2012年中考数学总复习:解题方法五:解答开放题
- 格式:doc
- 大小:393.50 KB
- 文档页数:8
如何破解难题、新题?一说到难题,有的同学就彻底放弃了,中考压轴题也没有想象中的那么难,在考试中,我们学生脑海里想的最多的莫过于分,分,分了。
在那么紧张的环境中如何让自己多得分呢?下面介绍几点,希望对大家有所帮助。
第一,保持镇静,不会做时可暂时搁下,最后回头再做;切勿在做下一题时又还再想上一题,这样的话,人的思绪就会乱,一乱就完了,考试肯定不能发挥出正常的水平。
第二,仔细审题,提取关键词转化成数学符号语言;特别是做在后面的解答题时,碰到不会的,切不可空白,你只要将题目中的一些关键词用数学符号表示出来就有分的。
比如,看见二次函数与X轴有交点就有△≥0,等等。
第三,联想相关知识、思想方法;比如函数思想、整体代换、因式分解、图形的变换(旋转、平移、翻折、轴对称)、方程思想、构造直角三角形、图形的割补等方法。
然后,看你能否从中挑出一些有用的材料或线索。
第四,利用其他试题;后面的试题也许会给你提供某些线索或启发。
第五,不要轻意放弃,对于解题层次明显的题目,能解决多少问题就解决多少问题,这样虽然未得出最后结论,也可得到一定分数。
一般中考试卷中的图形都是标准图,碰到探索题时,比如线段之间的数量关系,角度的猜测,不妨可以量量看。
还比如,函数问题一般都要求出解析式,点的坐标要求出来,看看坐标图形中还有什么可以利用的点,再代入求出便有分可得。
有一个人,受到了生活的打击,他觉得受不了,几次想上吊自杀。
村里有一位智者去看他,希望能说服这位不幸的人,让他好好活下去。
智者到年轻人的家里后,什么话也没有说,却把他带到一个弯腰树下,树上有一根绳子。
智者说:“曾经有一个人用这根绳子结束了自己的生命。
”接着智者又带着年轻人来到一口井旁,接着说:“曾经有一个掉到井里,他拽着绳子爬了上来。
”第3讲.数学解答题的解题策略【专题精讲】解答题在每年的中考中是拉距离的题型,今年的复习已经进入第二轮复习了,为了让同学们在做解答题时减少失误,方法上有所突破,应试能力有较大的提高,这个时候很有必要进行针对性的点拨。
2012年中考数学二轮复习考点解密选择题解题方法第一部分讲解部分一.专题诠释选择题是各地中考必考题型之一,2011年各地命题设置上,选择题的数目稳定在8~12题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二.解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三.考点精讲考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础.例1.(2011•广西省柳州市)九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有()A.17人B.21人C.25人D.37人分析:设这两种实验都做对的有x人,根据九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人可列方程求解.解:设这两种实验都做对的有x人,(40﹣x)+(31﹣x)+x+4=50,x=25.故都做对的有25人.故选C.评注:本题考查理解题意的能力,关键是以人数做为等量关系构造方程直接求解.考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
EDCB A解答开放题我们知道中考数学试卷中会有一些开放性试题,这些试题考查的知识点较多,综合性强,还考查对数学的理解和对数学知识的运用,灵活多变,有一定的难度。
开放性试题,可以分为三类,即条件开放性试题、过程开放性试题、结论开放性试题,这些试题没有固定的解题步骤和解答的程序,且答案不唯一。
下面我们就看几个例题,希望能帮助你掌握解答这类试题的基本方法。
例1 如图,在下面四个等式:①AB DC =,②BE CE =,③B C ∠=∠,④BAE CDE ∠=∠中选出两个作为条件,推出AED △是等腰三角形.写出所有的方法,并完成其中一种的证明.分析:这是一个条件开放的题目。
首先,我们将条件进行组合。
根据下表可以得到12种组合,由于其中(1,2)与(2,1)表示同一种意思,所以去掉重合后共有6种组合。
即: (1)①AB DC =,②BE CE = (2)①AB DC =,③B C ∠=∠ (3)①AB DC =,④BAE CDE ∠=∠ (4)②BE CE =,③B C ∠=∠ (5)②BE CE =,④BAE CDE ∠=∠ (6)③B C ∠=∠,④BAE CDE ∠=∠然后,我们从结论出发去思考。
(1)若AED △是等腰三角形,则必须AE = DE ,需要△ABE ≌△DCE (2)若AED △是等腰三角形,则必须∠EAD =∠EDA ,需要△ABD ≌△DCA显然,每个组合中的两个条件是不够的,题目中还有哪些隐含的条件呢?我们发现,图中的∠AEB =∠DEC (对顶角相等)。
