圆参数方程解决有关问题.(难点)教材整理1 圆的参数方程 1.标准圆的参数方程已知一个圆的圆心在原点,半径为r ,设点P (x ,y )是圆周上任意一点,连结OP ,令OP 与x 轴正方向的夹角为α,则α唯一地确定了点P 在圆周上的位置.作PM ⊥Ox ,垂足为M ,显然,∠POM =α(如图).则在Rt△POM 中有OM =OP cos α,MP =OP sin α,即⎩⎪⎨⎪⎧x =r cos α,y =r sin α(α为参数).这就是圆心在原点,半径为r 的圆的参数方程.参数α的几何意义是OP 与x 轴正方向的夹角.2.一般圆的参数方程以(a ,b )为圆心,r 为半径的圆,普通方程为(x -a )2+(y -b )2=r 2,它的参数方程为⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(α为参数,a ,b 是常数).填空:(1)圆心为(2,1),半径为2的圆的参数方程是________. (2)在圆⎩⎪⎨⎪⎧x =-1+cos αy =sin α(α为参数)中,圆的圆心是________,半径是________.(3)圆⎩⎪⎨⎪⎧x =1+cos α,y =1+sin α(α为参数)上的点到O (0,0)的距离的最大值是________,最小值是________.[解析] (1)⎩⎪⎨⎪⎧x =2+2cos α,y =1+2sin α(α为参数).(2)由圆的参数方程知圆心为(-1,0),半径为1. (3)由圆的参数方程知圆心为(1,1),半径为1. ∵圆心到原点的距离为2,∴最大值为2+1, 最小值为2-1.[答案] (1)⎩⎪⎨⎪⎧x =2+2cos α,y =1+2sin α(α为参数)(2)(-1,0) 1 (3)2+1 2-1教材整理2 椭圆与双曲线的参数方程 1.椭圆的参数方程 (1)椭圆的中心在原点标准方程为x 2a 2+y 2b 2=1,其参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).参数φ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与x 轴正半轴的夹角. (2)椭圆方程不是标准形式其方程也可表示为参数方程的形式,如(x -x 0)2a2+(y -y 0)2b2=1(a >b >0),参数方程可表示为⎩⎪⎨⎪⎧x =x 0+a cos φ,y =y 0+b sin φ(φ为参数).2.双曲线的参数方程当以F 1,F 2所在的直线为x 轴,以线段F 1F 2的垂直平分线为y 轴建立直角坐标系,双曲线的普通方程为x 2a 2-y 2b2=1(a >0,b >0).此时参数方程为 (φ为参数).其中φ∈[0,2π)且φ≠π2,φ≠3π2.判断(正确的打“√”,错误的打“×”)(1)椭圆参数方程中,参数φ的几何意义是椭圆上任一点的离心角.( ) (2)在椭圆上任一点处,离心角和旋转角数值都相等.( ) (3)在双曲线参数方程中,参数φ的范围为[0,2π).( ) [解析] (1)√ 椭圆中,参数φ的几何意义就是离心角.(2)× 在四个顶点处是相同的,在其他任一点处,离心角和旋转角在数值上都不相等. (3)× 双曲线中,参数φ的范围是φ∈[0,2π)且φ≠π2,φ≠3π2.[答案] (1)√ (2)× (3)×【例1】 圆(x -r )2+y 2=r 2(r >0),点M 在圆上,O 为原点,以∠MOx =φ为参数,求圆的参数方程.[精彩点拨] 根据圆的特点,结合参数方程概念求解. [尝试解答] 如图所示,设圆心为O ′,连结O ′M ,∵O ′为圆心, ∴∠MO ′x =2φ,∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.1.确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.2.由于选取的参数不同,圆有不同的参数方程.1.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.[解] 设中点M (x ,y ).则⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ(θ为参数),这就是所求的轨迹方程.它是以(1,0)为圆心,以12为半径的圆.【例2】 如图所示,已知点M 是椭圆a 2+b 2=1(a >b >0)上在第一象限的点,A (a,0)和B (0,b )是椭圆的两个顶点,O 为原点,求四边形MAOB 的面积的最大值.[精彩点拨] 本题可利用椭圆的参数方程,把面积的最大值问题转化为三角函数的最值问题求解.[尝试解答] M 是椭圆x 2a 2+y 2b2=1(a >b >0)上在第一象限的点,由椭圆x 2a 2+y 2b2=1的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数),故可设M (a cos φ,b sin φ),其中0<φ<π2,因此,S 四边形MAOB =S △MAO +S △MOB=12OA ·y M +12OB ·x M =12ab (sin φ+cos φ)=22ab sin ⎝⎛⎭⎪⎫φ+π4.所以,当φ=π4时,四边形MAOB 面积的最大值为22ab .本题将不规则四边形的面积转化为两个三角形的面积之和,这是解题的突破口和关键,用椭圆的参数方程,将面积表示为参数的三角函数求最大值,思路顺畅,解法简捷,充分体现了椭圆的参数方程在解决与椭圆上点有关最值问题时的优越性.2.(2019·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t2,y =4t1+t2(t为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.[解] (1)因为-1<1-t 21+t 2≤1,且x 2+⎝ ⎛⎭⎪⎫y 22=⎝ ⎛⎭⎪⎫1-t 21+t 22+4t 2(1+t 2)2=1,所以C 的直角坐标方程为x 2+y 24=1(x ≠-1).l 的直角坐标方程为2x +3y +11=0.(2)由(1)可设C 的参数方程为⎩⎪⎨⎪⎧x =cos αy =2sin α(α为参数,-π<α<π).C 上的点到l 的距离为|2cos α+23sin α+11|7=4cos ⎝⎛⎭⎪⎫α-π3+117.当α=-2π3时,4cos ⎝⎛⎭⎪⎫α-π3+11取得最小值7,故C 上的点到l 距离的最小值为7.【例312|PF 1|·|PF 2|=|OP |2.[精彩点拨] 将双曲线方程化为参数方程⎩⎪⎨⎪⎧x =1cos φ,y =tan φ,再利用三角运算进行证明.[尝试解答] 因为双曲线的方程为x 2-y 2=1, 所以设P ⎝⎛⎭⎪⎫1cos φ,tan φ.∵F 1(-2,0),F 2(2,0), ∴|PF 1|=⎝ ⎛⎭⎪⎫1cos φ+22+tan 2φ=2cos 2φ+22cos φ+1, |PF 2|=⎝ ⎛⎭⎪⎫1cos φ-22+tan 2φ =2cos 2φ-22cos φ+1, ∴|PF 1|·|PF 2|=⎝ ⎛⎭⎪⎫2cos 2φ+12-8cos 2φ=2cos 2φ-1. ∵|OP |2=1cos 2φ+tan 2φ=2cos 2φ-1,∴|PF 1|·|PF 2|=|OP |2.1.与双曲线上点有关的问题,常利用其参数方程转化为三角的计算与证明问题. 2.对由参数方程给出的双曲线确定其几何性质问题,常将其化为普通方程后,再求解.3.求证:双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.[证明] 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2,则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+(-a )2=|a 2b 2(sec 2φ-tan 2φ)|a 2+b 2=a 2b2a 2+b 2(定值).[探究问题1.给定参数方程⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α,其中a ,b 是常数.(1)如果r 是常数,α是参数,那么参数方程表示的曲线是什么? (2)如果α是常数,r 是参数,那么参数方程表示的曲线是什么?