这样,我们发现:组合(1):①AB DC =,②BE CE =再加上图中的∠AEB =∠DEC (对顶角相等)不能证明△ABE ≌△DCE 或△ABD ≌△DCA 全等。
组合(2):①AB DC =,③B C ∠=∠再加上图中的∠AEB =∠DEC (对顶角相等)→△ABE ≌△DCE (SAS )1 2 3 4 1 (1,2)(1,3) (1,4) 2 (2,1) (2,3)(1,4) 3 (3,1) (3,2) (3,4)4(4,1)(4,2)(4,3)EDCB A组合(3):①AB DC =,④BAE CDE ∠=∠再加上图中的∠AEB =∠DEC (对顶角相等)→△AB E ≌△DCE (SAS )组合(4)②BE CE =,③B C ∠=∠再加上图中的∠AEB =∠DEC (对顶角相等)→△ABE ≌△DCE (ASA )组合(5)②BE CE =,④BAE CDE ∠=∠再加上图中的∠AEB =∠DEC (对顶角相等)→△ABE ≌△DCE (SAS )组合(6):③B C ∠=∠,④BAE CDE ∠=∠再加上图中的∠AEB =∠DEC (对顶角相等)也不能证明△ABE ≌△DCE 或△ABD ≌△DCA 全等。
2012中考数学解题10个技巧中考将近,学生们都进入到了紧张的复习阶段,那么有没有什么好的复习方法呢?尤其是数学,相对来说拉开的分数比较大,下面就让我们一起来了解一下中考数学的复习方法吧。
1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
这是中考数学的复习方法之一。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
2012中考数学应考技巧总结导读:本文2012中考数学应考技巧总结,仅供参考,如果能帮助到您,欢迎点评和分享。
同学们,马上就要走进考场了,三年的学习和几个月的复习,是那么的紧张而艰苦,能否将自己的实际水平如实地在考卷上全面正确地反映出来,实现自己的宏愿,除了扎实的基本知识功底外,你还要掌握应考的一些技巧和进行一些必要的心理调适,本文就数学学科如何应考作以简要说明,希望对你有所帮助。
(一)对题目的审查要认真:审题的正确是正确解题的开始和基础,对题目的阅读,除了有较好的语文基础外,必须结合数学的特点,最后达到看懂、看清题目内容的目的。
审题过程注意以下几点。
1. 最简章的题目可以看一遍,一般的题目至少要看两遍。
如果通过对文字及插图的阅读觉得此题是熟悉的,肯定了此题会做,这时一定要重新读一遍再去解答,千万不要凭着经验和旧的思维定势,在没有完全看清题目的情况下仓促解答。
因为同样的内容或同样的插图,并不意味着有相同的设问,问题的性质是可以翻新的。
2. 对"生题"的审查要耐心地读几遍。
所谓的生题就是平时没有见过的题目或擦身而过没有深入研究的题目,它可能是用所学的知识来解决与生活及生产实际中相关连的问题。
遇到这种生疏的题,从心理上先不要觉得很难,由于生题第一次出现,它包括的内容及能力要求可能难度并不大,只要通过几遍阅读看清题意,再联系学过的知识,大部分题目是不难解决的。
3. 审题过程中要边阅读边分辨出已知量和待求量。
已知的条件及待求的内容以题目的叙述为准。
尤其不要以某些插图为准,有时图中给出的符号不一定是已知量,另外,凡是能画草图的题,应该边审题边作图,这样可以建立起直观的图景,帮助记忆和分析问题。
(二)对题目的应答要准确:试题的题型有单选题、填空题、解答题,解答题一般包括计算题、证明题、作图题、阅读理解题、及综合题等。
每一种题型都有各自的测试功能,应答时也应有各自的注意点。
1. 单项选择题的应答:试题的特点是概念性强、针对性强,具有一定的迷惑性。
2012年中考数学压轴题专题九开放探索问题试题特点《数学课程标准》把逐步形成数学创新意识列为学习目标,各地中考数学命题为了实现这个目标也都做了有益的尝试,例如出现了不少别具创意、独特新颖的开放探索型试题.这类试题不仅能考查观察、实验、类比、归纳、猜想、判断、探究等能力,而且把解题的过程变成了探究规律、发现规律的过程,因此,在考查高层次思维能力和创新意识方面具有独特的作用.所谓的开放探索型试题是指那些条件不完整,结论不确定的数学问题,从结构特征上看主要分为三类:条件开放、策略开放、结论开放.开放题是相对于传统的封闭题而言的,其显著特征是问题的答案不唯一(开放性),并且在设问方式上要求考生进行多方面、多角度、多层次探索.方式趋势开放型试题重在开发思维,促进创新,提高数学素养,所以是近几年中考试题的热点考题,开放题是中考题多样化和时代发展要求的产物,单一的题型和测试目标限制了考生应用知识解决实际问题的能力,不利于激发创造性.开放性试题能为考生提供更大的解决问题的空间,在解题途径方面也是多样的,这样的试题有利于考生发挥水平,有利于考生创新意识的培养.热点解析一、条件开放与探索探索条件型问题是指问题中结论明确,而需要完备使结论成立的条件的题目.解答探求条件型问题的思路是,从所给结论出发,设想出合乎要求的一些条件,逐一列出,并进行逻辑证明,从而寻找出满足结论的条件.【题1】如图1,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长.(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)【思路】点C在线段BD上运动,图形中有两个直角三角形,AC,CE分别为Rt△ABC,Rt△CDE的斜边,所要求的问题是两条线段之和最短,在直角三角形中借助勾股定理表示出斜边的长.求AC+CE的最小值的问题,如果从代数式中来求解,难度太大,不妨观察图形,将其转化为“两点之间线段最短”问题.【解答】(2)当A,C,E三点共线时,AC+CE的值最小.(3)如图2所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C.AE的长即为代数过点A 作AF ∥BD 交ED 的延长线于点F ,得矩形ABDF ,则AB =DF =2,AF =BD=8.所以AE 1313.【失分点】利用勾股定理,错点.【反思】本题由勾股定理得出线段的长,并用二次根式表示,结合图形发现AC +CE 的最小值即是线段AE 的长.比较困难的是第(3)问,类比第(1)问的代数式,画出图形,求出线段的长.运用了数形结合思想.【牛刀小试】1.如图3,在等腰梯形ABCD 中,已知AD ∥BC ,AB =DC ,AD =2,BC =4,延长BC 到E ,使CE =AD .(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由.(2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说明理由.2.(2010随州)已知抛物线y =ax 2 +bx +c(a ≠0)顶点为C(1,1),且过原点O .过抛物线上一点P(x ,y )向直线y =54作垂线,垂足为M ,连接FM(如图4). (1)求字母a ,b ,c 的值. (2)在直线x =1上有一点F (1,34),求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形.二、策略开放与探索策略开放性问题,一般指解题方法不唯一或解题途径不明确的问题,这类问题要求解题者不墨守成规,善于突破常规,积极发散思维,优化解题方案和过程,【题2】 (2011德州)●观察计算当a =5,b =3时,2a b +与_______.当a =4,b =4时,2a b +与_______. ●探究证明如图5所示,△ABC 为圆O 的内接三角形,AB 为直径,过C 作CD ⊥AB 于D ,设AD =a .BD =b .(1)分别用a 、b 表示线段OC ,CD ;(2)探求OC 与CD 表达式之间存在的关系(用含a ,b 的式子表示).●归纳结论根据上面的观察计算、探究证明,你能得出2a b +_______. ●实践应用要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.【思路】 (2)利用△ACD ∽△CBD ,对应边成比例计算CD .【解答】●观察计算:2a b +2a b + ●探究证明:(1)∵AB =AD +BD =20C ,∴OC =2a b + ∵AB 为⊙O 直径,∴∠ACB =90°,∵∠A +∠ACD =90°,∠ACD +∠BCD =90°,∴∠A =∠BCD .∴△ACD ∽△CBD .∴AD CD CD BD=,即CD 2=AD ·BD =ab ,∴CD(2)当a =b 时,OC =CD ,2a b +a ≠b 时,OC>CD ,2a b +●结论归纳:2a b +●实践应用设长方形一边长为x 米,则另一边长为1x米,设镜框周长为x 米,则124l x x ⎛⎫=+≥ ⎪⎝⎭. 当x =1x,即x =1(米)时,镜框周长最小. 此时四边形为正方形时,周长最小为4米,【失分点】 不能直接利用射影定理得到CD 2=AD ·BD =ab .【反思】本题的实质是把相关代数式转化为(a -b )2,利用非负数的性质求解,即()20a b -≥.【题3】用厚纸剪四个大小与形状完全相同的直角三角形,形状如图6所示,然后拼拼摆摆(不能重叠),使得组成的图形中有正方形.请尽量多设计几个符合要求的不同的图形,并说明在哪种情况下正方形的面积最大.【思路】按要求动手剪四个这样的直角三角形,拼一拼,美丽的图形就诞 生了,再考虑面积.注意正方形的面积是边长的平方.【解答】图7中各图均符合要求,其中图7(3)中外围正方形的面积最大,边长为直角三角形的两条直角边之和.