[提示] (1)参数方程表示的曲线是以(a ,b )为圆心,r 为半径的圆(r ≠0). (2)参数方程表示的曲线是过(a ,b )点,且倾斜角为α的直线. 2.圆的参数方程中,参数有什么实际意义?[提示] 在圆的参数方程中,设点M 绕点O 转动的角速度为ω(ω为常数),转动的某一时刻为t ,因此取时刻t 为参数可得圆的参数方程为:⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt(t 为参数),此时参数t 表示时间.若以OM转过的角度θ(∠M 0OM =θ)为参数,可得圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数),此时θ具有明显的几何意义.3.利用圆的参数方程表示其上任意点坐标时有什么优越性?[提示] 将其横纵坐标只用一个参数(角)来表示,可将与点的坐标有关的问题转化为三角问题求解.【例4】 设方程⎩⎨⎧x =1+cos θ,y =3+sin θ(θ为参数)表示的曲线为C .(1)判断C 与直线x +3y -2=0的位置关系; (2)求曲线C 上的动点到原点O 的距离的最小值;(3)点P 为曲线C 上的动点,当|OP |最小时(O 为坐标原点),求点P 的坐标; (4)点M 是曲线C 上的动点,求其与点Q (-1,-3)连线中点的轨迹.[精彩点拨] 本题考查圆的参数方程的应用,以及运算和转化与化归能力. (1)利用圆心到直线的距离与半径的关系判断. (2)设P 的坐标表示出|OP |,利用三角函数知识求最值. (3)利用(2)取最小值的条件即可.(4)设出点M 的坐标,进而表示出MQ 中点坐标,即得轨迹的参数方程.[尝试解答] (1)曲线C 是以(1,3)为圆心,半径为1的圆,则圆心(1,3)到直线x +3y -2=0的距离为|1+3×3-2|12+(3)2=1,故直线和圆相切. (2)设圆上的点P (1+cos θ,3+sin θ)(0≤θ<2π). |OP |=(1+cos θ)2+(3+sin θ)2=5+4cos ⎝⎛⎭⎪⎫θ-π3, 当θ=4π3时,|OP |min =1.(3)由(2)知,θ=4π3,∴x =1+cos 4π3=12,y =3+sin4π3=32,P ⎝ ⎛⎭⎪⎫12,32. (4)设MQ 的中点为(x ,y ).∵M (1+cos θ,3+sin θ),Q (-1,-3), ∴⎩⎪⎨⎪⎧x =1+cos θ-12=12cos θ,y =-3+3+sin θ2=12sin θ(θ为参数).所以中点轨迹是以原点为圆心,12为半径的圆.1.与圆的参数方程有关的问题求解时,可直接利用参数方程求解,也可转化为普通方程问题求解.2.与圆上点有关的距离最值问题,需建立目标函数求解时,常利用圆的参数方程,将圆上的点用角表示,从而将待求最值,转化为三角函数的最值问题求解,但要注意参数θ的取值范围.4.如图,设矩形ABCD 的顶点C 的坐标为(4,4),点A 在圆x 2+y 2=9(x ≥0,y ≥0)上移动,且AB ,AD 两边分别平行于x 轴,y 轴.求矩形ABCD 面积的最小值及对应点A 的坐标.[解] 设A (3cos θ,3sin θ)(0<θ<90°),则|AB |=4-3cos θ,|AD |=4-3sin θ, ∴S =|AB |·|AD |=(4-3cos θ)(4-3sin θ) =16-12(cos θ+sin θ)+9cos θsin θ.令t =cos θ+sin θ(1<t ≤2),则2cos θsin θ=t 2-1.∴S =16-12t +92(t 2-1)=92t 2-12t +232=92⎝ ⎛⎭⎪⎫t -432+72,∴t =43时,矩形ABCD 的面积S取得最小值72.此时⎩⎪⎨⎪⎧cos θ+sin θ=43,cos θsin θ=718,解得⎩⎪⎨⎪⎧cos θ=4±26,sin θ=4∓26.∴对应点A 的坐标为⎝ ⎛⎭⎪⎫2+22,2-22或 ⎝⎛⎭⎪⎫2-22,2+22.1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)[解析] 由圆的参数方程知,圆心为(2,0). [答案] D2.圆心在点(-1,2),半径为5的圆的参数方程为( ) A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π)B .⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π)C.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<π)D .⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π)[解析] 圆心在点C (a ,b ),半径为r的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).[答案] D3.曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为________.[解析] 由曲线C 的参数方程可以看出a =3,b =5,得a 2=9,b 2=5,⇒c 2=4,所以e=c a =23. [答案] 234.双曲线C :⎩⎪⎨⎪⎧x =3sec φ,y =4tan φ(φ为参数)的焦点坐标为________.[解析] 曲线C 的普通方程为x 29-y 216=1,得焦点坐标为F 1(-5,0),F 2(5,0).[答案] (-5,0),(5,0)5.能否在椭圆x 216+y 212=1上找一点,使这一点到直线x -2y -12=0的距离最小.[解] 设椭圆的参数方程为⎩⎨⎧x =4cos φ,y =23sin φ(φ是参数,0≤φ<2π).则d =|4cos φ-43sin φ-12|5=455⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫φ+π3-3,当cos ⎝⎛⎭⎪⎫φ+π3=1时, 即φ=53π时,d min =455,此时对应的点为(2,-3).。
高中数学 2.2《参数方程化为普通方程》教案新人教版选修44一、教学目标(一)知识教学点了解参数方程与普通方程之间的联系与区别,掌握它们之间的互化法则.(二)能力训练点掌握消去参数的基本方法,能熟练地将常见参数方程化为普通方程并正确解决其等价性问题(即x、y的范围).(三)学科渗透点方法论在研究和解决问题中的作用.二、教材分析1.重点:参数方程与普通方程的互化法则,常见问题的消参方法.2.难点:整体元消参的方法,参数方程与普通方程的等价性(即x、y的范围).3.疑点:参数方程与普通方程的区别与联系,普通方程的唯一性与参数方程的多样性.三、活动设计1.活动:问答、练习、板演.2.教具:投影仪、尺规.四、教学过程(一)讲例曲线的普通方程直接表示了曲线上点的坐标x、y之间的关系,曲线的参数方程则是通过参数t把曲线上点的坐标x、y之间的关系间接地联系起来,普通方程与参数方程是曲线方程的两种不同形式.为方便起见,有时需将参数方程化成普通方程,打开教材第115页看例1(读题).有时根据特殊需要,把普通方程化成参数方程,打开教材第116页看例3(读题).设其比值为t,因x∈R,故t∈R这正是过点M(x0,y0)、倾角为α的直线的标准参数方程.其中的参数t与前面所说的有相同的几何意义.由此可知,参数方程与普通方程有时可以互化,但互化过程中一定要讨论其等价性,即两种方程中x、y的范围一致.(二)练习一打开教材第117页看练习第2题(1)(读题),请先自练.学生1答:需要限Φ范围吗?(不需)(1)若设x=at,则参数方程否!虽有xy=a2,但范围不同.(3)是不是所有的参数方程都能化成普通方程呢?请讨论一会再回答.学生2答:由此看到:不是所有的参数方程都可化为普通方程.普通方程化成参数方程时,选择的参数不同其参数方程不同.参数方程与普通方程互化时一定要保持x、y范围相同.(三)归纳常见消参方法参数方程化成普通方程,要掌握常见的消参方法:(1)代入法,求出t再代入另一式;(2)利用代数恒等式或三角恒等式.可同②消参.(四)练习二(方法的应用)投影:把下列参数方程化为普通方程学生3、学生4板演:(五)总结(1)参数方程与普通方程的区别与联系,参数方程与普通方程的互化法则及等价性.(2)普通方程化为参数方程.(3)参数方程化为普通方程,常见消参方法.五、布置作业1.教材第120页第3题.2.填空:半径的圆.程为3.选择题则d1d2的值为(B).六、板书设计。
2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程对应学生用书P24][自主学习]1.有向线段的数量如果P ,M 是l 上的两点,P 到M 的方向与直线的正方向一致,那么PM 取正值,否则取负值.我们称这个数值为有向线段2.直线参数方程的两种形式(1)经过点P (x 0,y 0)、倾斜角是α的直线的参数方程为:⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).其中M(x ,y )为直线上的任意一点,参数t 的几何意义是从点P 到M的位移,可以用有(2)经过两个定点Q (x 1,y 1),P (x 2,y 2)(其中x 1≠x 2)的直线的参数方程为⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy 21+λ(λ为参数,λ≠-1).其中M (x ,y )为直线上的任意一点,参数λ的几何意义是:动点M 量比QM MP.①当λ>0时,M 为内分点;②当λ<0且λ≠-1时,M 为外分点; ③当λ=0时,点M 与Q 重合.[合作探究]1.如何引入参数求过定点P (x 0,y 0)且与平面向量a =(a ,b )⎝⎛⎭⎪⎫或斜率为b a平行的直线的参数方程?提示:在直线l 上任取一点M (x ,y ),a,=(x -x 0,y -y 0),可得x -x 0a =y -y 0b ,设这个比值为t ,即:x -x 0a =y -y 0b=t ,则有:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t ∈R ).2.问题1中得到的参数方程中参数何时与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t ∈R )中参数t 具有相同的几何意义?提示:当a 2+b 2=1时.对应学生用书P24][例1] (1)写出直线l 的参数方程;(2)求直线l 与直线x -y +1=0的交点.[思路点拨] 本题考查如何根据已知条件确定直线的参数方程及运算求解能力,解答此题需要将条件代入⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α得到直线的参数方程,然后与x -y +1=0联立可求得交点.[精解详析] (1)直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos 120°,y =4+t sin 120°(t 为参数),即⎩⎪⎨⎪⎧ x =3-12t ,y =4+32t (t 为参数).(2)把⎩⎪⎨⎪⎧x =3-12t ,y =4+32t 代入x -y +1=0,得3-12t -4-32t +1=0,得t =0.把t =0代入⎩⎪⎨⎪⎧x =3-12t ,y =4+32t ,得两直线的交点为(3,4).1.已知直线经过的定点与其倾斜角,求参数方程利用⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).2.已知直线过两点,求参数方程利用⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy21+λλ为参数且λ≠-3.已知直线经过的定点与其方向向量a =(a ,b )(或斜率ba),则其参数方程可为:⎩⎪⎨⎪⎧x =x 0+ta ,y =y 0+tb(t 为参数).1.已知两点A (1,3),B (3,1)和直线l :y =x ,求过点A ,B 的直线的参数方程,并求它与直线l 的交点M 分AB 的比.解:设直线AB 与l 的交点M (x ,y ),且AMMB=λ,则直线AB 的参数方程为⎩⎪⎨⎪⎧x =1+3λ1+λ,y =3+λ1+λ(λ为参数且λ≠-1).①把①代入y =x 得1+3λ1+λ=3+λ1+λ,得λ=1,所以点M 分AB 的比为1∶1.[例2] 写出经过点M 0(-2,3),倾斜角为4的直线l 的参数方程,并且求出直线l 上与点M 0相距为2的点的坐标.[思路点拨] 本题考查直线参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)的应用,特别是参数几何意义的应用.解答此题需先求出直线上与点M 0相距为2的点对应的参数t ,然后代入参数方程求此点的坐标.[精解详析] 直线l 的参数方程为 ⎩⎪⎨⎪⎧x =-2+t cos 3π4,y =3+t sin 3π4(t 为参数).①设直线l 上与已知点M 0相距为2的点为M 点,M 点对应的参数为t ,则|M 0M |=|t |=2, ∴t =±2.将t 的值代入①式:当t =2时,M 点在M 0点上方,其坐标为(-2-2,3+2); 当t =-2时,M 点在M 0点下方,其坐标为(-2+2,3-2).1.过定点P (x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),|t |P 与M 间的距离.2.过定点M 0(x 0,y 0),斜率为ba 的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (a ,b 为常数,t为参数).当a2+b 2=1时,|t |a 2+b 2≠1时,|t |的长度的1a 2+b 2.2.过点A (1,-5)的直线l 1的参数方程为⎩⎨⎧x =1+t ,y =-5+3t(t 为参数),它与方程为x-y -23=0的直线l 2相交于一点P ,求点A 与点P 之间的距离.解:将直线l 1的参数方程化为⎩⎪⎨⎪⎧x =1+12t ,y =-5+32t(t 为参数).⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1且32>0,令t ′=2t ,则将t ′代入上述方程得直线l 1的参数方程的标准式为⎩⎪⎨⎪⎧x =1+12t ′,y =-5+32t ′(t ′为参数).代入x -y -23=0得⎝ ⎛⎭⎪⎫1+12t ′-⎝ ⎛⎭⎪⎫-5+32t ′-23=0,解得t ′=43, ∴|AP |=|t ′|=4 3.[例3] 已知直线l 过点P (1,0),倾斜角为3,直线l 与椭圆3+y 2=1相交于A ,B 两点,设线段AB 的中点为M .(1)求P ,M 两点间的距离; (2)求线段AB 的长|AB |.[思路点拨] 本题考查直线的参数方程在解决直线与圆锥曲线相交中的中点、弦长等问题中的应用,解答此题需要求出直线的形如⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)的方程,然后利用参数的几何意义求解.[精解详析] (1)∵直线l 过点P (1,0),倾斜角为π3,cos α=12,sin α=32.∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数).①∵直线l 和椭圆相交,将直线的参数方程代入椭圆方程 并整理得5t 2+2t -4=0,Δ=4+4×5×4>0.设这个二次方程的两个实根为t 1,t 2.由根与系数的关系得:t 1+t 2=-25,t 1t 2=-45,由M 为AB 的中点,根据t 的几何意义, 得|PM |=|t 1+t 22|=15. (2)|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=8425=2215.1.在解决直线与圆锥曲线相交关系的问题中,若涉及到线段中点、弦长、交点坐标等问题,利用直线参数方程中参数t 的几何意义求解,比利用直线l 的普通方程来解决更为方便.2.在求直线l 与曲线C :f (x ,y )=0的交点间的距离时,把直线l 的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α代入f (x ,y )=0,可以得到一个关于t 的方程f (x 0+t cos α,y 0+t sin α)=0.