【失分点】最大的正方形边长为直角三角形两直角边的和,而不是斜边.【反思】图形的设计注意设计的要求,一定要出现正方形,要想面积最大,就要使正方形的边长尽可能地大.【牛刀小试】3.解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?(1)x 2-2x =0;(2)x 2+3x -4=0;(3)x 2-5x +6=0.(1)请用文字语言概括你的发现:______________________________________________________________________(2)一般地,对于关于x 的方程x 2+p x +q =0(p ,q 为常数,p 2-4q ≥0)的两根为x 1、x 2,则x 1+x 2=_______,x 1x 2=_______(3)运用以上发现,解决下面的问题:①已知一元二次方程x 2-2x -7=0的两个根为x 1,x 2,则x 1+x 2的值为( ).A .-2B .2C .-7D .7②已知x 1,x 2是方程2x 2-x -3=0的两根,试求(1+x 1)(1+x 2)和2212x x 的值.三、结论开放与探索给出问题的条件,让解题者根据条件探索相应的结论,并且符合条件的结论往往呈现多样性,或者相应的结论的“存在性”需要解题者进行推断,甚至要求解题者探求条件在变化中的结论,这些问题都是结论开放性问题.它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,主要考查解题者的发散性思维和所学基本知识的应用能力.【题4】在一块长16 m ,宽12 m 的矩形荒地上,要建造一个花园,要求花园面积是荒地面积的一半,下面分别是小华与小芳的设计方案.(1)同学们都认为小华的方案是正确的,但对小芳方案是否符合条件有不同意见,你认为小芳的方案符合条件吗?若不符合,请用方程的方法说明理由.(2)你还有其他的设计方案吗?请画出你所设计的草图,将花园部分涂上阴影,并加以说明.【思路】在小芳的设计方案中,可以求出四周的面积是否占总面积的一半.当然本题要用方程的思想说明理由,因此,我们不妨假设四周面积已经占总面积的一半,建立方程,求出四周小路的宽度,与条件中的1m 进行比较,【解答】(1)不符合.设小路宽度均为x m ,根据题意得()()116212216122x x --=⨯⨯, 解这个方程得x 1=2,x 2=12.但x 2=12不符合题意,应舍去,∴x =2.∴小芳的方案不符合条件,小路的宽度均为2 m .(2)答案不唯一.例如:【失分点】设计的图形中未标明数据或作必要的说明.【反思】数学来源于生活又服务于生活,数学学习中应更多地培养应用数学的观念.本题图形的方案设计具有较大的开放性,应根据设计要求,合理想象,对于求解过程有简有繁,在此设计中抓住“花园所占面积为荒地面积的一半”,可以有许多美妙设计,图11是部分设计.上述设计的图案中有的不需要解方程,只须利用几何图形的对称性质.【题5】张明、王成两位同学八年级10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如图12所示:(1)根据上图中提供的数据填写下表:(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是_______.(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.【思路】这是一道统计计算题,从图中获取有关信息,计算表中所需补充的统计量,同时会从图中把握识别优秀学生的标准,并对两同学提出合理化建议.可由样本平均数公式、方差公式直接代入数据求出,在平均数相同的条件下,可利用方差判断“优生”问题,方差越小,波动越小,成绩就稳定.【解答】(1)根据样本平均数、方差公式、中位数、众数的定义可以求出,张明的成绩从低到高排列为:70,70,70,80,80,80,80,90,90,90,从而张明的中位数为80.王成同学的平均成绩也为80分,中位数为85,众数为90.(2)若将90分以上(含90分)的成绩视为优秀,则10次单元自我检测成绩中,张明同学仅有3次成绩达到优秀,而王成同学有5次成绩达到优秀.因此,优秀率高的同学应是王成.(3)尽管王成同学的优秀率高,但他的成绩不稳定(方差大).而张明同学虽然优秀率比不上王成同学,但他的考试成绩相对稳定.根据两同学10次检测的成绩看,发现他们各有所长,也各有所短,我认为王成的学习要持之以恒,保持稳定,张明同学的学习还需加一把劲,提高优秀率.【失分点】成绩优秀的应包括90分.【反思】通过这个问题的解答,我们深刻地体会到,并不是像很多同学认为的,方差越小就越好,应该具体问题具体分析.【题6】(2010临沂)如图13 (1),已知矩形ABCD,点C是边DE的中点,且AB =2AD.