假设该方程的解为t 1,t 2,对应的直线l 与曲线C 的交点为A ,B ,那么由参数t 的几何意义可得|AB |=|t 1-t 2|.(1)弦AB 的长|AB |=|t 1-t 2|. (2)线段AB 的中点M 对应的参数t =t 1+t 22(解题时可以作为基本结论使用).3.(江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解:将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.本课时常考查直线参数方程的确定与应用,同时考查运算、转化及求解能力,高考、模拟常与极坐标方程及圆锥曲线的参数方程交汇命题.[考题印证](湖南高考)在平面直角坐标系xOy 中,若直线l 1:⎩⎪⎨⎪⎧x =2s +1,y =s (s 为参数)和直线l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1(t 为参数)平行,则常数a 的值为________.[命题立意] 本题主要考查对参数方程的理解、两直线的位置关系,以及平面直角坐标系下由两直线的位置关系确定参数值的方法.[自主尝试] 先把两直线的参数方程化成普通方程.直线l 1:x -2y -1=0,直线l 2:2x -ay -a =0.因为两直线平行,所以1×(-a )=-2×2,故a =4,经检验,符合题意.[答案] 4对应学生用书P26]一、选择题1.已知直线l 过点A (1,5),倾斜角为π3,P 是l t 为参数,则直线l 的参数方程是( )A.⎩⎪⎨⎪⎧ x =1+12t ,y =5-32tB.⎩⎪⎨⎪⎧ x =1-12t ,y =5+32tC.⎩⎪⎨⎪⎧x =1+12t ,y =5+32tD.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t解析:选D t t .则参数方程为⎩⎪⎨⎪⎧x =1+-t π3,y =5+-tπ3,即⎩⎪⎨⎪⎧x =1-12t ,y =5-32t .故选D.2.直线⎩⎪⎨⎪⎧x =3+t sin 20°,y =-t cos 20°(t 为参数)的倾斜角是( )A .20°B .70°C .110°D .160°解析:选C 法一:将原方程改写成⎩⎪⎨⎪⎧x -3=t sin 20°,-y =t cos 20°,消去t ,得y =tan 110°(x -3),所以直线的倾斜角为110°.法二:将原参数方程化为⎩⎪⎨⎪⎧x =3+-t ,y =-t ,令-t =t ′,则⎩⎪⎨⎪⎧x =3+t ′cos 110°,y =t ′sin 110°,所以直线的倾斜角为110°. 3.直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点P (-2,3)的距离等于2的点的坐标是( )A .(-4,5)B .(-3,4)C .(-3,4)或(-1,2)D .(-4,5)或(0,1)解析:选C 设直线上的点Q (-2-2t,3+2t )与点P (-2,3)的距离等于2, 即d =-2-2t +2++2t -2= 2.解得t =±22.当t =22时,⎩⎪⎨⎪⎧x =-2-2×22=-3,y =3+2×22=4,∴Q (-3,4).当t =-22时,⎩⎪⎨⎪⎧x =-2-2×⎝ ⎛⎭⎪⎫-22=-1,y =3+2×⎝ ⎛⎭⎪⎫-22=2,∴Q (-1,2).综上,符合题意的点的坐标为(-3,4)或(-1,2).4.直线l 经过点M 0(1,5),倾斜角为π3,且交直线x -y -2=0于点M ,则|MM 0|等于( )A.3+1 B .6(3+1) C .6+ 3D .63+1解析:选B 由题意可得直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =5+32t (t 为参数),代入直线方程x -y -2=0,得1+12t -⎝ ⎛⎭⎪⎫5+32t -2=0,解得t =-6(3+1).根据参数t 的几何意义可知|MM 0|=6(3+1). 二、填空题5.过P (-4,0),倾斜角为5π6的直线的参数方程为________. 解析:∵直线l 通过P (-4,0),倾斜角α=5π6,所以直线的参数方程为⎩⎪⎨⎪⎧x =-4+t cos 5π6,y =0+t sin 5π6,即⎩⎪⎨⎪⎧ x =-4-32t ,y =t 2.答案:⎩⎪⎨⎪⎧x =-4-32t ,y =12t6.若直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t(t 为参数)与直线4x +ky =1垂直,则常数k =________. 解析:直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t的斜率为-32,∴-4k ×⎝ ⎛⎭⎪⎫-32=-1,k =-6.答案:-67.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin θ,y =-2+t cos θ(t 为参数),其中角θ的范围是⎝ ⎛⎭⎪⎫π2,π,则直线l 的倾斜角是________.解析:将原参数方程改写成⎩⎪⎨⎪⎧x -1=t sin θ,y +2=t cos θ,消去参数t ,得y +2=(x -1)tan ⎝ ⎛⎭⎪⎫3π2-θ,由θ∈⎝ ⎛⎭⎪⎫π2,π和倾斜角的范围可知直线l 的倾斜角为3π2-θ. 答案:3π2-θ8.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t (t 为参数)与圆x 2+y 2=1有两个交点A ,B ,若点P 的坐标为(2,-1),则|PA |·|PB |=________.解析:把直线的参数方程代入圆的方程,得⎝ ⎛⎭⎪⎫2-12t 2+⎝⎛⎭⎪⎫-1+12t 2=1, 即t 2-6t +8=0,解得t 1=2,t 2=4,∴A (1,0),B (0,1).∴|PA |=12+12=2,|PB |=22+22=2 2.∴|PA |·|PB |=2×22=4.答案:4三、解答题9.已知P 为半圆C :x 2+y 2=1(0≤y ≤1)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3. (1)以O 为极点,x 轴的正半轴为极轴建立坐标系,求点M 的极坐标;(2)求直线AM 的参数方程.解:(1)由已知,M 点的极角为π3,且M 点的极径等于π3, 故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3. (2)M 点的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0),故直线AM 的参数方程为⎩⎪⎨⎪⎧ x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t (t 为参数). 10.已知直线l 经过点P (1,1),倾斜角α=π6. (1)写出直线l 的参数方程; (2)设l 与圆x 2+y 2=4相交于点A 和点B ,求点P 到A ,B 两点的距离之积. 解:(1)因为直线l 过P (1,1),且倾斜角α=π6,所以直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+32t ,y =1+12t (t 为参数).(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数分别为t 1,t 2.将直线l 的参数方程代入圆的方程x 2+y 2=4,得⎝ ⎛⎭⎪⎫1+32t 2+⎝⎛⎭⎪⎫1+12t 2=4, 整理,得t 2+(3+1)t -2=0.因为t 1,t 2是方程t 2+(3+1)t -2=0的根,所以t 1t 2=-2.故|PA |·|PB |=|t 1t 2|=2.所以点P 到A ,B 两点的距离之积为2. 11.已知圆锥曲线⎩⎨⎧ x =2cos θ,y =3sin θ(θ是参数)和定点A (0,3),F 1,F 2是圆锥曲线的左、右焦点. (1)求经过点F 1垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.解:(1)圆锥曲线⎩⎨⎧ x =2cos θ,y =3sin θ化为普通方程是x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =0-31-0=-3,于是经过点F 1垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°,所以直线l 的参数方程是⎩⎪⎨⎪⎧ x =-1+t cos30°,y =0+t sin30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t (t 为参数). (2)法一:直线AF 2的斜率k =0-31-0=-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点,则根据正弦定理得ρsin60°=1-θ, 即ρsin(120°-θ)=sin60°, 即ρsin θ+3ρcos θ= 3. 法二:直线AF 2的直角坐标方程是y =-3(x -1),将⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ代入得直线AF 2的极坐标方程:ρsin θ=-3ρcos θ+3,即ρsin θ+3ρcos θ= 3.。