(1)判断△ABC的形状,并说明理由.(2)保持图(1)中的△ABC固定不变,绕点C旋转DE所在的直线MN到图13 (2)中的位置(垂线段AD,BE在直线MN的同侧).试探究线段AD,BE,DE长度之间有什么关系,并给予证明.(3)保持图13(2)中的△ABC固定不变,继续绕点C旋转DE所在的直线MN到图13 (3)中的位置(垂线段AD,BE在直线MN的异侧).试探究线段AD,BE,DE长度之间有什么关系,并给予证明.【思路】通过观察和分析条件,很容易找到图中全等的三角形,从而引导我们去发现线段AD,BE,DE之间的数量关系.【解答】(1)△ABC是等腰直角三角形.【失分点】判断△ABC 的形状要从边(是否相等,有几条边等)和角(是否有直角)两方面.容易因考虑不全面而失分.【反思】在解决新问题时,我们要学会从已经解决的问题中总结解决问题的方法和规律.【题7】正方形ABCD 与正方形CEFG 的位置如图15所示,点G 在线段CD 或CD 的延长线上.分别连接BD ,BF ,FD ,得到△BF D .(1)在图15①~③中,若正方形CEFG 的边长分别为1,3,4,且正方形ABCD 的边长均为3,请通过计算填写下表:(2)若正方形CEFG 的边长为a ,正方形ABCD 的边长为b ,猜想S △BFD 的大小,并结合图15③说明你的猜想.【思路】(1)三角形的面积可以通过S △BFD =S △BCD +S 梯形CEFD -S △BEF 来求,利用这种特殊到一般的关系得到一般规律.(2)连接CF ,由正方形性质可知∠DBC =∠FCE =45°,∴BD ∥CF .∴△BFD 与△BCD 的BD 边上的高相等.∴S △BFD =S △BCD =12b 2.也可根据关系式S △BFD =S △BCD +S 梯形CEFD -S △BEF 来求得S △BFD 的大小.【解答】(1)(2)猜想S △BFD =12b 2【失分点】 由(1)的结论,猜出S △BFD 的大小不变,但不能猜到是12b 2. 【反思】本题是综合考查几何说明推理能力的题目,要求能从复杂的图形背景中找到与所求的三角形有关的其他图形之间的关系,同时利用正方形、三角形的有关性质得出结论,同时本题是一题多解的题目,可以很好地考查思维的多样性和深刻性.【题8】张师傅在铺地板时发现,用8块大小一样的长方形瓷砖恰好可以拼成一个大的长方形,如图17(1).然后,他用这8块瓷砖又拼出一个正方形,如图17 (2),中间恰好空出一个边长为1的小正方形(阴影部分).假设长方形的长为y ,宽为x ,且y >x .(1)请你求出图17(1)中y 与x 的函数关系式.(2)求出图17(2)中y 与x 的函数关系式.(3)在图17(3)中作出两个函数的图象,写出交点坐标,并解释交点坐标的实际意义.(4)根据以上讨论完成下表,观察x 与y 的关系,回答:如果给你任意8个相同的长方形,你能否拼出类似图(1)和图(2)的图形?说出你的理由.【思路】图17 (1)和图17 (2)暗示了对边相等或者整体面积等于部分面积之和.“对边相等”或者“整体面积等于部分面积之和”均蕴含等量关系,可列方程,“能否拼出类似图(1)和图(2)的图形”要看能否满足相应的函数关系式.(3)交点坐标为(3,5).实际意义解答不唯一.如:①瓷砖的长为5,宽为3时,能围成图17(1),图17(2)的图形,②当瓷砖的长为5,宽为3时,围成图17(2)的正方形中的小正方形边长为1.(4)能否拼图,请同学们自行验证.【失分点】通过分析,得出长方形的长与宽满足的函数关系y=53 x.【反思】读出图示信息,把实际问题转换成数学问题,是解题的关键,【题9=a>b>0,是否存在满足此式的整数对(a,b)?若存在这样的整数对,请求出来.故存在满足该条件的整数对,它们分别是(656,369),(1025,164),(1476,41).【失分点】只是通过试探,找到一两个满足条件的数对,而不能找出全部.【反思】探究存在性型问题是指在一定的条件下,判断某种数学对象是否存在的问题,它有结论存在和结论不存在两种情形.解答这类问题,一般先对结论作肯定存在的假设,然后由此肯定的假设出发,结合已知条件进行推理论证.若推出矛盾,则否定先前假设;若推出合理的结论,则说明假设正确,由此得出问题的结论.【题10】如图18,在等腰梯形ABCD 中,AB =DC =5,AD =4,BC =10.点E 在下底边BC 上,点F 在腰AB 上.(1)若EF 平分等腰梯形ABCD 的周长,设BE 长为x ,试用含x 的代数式表示△BEF 的面积.(2)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由.(3)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1:2的两部分?若存在,求此时BE 的长;若不存在,请说明理由.【思路】 分别过点A 作AK ⊥BC 于点K ,过点F 作FG ⊥BC 于点G (图19),由勾股定理得到AK =4,而△BGF ∽△BKA ,得GF BF KA BA =,进而求得FG =125x-×4,最终求得△BEF 的面积.【解答】(1)由已知条件易得,梯形周长为24,高为4,面积为28. 过点F 作FG ⊥BC 于G ,过点A 作AK ⊥BC 于K .则可得,FG =125x-×4. 所以S △BEF =12BE ·FG =222455x x -+ (7≤x ≤10). (2)存在. 由(1)得222455x x -+=14,解这个方程,得x 1=7,x 2=5(不合题意,舍去),所以存在线段EF 将等腰梯形ABCD 的周长与面积同时平分,此时BE =7. (3)不存在,假设存在,显然有S △BEF :S 多边形AFECD =1:2,(BE +BF):(AF +AD +DC) =1:2.则有221628553x x -+=,整理.得3x 2-24x +70=0,此时的求根公式中的b 2-4a c =576-840<0,所以不存在这样的实数x .即不存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1:2的两部分.【失分点】想不到把“能否”分的问题转化为方程是否有解的问题.【反思】对于存在型问题,可根据题意,先假定所要求的结果存在,再结合相关性质予以推算论证.如能推得结果且符合题意,则假设成立,结果存在;否则,则所要求的结果不存在.求解本题时应注意:一是要能正确确定x 的取值范围;二是在求得x 2=5时,并不满足7≤x ≤10,应舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.【牛刀小试】4.(2011徐州)如图①,在△ABC 中,AB =AC ,BC =a cm ,∠B =30°,动点P 以1 cm/s 的速度从点B 出发,沿折线B -A -C 运动到点C 时停止运动.设点P 出发x s 时,△PBC 的面积为y cm 2.已知y 和x 的函数图象如图②所示.请根据图中信息,解答下列问题:(1)试判断△DOE 的形状,并说明理由; (2)当口为何值时,△DOE 和△ABC 相似?5.(2010黄冈)如图21.一个含45°的三角板HBE 的两条直角边与正方形ABCD 的两邻边所在的直线重合,过E 点作EF ⊥AE 交∠DCE 的角平分线于F 点,试探究线段AE 与EF 的数量关系,并说明理由.6.如图22,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).(1)画出直角梯形OMNH 绕点O 旋转180°得到的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A ,点N 的对应点为B ,点H 的对应点为C ). (2)求出过A ,B ,C 三点的抛物线的表达式.(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形...BEFG 的面积S 与m 之间的函数关系式,并写出自变量m 的取值范围.面积S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况?若存在,请直接写出此时m 的值,并指出相等的邻边;若不存在,说明理由.7.(2010福州)如图23(1),在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16x 2+bx +c 过O ,A 两点.(1)求该抛物线的解析式.(2)若A点关于直线y=2x的对称点为C,判断点C是否在该抛物线上,并说明理由.(3)如图23(2).在(2)的条件下,⊙O1是以BC为直径的圆,过原点O作⊙O1的切线OP,P为切点(点P与点C不重合).抛物线上是否存在点Q,使得以PQ为直径的圆与⊙O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由.解题策略应该说,“背题型”、“记套路”的方式并不适合于开放探究类试题的学习.此类题的解答要注意“三断”:判断——判断解题方向,推断——合情、逻辑两种推理,果断——大胆放弃、当转则转;解题的三想:回想、联想、猜想,及化静为动、转换角度、逆向思维、数形结合、分类讨论、问题分解,等等.参考答案1.(1)△CDA≌△DCE,△BAD≌△DCE.(2)DF=32.(1)a=-1,b=2,c=0.(2)略3.填表略.(1)两根之和,等于一次项系数除以二次项系数所得商的相反数;两根之积,等于常数项除以二次项系数所得的商.(2)-p,q.(3)B,0,13 44.(1)△DOE是等腰三角形.5.AE=EF.6.(1)利用中心对称性质,画出梯形OABC.A(0,4),B(6,4),C(8,0).(2)y=-14x2+32x+4.(3)S=m2-8m+28(0<m<4).不存在(4)当m=2时,BE=BG.7.(1)y=16x2-56x (2)在该抛物线上.(3)O1P的解析式为y=-43253+点Q。