第二节参数方程1.曲线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程F (x ,y )=0叫做普通方程. 2.参数方程和普通方程的互化(1)参数方程化普通方程:利用两个方程相加、减、乘、除或者代入法消去参数. (2)普通方程化参数方程:如果x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),则得曲线的参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t ).参数方程与普通方程互化的注意点(1)在参数方程与普通方程的互化中,一定要注意变量的范围以及转化的等价性. (2)普通方程化为参数方程,参数方程的形式不唯一,即如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同.3.直线、圆与椭圆的普通方程和参数方程轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎝⎛⎭⎫α≠π2,点斜式⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆(x -a )2+(y -b )2=r 2 ⎩⎪⎨⎪⎧ x =a +r cos θ,y =b +r sin θ(θ为参数) 椭圆 x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数) [熟记常用结论]经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上的两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=⎪⎪⎪⎪t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M 的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)√ (4)× 二、选填题1.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析:选B 由⎩⎪⎨⎪⎧ x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.2.若直线l :⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数)与曲线C :⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数)相切,则实数m 的值为( )A.-4或6B.-6或4C.-1或9D.-9或1解析:选A 由⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数),得直线l :2x +y -1=0,由⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数),得曲线C :x 2+(y -m )2=5,因为直线l 与曲线C 相切,所以圆心到直线的距离等于半径,即|m -1|22+12=5,解得m =-4或m =6.故选A.3.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0. 答案:x -y -1=04.已知两曲线的参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),则它们的交点坐标为________.解析:消去参数θ得普通方程为x 25+y 2=1(0≤y ≤1),表示椭圆的一部分.消去参数t 得普通方程为y 2=45x ,表示抛物线,联立两方程,可知两曲线有一个交点,解得交点坐标为⎝⎛⎭⎫1,255.答案:⎝⎛⎭⎫1,255 5.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.解析:由⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).答案:y =2-2x 2(-1≤x ≤1)考点一 参数方程与普通方程的互化 [基础自学过关][题组练透]1.已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解:(1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.即实数a 的取值范围为[-25,2 5 ].2.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数),设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45,当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上的点P 到直线l 的距离取到最小值455.[名师微点]将参数方程化为普通方程消参的3种方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数. (2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.[提醒] 将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.考点二 参数方程的应用 [师生共研过关][典例精析](2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. [解] (1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点需满足21+k 2<1, 解得k <-1或k >1, 即α∈⎝⎛⎭⎫π2,3π4或α∈⎝⎛⎭⎫π4,π2. 综上,α的取值范围是⎝⎛⎭⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α⎝⎛⎭⎫t 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎨⎧x =22sin 2α,y =-22-22cos 2α⎝⎛⎭⎫α为参数,π4<α<3π4.[解题技法]一般地,如果题目中涉及圆、椭圆上的动点或求最值范围问题时可考虑用参数方程,设曲线上点的坐标,将问题转化为三角恒等变换问题解决,使解题过程简单明了.[过关训练]已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|. 则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.