2012年中考备考:数学答题技巧想要在中考数学上取得一个好成绩,首先需要大家有扎实的基础知识、熟练的基本技能和在长年累月的刻苦钻研中培养起来的数学能力,同时也取决于临场发挥。
太原查字典中考网为大家总结了数学临场发挥的几个建议,以便大家临场不慌.一、考前准备考前要摒弃杂念,排除一切干扰,提前进入数学思维状态。
闭眼想一想平时考试自己易出现的错误,然后动手清点一下考场用具,轻松进入考场。
这样做能增强信心,稳定情绪,使自己提前进入角色。
二、考前5分钟拿到试卷后,而要通览一下全卷,摸透题情。
看无印刷问题等。
此时不能动手答题,但可以阅读试题,因此可以根据自己的情况,有选择地阅读一些试题,如题目比较长的,或者有一定难度的题。
三、考中 1、迅速写下自己容易忘记的数学公式(1)把自己容易忽略和出错的事项在草稿纸上作好记号,如三角形的面积公式,四个象限点的符号,等,也可以写一两名提醒自己的话。
2、通栏试卷、审题首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。
摸清题情的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。
对这些信息的掌握,可以确保不出现前面难题做不出,后面易题没时间做的尴尬局面。
3、答卷顺序三先三后。
在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。
在做题的时候我们要遵循三先三后的原则。
首先是先易后难。
这点很容易理解,就是我们要先做简单题,然后再做复杂题。
当全部题目做完之后,如果还有时间,就再回来研究那些难题。
当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。
也就违背了我们的原意。
其次是先高后低。
这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。
这样能够拿到更多的总得分。
并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别难,所以要尽可能地把这两问做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目合算。
开放型问题1. (2011某某某某,22,7分)如图,飞机沿水平方向(A ,B 两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M 到飞行路线AB 的距离MN .飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N 处才测飞行距离),请设计一个求距离MN 的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出); (2)用测出的数据写出求距离MN 的步骤.【答案】解:此题为开放题,答案不惟一,只要方案设计合理,可参照给分⑴如图,测出飞机在A 处对山顶的俯角为α,测出飞机在B 处对山顶的俯角为β,测出AB 的距离为d ,连接AM ,BM .⑵第一步,在AMN Rt ∆中,AN MN =αtan ∴αtan MNAN = 第二步,在BMN Rt ∆中,BNMN=βtan ∴βtan MN BN =其中BN d AN +=,解得αββαtan tan tan tan -⋅⋅=d MN .2. (2011某某某某,22,8分)数学课上,李老师出示了这样一道题目:如图1,正方形ABCD 的边长为12,P 为边BC 延长线上的一点,E 为DP 的中点,DP 的垂直平分线交边DC 于M ,交边AB 的延长线于N .当6CP =时,EM 与EN 的比值是多少?(22题图)(第25题解答图)经过思考,小明展示了一种正确的解题思路:过E 作直线平行于BC 交DC ,AB 分别于F ,G ,如图2,则可得:DF DEFC EP=,因为DE EP =,所以DF FC =.可求出EF 和EG 的值,进而可求得EM 与EN 的比值. (1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了DP MN =的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.