考点三 参数方程与极坐标方程的综合应用 [师生共研过关][典例精析](2019·柳州模拟)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =2sin α(α为参数),以原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)求曲线C 的极坐标方程以及曲线D 的直角坐标方程;(2)若过点A ⎝⎛⎭⎫22,π4(极坐标)且倾斜角为π3的直线l 与曲线C 交于M ,N 两点,弦MN 的中点为P ,求|AP ||AM |·|AN |的值.[解] (1)由题意可得曲线C 的普通方程为x 29+y 24=1,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 的普通方程可得,曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2 θ4=1,即ρ2=364+5sin 2θ.因为曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ, 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x ,所以曲线C 的极坐标方程为ρ2=364+5sin 2θ,曲线D 的直角坐标方程为x 2+y 2+2x -23y =0.(2)由点A ⎝⎛⎭⎫22,π4,得⎩⎨⎧x =22cos π4=2,y =22sin π4=2,所以A (2,2).因为直线l 过点A (2,2)且倾斜角为π3,所以直线l 的参数方程为⎩⎨⎧x =2+t cos π3,y =2+t sin π3(t 为参数),代入x 29+y 24=1可得,314t 2+(8+183)t +16=0, 设M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=-32+72331,t 1t 2=6431,所以|AP ||AM |·|AN |=⎪⎪⎪⎪t 1+t 22|t 1t 2|=4+9316.[解题技法]参数方程与极坐标方程综合问题的解题策略(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[过关训练](2018·合肥质检)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫π4-θ. (1)求曲线C 的直角坐标方程;(2)已知直线l 过点 P (1,0)且与曲线C 交于A ,B 两点,若|PA |+|PB |=5,求直线l 的倾斜角α.解:(1)由ρ=22cos ⎝⎛⎭⎫π4-θ=2(cos θ+sin θ)⇒ρ2=2(ρcos θ+ρsin θ)⇒x 2+y 2=2x +2y ⇒(x -1)2+(y -1)2=2,故曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)由条件可设直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),代入圆的方程,有t 2-2t sin α-1=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=2sin α, t 1t 2=-1,|PA |+|PB |=|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α+4=5,解得sin α=12或sin α=-12(舍去),故α=π6或5π6.[课时跟踪检测]1.设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数). (1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围. 解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1), 所以,当直线l 经过圆C 的圆心时,直线l 的斜率k =52.(2)由圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数),得圆C 的圆心是C (1,-1),半径为2.由直线l 的参数方程⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),得直线l 的普通方程为y -4=k (x -3)(斜率存在), 即kx -y +4-3k =0.当直线l 与圆C 交于两个不同的点时,圆心到直线的距离小于圆的半径, 即|5-2k |k 2+1<2,解得k >2120.即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞. 2.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.解:(1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tanα·x +2-tan α;当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.3.(2019·沈阳模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2a cos θ(a >0).(1)求曲线C 的直角坐标方程,直线l 的普通方程;(2)设直线l 与曲线C 交于M ,N 两点,点P (-2,0),若|PM |,|MN |,|PN |成等比数列,求实数a 的值.解:(1)由ρsin 2θ=2a cos θ(a >0)两边同乘以ρ得, 曲线C 的直角坐标方程为y 2=2ax (a >0).由直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t 为参数),消去t ,得直线l 的普通方程为x -y +2=0.(2)将⎩⎨⎧x =-2+22t ,y =22t代入y 2=2ax ,得t 2-22at +8a =0,由Δ>0得a >4,设M ,N 对应的参数分别为t 1,t 2,则t 1+t 2=22a ,t 1t 2=8a , ∵|PM |,|MN |,|PN |成等比数列,∴|t 1-t 2|2=|t 1t 2|,∴(22a )2-4×8a =8a ,∴a =5.4.(2019·青岛调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|P Q |的最小值及此时P 的直角坐标. 解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|P Q |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 5.(2018·辽宁五校联合体模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求C 1的普通方程和C 2的直角坐标方程;(2)若射线l :y =kx (x ≥0)分别交C 1,C 2于A ,B 两点(A ,B 异于原点),当k ∈(1,3]时,求|OA |·|OB |的取值范围.解:(1)由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,可得(x -1)2+y 2=cos 2α+sin 2α=1,即C 1的普通方程为(x -1)2+y 2=1.方程ρcos 2θ=sin θ可化为ρ2cos 2θ=ρsin θ (*),将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入(*)式,可得x 2=y , 所以C 2的直角坐标方程为x 2=y . (2)因为A ,B 异于原点,所以联立⎩⎪⎨⎪⎧(x -1)2+y 2=1,y =kx ,可得A ⎝⎛⎭⎫2k 2+1,2k k 2+1;联立⎩⎪⎨⎪⎧y =kx ,y =x 2,可得B (k ,k 2). 故|OA |·|OB |=1+k 2·2k 2+1·1+k 2·|k |=2|k |.又k ∈(1,3],所以|OA |·|OB |∈(2,23].6.(2019·惠州调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ=tan θ.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A ,B 两点,点P 的极坐标为⎝⎛⎭⎫22,-π4,求1|PA |+1|PB |的值. 解:(1)由曲线C 1的参数方程消去参数t 可得,曲线C 1的普通方程为4x +3y -2=0. 由x =ρcos θ,y =ρsin θ可得,曲线C 2的直角坐标方程为y =x 2.(2)由点P 的极坐标为⎝⎛⎭⎫22,-π4,可得点P 的直角坐标为(2,-2),∴点P 在曲线C 1上.将曲线C 1的参数方程⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数)代入y =x 2,得9t 2-80t +150=0,设t 1,t 2是点A ,B 对应的参数, 则t 1+t 2=809,t 1t 2=503>0.∴1|PA |+1|PB |=|PA |+|PB ||PA |·|PB |=|t 1+t 2||t 1t 2|=815. 7.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且l 过点A ,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 1上的点到直线l 的距离的最大值;(2)过点B (-1,1)且与直线l 平行的直线l 1与曲线C 1交于M ,N 两点,求|BM |·|BN |的值. 解:(1)由直线l 过点A ,得2cos ⎝⎛⎭⎫π4-π4=a ,故a =2,则易得直线l 的直角坐标方程为x +y -2=0.由点到直线的距离公式,得曲线C 1上的点到直线l 的距离d =|2cos α+3sin α-2|2=|7sin (α+φ)-2|2,⎝⎛⎭⎫其中tan φ=233,∴d max =7+22=14+222.即曲线C 1上的点到直线l 的距离的最大值为14+222. (2)由(1)知直线l 的倾斜角为3π4, 则直线l 1的参数方程为⎩⎨⎧x =-1+t cos 3π4,y =1+t sin 3π4(t 为参数).易知曲线C 1的普通方程为x 24+y 23=1.把直线l 1的参数方程代入曲线C 1的普通方程, 得72t 2+72t -5=0, 设M ,N 对应的参数分别为t 1,t 2,则t 1t 2=-107, 根据参数t 的几何意义可知|BM |·|BN |=|t 1t 2|=107. 8.(2019·郑州模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-32t ,y =m +12t (t为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=8cos ⎝⎛⎭⎫θ-π6,直线l 与圆C 交于A ,B 两点. (1)若OA ⊥OB ,求直线l 的普通方程;(2)设P (3,1)是直线l 上的点,若|AB |=λ|PC |,求λ的值.解:(1)消去参数t ,得直线l 的普通方程为x +3y =3+3m ,将圆C 的极坐标方程ρ=8cos ⎝⎛⎭⎫θ-π6的两边同时乘ρ, 得ρ2=43ρcos θ+4ρsin θ,则圆C 的直角坐标方程为(x -23)2+(y -2)2=16,所以圆C 的圆心C (23,2),半径为4,且经过原点O ,数形结合得,若OA ⊥OB ,则直线l 经过圆心C ,即23+3×2=3+3m ,解得m =3, 即直线l 的普通方程为x +3y -43=0. (2)由P (3,1)是直线l 上的点,得m =1,此时直线l 的参数方程为⎩⎨⎧x =3-32t ,y =1+12t (t 为参数),代入到圆C 的方程(x -23)2+(y -2)2=16中,得t 2+2t -12=0,设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=-2,t 1t 2=-12,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4+48=213, 又|PC |=2,|AB |=λ|PC |,所以λ=13.。
高中数学参数方程教案
教学目标:
1. 了解参数方程的概念及其运用;
2. 掌握参数方程在几何问题中的应用;
3. 能够独立解决使用参数方程求解问题。
教学重点:
1. 参数方程的定义和性质;
2. 参数方程在不同问题中的应用。
教学难点:
1. 参数方程的理解和运用;
2. 根据问题设置合理的参数方程。
教学过程:
一、导入(5分钟)
通过一个简单几何问题引导学生思考参数方程的概念和作用。
二、讲解(15分钟)
1. 参数方程的定义和性质;
2. 参数方程在直线、曲线、图形等几何问题中的应用。
三、示例讲解(20分钟)
老师通过几个具体的例题,详细讲解参数方程的求解步骤和方法。
四、练习(20分钟)
学生自主完成一些练习题,巩固参数方程的应用能力。
五、总结(10分钟)
总结参数方程的特点和运用,强化学生对参数方程的理解。
六、作业布置(5分钟)
布置相关的作业,让学生巩固课堂所学内容。
教学反思:
参数方程在数学中是一个重要的概念,可以帮助我们解决一些复杂的几何问题。
在教学中,需要引导学生从实际问题出发,理解参数方程的定义和运用,培养学生的分析和解决问题
的能力。
同时,教师需要及时总结和巩固课堂内容,帮助学生深化对参数方程的理解。
2.3 参数方程化成普通方程1.了解参数方程化成普通方程的意义.2.掌握参数方程化成普通方程的基本方法.(重点)3.能够利用参数方程化成普通方程解决有关问题.(难点)教材整理 参数方程化为普通方程参数方程和普通方程是曲线方程的两种不同形式,普通方程用代数式直接表示点的坐标之间的关系;参数方程是借助于参数间接地反映点的坐标之间的关系.两者之间可以互化,将参数方程化成普通方程的常用方法有:(1)代数法消去参数①代入法:从参数方程中选出一个方程,解出参数,然后把参数的表达式代入另一个方程,消去参数,得到曲线的普通方程.②代数运算法:通过乘、除、乘方等运算把参数方程中的方程适当地变形,然后把参数方程中的两个方程进行代数运算,消去参数,得到曲线的普通方程.(2)利用三角恒等式消去参数如果参数方程中的x ,y 都表示为参数的三角函数,那么可以考虑用三角函数公式中的恒等式消去参数,得到曲线的普通方程.填空:(1)将参数方程⎩⎪⎨⎪⎧x =t ,y =2t (t 为参数)化为普通方程是________.(2)将参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)化为普通方程是________.(3)将参数方程⎩⎪⎨⎪⎧x =2t 2,y =t +1(t 为参数)化为普通方程是________.【解析】 (1)把t =x 代入②得y =2x 即普通方程为y =2x . (2)由sin 2θ+cos 2θ=1得x 2+y 2=1.(3)由②得t =y -1,代入①得x =2(y -1)2.【答案】 (1)y =2x (2)x 2+y 2=1 (3)x =2(y -1)2预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:(1) x -1 23+ y -2 25=1,x =3cos θ+1.(θ为参数)(2)x 2-y +x -1=0,x =t +1.(t 为参数) 【精彩点拨】 根据题目要求代入可求解.【自主解答】 (1)将x =3cos θ+1代入 x -1 23+ y -225=1得y =2+5sinθ.∴⎩⎨⎧x =3cos θ+1,y =5sin θ+2(θ为参数).这就是所求的参数方程.(2)将x =t +1代入x 2-y +x -1=0得y =x 2+x -1=(t +1)2+t +1-1=t 2+3t +1,∴⎩⎪⎨⎪⎧x =t +1,y =t 2+3t +1(t 为参数).这就是所求的参数方程.普通方程化为参数方程时,①选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与普通方程等价.②参数的选取不同,得到的参数方程是不同的.如本例(2),若令x =tan θ(θ为参数),则参数方程为⎩⎪⎨⎪⎧x =tan θ,y =tan 2θ+tan θ-1(θ为参数).1.求xy =1满足下列条件的参数方程.(1)x =t (t ≠0);(2)x =tan θ⎝⎛⎭⎪⎫θ≠k π2,k ∈Z .【解】 (1)将x =t 代入xy =1得t ·y =1. ∵t ≠0,∴y =1t,∴⎩⎪⎨⎪⎧x =t ,y =1t(t 为参数,t ≠0).(2)将x =tan θ代入xy =1得y =1tan θ,∴⎩⎪⎨⎪⎧x =tan θ,y =1tan θ(θ为参数,θ≠k π2,k ∈Z ).探究1 下面将参数方程⎩⎨⎧x =t +1,y =1-2t(t 为参数),化成普通方程的过程是否正确?为什么?解:由x =t +1,得t =x -1, 代入y =1-2t ,得y =-2x +3. 这是一条过点(0,3),且斜率为-2的直线.【提示】 解析过程不正确,因为没有考虑x 是有范围的,即x =t +1≥1. 探究2 将参数方程化成普通方程应注意什么?怎么来做?【提示】 将参数方程化成普通方程,应注意,消参过程中要求不减少也不增加曲线上的点,即要求参数方程和消去参数后的普通方程是等价的;消参前必须是根据参数的取值范围确定f (t )和g (t )的值域,从而得到x ,y 的取值范围.探究3 把参数方程化为普通方程时,常用哪些方法? 【提示】 消去参数的方法一般有三种:(1)利用解方程的技巧求出参数的表示式,然后代入消去参数; (2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,选用一些灵活的方法从整体上消去参数.将下列参数方程化成普通方程,并说明方程表示的曲线.(1)⎩⎪⎨⎪⎧x =1-3t ,y =4t (t 为参数);(2)⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (a ,b 为大于零的常数,t 为参数).【精彩点拨】 (1)可用代入法;(2)可用代数运算法.【自主解答】 (1)由已知t =1-x3,代入y =4t 中,得4x +3y -4=0,它就是所求的普通方程,它表示的是一条直线.(2)∵x =a 2⎝ ⎛⎭⎪⎫t +1t ,∴t >0时,x ∈.由x =a 2⎝⎛⎭⎪⎫t +1t ,两边平方可得x 2=a 24⎝⎛⎭⎪⎫t 2+2+1t 2,①由y =b 2⎝ ⎛⎭⎪⎫t -1t 两边平方可得y 2=b 24⎝⎛⎭⎪⎫t 2-2+1t2, ②①-②并化简,得x 2a 2-y 2b2=1,这就是所求的曲线方程,它表示的曲线是中心在原点,焦点在x 轴上的双曲线.将不含三角函数的参数方程化成普通方程时,若两个方程中其中一个可以解出参数t ,则用代入法消参,否则用代数运算法消参.2.把下列参数方程化为普通方程,并说明它们各表示什么曲线.(1)⎩⎪⎨⎪⎧x =-4t 2,y =t +1(t ≥0,t 为参数);(2)⎩⎪⎨⎪⎧x =a 1-t 2 1+t2,y =2bt1+t2(t 是参数且a >b >0).【解】 (1)⎩⎪⎨⎪⎧x =-4t 2, ①y =t +1, ②由②解得t =y -1,代入①中, 得x =-4(y -1)2(y ≥1), 即(y -1)2=-14x (y ≥1).方程表示的曲线是顶点为(0,1),对称轴平行于x 轴,开口向左的抛物线的一部分. (2)由已知可得⎩⎪⎨⎪⎧x a =1-t 21+t 2, ①y b =2t 1+t 2, ②①2+②2得x 2a 2+y 2b2=1(a >b >0,x ≠-a ),这就是所求的普通方程,方程表示的曲线是焦点在x 轴上的椭圆(去掉左顶点).将下列参数方程化为普通方程,并说明方程表示的曲线. (1)⎩⎪⎨⎪⎧x =1+4cos t ,y =-2+4sin t(t 为参数,0≤t ≤π);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数).【精彩点拨】 (1)利用sin 2t +cos 2t =1消参; (2)cos 2θ=1-2sin 2θ消参.【自主解答】 (1)∵0≤t ≤π,-1≤cos t ≤1, 0≤sin t ≤1.∴-3≤x ≤5,-2≤y ≤2,(x -1)2+(y +2)2=16cos 2t +16sin 2t =16. ∴(x -1)2+(y +2)2=16(-3≤x ≤5,-2≤y ≤2), 它表示的曲线是以(1,-2)为圆心,半径为4的上半圆. (2)由y =-1+cos 2θ,可得y =-2sin 2θ,把sin 2θ=x -2代入y =-2sin 2θ, 可得y =-2(x -2), 即2x +y -4=0.又∵2≤x =2+sin 2θ≤3,∴所求的方程是2x +y -4=0(2≤x ≤3),它表示的是一条线段.对于含有三角函数的参数方程化成普通方程问题,常联想三角恒等式,利用三角变换消去参数,而得到其普通方程,但应注意x ,y 的取值范围.3.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上.(1)求常数a ;(2)求曲线C 的普通方程.【解】 (1)由题意,可知⎩⎪⎨⎪⎧1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2,由第一个方程,得t =x -12,代入第二个方程,得y =⎝⎛⎭⎪⎫x -122,即(x -1)2=4y 为所求.1.曲线⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ+2(θ为参数)的一条对称轴的方程为( )A.y =0B.x +y =0C.x -y =0D.2x +y =0【解析】 曲线⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ+2(θ为参数)的普通方程为(x +1)2+(y -2)2=4,圆心C 的坐标为(-1,2),过圆心的直线都是圆的对称轴,故选D.【答案】 D2.与普通方程x 2+y -1=0等价的参数方程为( )A.⎩⎪⎨⎪⎧x =sin t ,y =cos 2t (t 为参数)B.⎩⎪⎨⎪⎧x =cos t ,y =sin 2t (t 为参数)C.⎩⎨⎧x =1-t ,y =t(t 为参数)D.⎩⎪⎨⎪⎧x =tan t ,y =1-tan 2t (t 为参数)【解析】 A 化为普通方程为x 2+y -1=0,x ∈,y ∈.B 化为普通方程为x 2+y -1=0,x ∈,y ∈. C 化为普通方程为x 2+y -1=0,x ∈.D 化为普通方程为x 2+y -1=0,x ∈R ,y ∈(-∞,1]. 【答案】 D 3.若曲线⎩⎪⎨⎪⎧x =1+cos 2θ,y =sin 2θ(θ为参数),则点(x ,y )的轨迹是________.【导学号:12990028】【解析】 x =1+cos 2θ=1+(1-2sin 2θ)=2-2y , ∴x +2y -2=0.又∵x =1+cos 2θ∈,y =sin 2θ∈.∴点(x ,y )的轨迹是以(2,0)和(0,1)为端点的线段. 【答案】 以(2,0)和(0,1)为端点的线段4.参数方程⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)化成普通方程为________.【解析】 ∵⎩⎪⎨⎪⎧ x =cos α,y =1+sin α(α为参数),∴⎩⎪⎨⎪⎧x =cos α, ①y -1=sin α, ②(α为参数).①2+②2得x 2+(y -1)2=1,此即为所求普通方程. 【答案】 x 2+(y -1)2=1 5.指出下列参数方程表示什么曲线.(1)⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(0≤θ≤π);(2)⎩⎪⎨⎪⎧x =2cos t ,y =3sin t (π≤t ≤2π).【解】 (1)由⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ,得x 2+y 2=9.又∵0≤θ≤π.∴-3≤x ≤3,0≤y ≤3.∴所求方程为x 2+y 2=9(0≤y ≤3).这是一个半圆(圆x 2+y 2=9在x 轴上方的部分).(2)由⎩⎪⎨⎪⎧x =2cos t ,y =3sin t ,得x 24+y 29=1.∵π≤t ≤2π,∴-2≤x ≤2,-3≤y ≤0.∴所求方程为x 24+y 29=1(-3≤y ≤0).它表示半个椭圆(椭圆x 24+y 29=1在x 轴下方的部分).我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。