(1)解:过E 作直线平行于BC 交DC ,AB 分别于点F ,G ,则DF DE FC EP =,EM EFEN EG=,12GF BC ==. ∵DE EP =,∴DF FC =. ··················· 2分∴116322EF CP ==⨯=,12315EG GF EF =+=+=. ∴31155EM EF EN EG ===. ····················· 4分 (2)证明:作MH ∥BC 交AB 于点H , ················· 5分则MH CB CD ==,90MHN ∠=︒. ∵1809090DCP ∠=︒-︒=︒, ∴DCP MHN ∠=∠.∵90MNH CMN DME CDP ∠=∠=∠=︒-∠,90DPC CDP ∠=︒-∠, ∴DPC MNH ∠=∠.∴DPC MNH ∆≅∆. ············ 7分(第22题)∴DP MN . ························ 8分3. (2011某某威海,24,11分)如图,ABCD 是一X 矩形纸片,AD =BC =1,AB =CD =5.在矩形ABCD 的边AB 上取一点M ,在CD 上取一点N ,将纸片沿MN 折叠,使MB 与D N 交于点K ,得到△MNK .(1)若∠1=70°,求∠MNK 的度数. (2)△MNK 的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由. (3)如何折叠能够使△MNK 的面积最大?请你利用备用图探究可能出现的情况,求出最大值.(备用图)【答案】 解:∵ABCD 是矩形, ∴AM ∥DN , ∴∠KNM =∠1. ∵∠KMN =∠1, ∴∠KNM =∠KMN . ∵∠1=70°,(第22题)H BCDEMNA P∴∠KNM =∠KMN =70°. ∴∠MNK =40°. (2)不能.过M 点作ME ⊥DN ,垂足为点E ,则ME =AD =1, 由(1)知∠KNM =∠KMN . ∴MK =NK . 又MK ≥ME , ∴NK ≥1.∴1122MNK S NK ME ∆=⋅≥. ∴△MNK 的面积最小值为12,不可能小于12.(3)分两种情况:情况一:将矩形纸片对折,使点B 与点D 重合,此时点K 也与点D 重合. 设MK =MD =x ,则AM =5-x ,由勾股定理,得2221(5)x x +-=,解得, 2.6x =. 即 2.6MD ND ==. ∴11 2.6 1.32MNK ACK S S ∆∆==⨯⨯=. (情况一) 情况二:将矩形纸片沿对角线AC 对折,此时折痕为AC . 设MK =AK =CK =x ,则DK =5-x ,同理可得 即 2.6MK NK ==. ∴11 2.6 1.32MNK ACK S S ∆∆==⨯⨯=. ∴△MNK 的面积最大值为1.3. (情况二)4. (2011某某某某,24,10分)已知:如图,在四边形ABCD 中,∠ABC =90°,CD ⊥AD ,AD 2+CD 2=2AB 2.(1)求证:AB =BC ;(2)当BE ⊥AD 于E 时,试证明:BE =AE +CD .【答案】(1)证明:连接AC , ∵∠ABC =90°, ∴AB 2+BC 2=AC 2.∵CD ⊥AD ,∴AD 2+CD 2=AC 2.∵AD 2+CD 2=2AB 2,∴AB 2+BC 2=2AB 2, ∴AB =BC .(2)证明:过C 作CF ⊥BE 于F . ∵BE ⊥AD ,∴四边形CDEF 是矩形. ∴CD =EF .∵∠ABE +∠BAE =90°,∠ABE +∠CBF =90°, ∴∠BAE =∠CBF ,∴△BAE ≌△CBF . ∴AE =BF .∴BE =BF +EF =AE +CD . 4. (2011某某襄阳,21,6分)如图6,点D ,E 在△ABC 的边BC 上,连接AD ,AE . ①AB =AC ;②AD =AE ;③BD =CE .以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答);(2)请选择一个真命题进行证明(先写出所选命题,然后证明).【答案】(1)①②⇒③;①③⇒②;②③⇒①. ········· 3分 (2)(略) 6分E DCB A图6开放探究型问题一、填空题1、(2011年四中模拟28)两个不相等.....的无理数,它们的乘积为有理数,这两个数可以是. 答案:略二、解答题1.在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N ,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2 图3(I )如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是; 此时=LQ; (II )如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想(I )问的两个结论还成立吗?写出你的猜想并加以证明;(III ) 如图3,当M 、N 分别在边AB 、CA 的延长线上时, 若AN=x ,则Q=(用x 、L 表示).PT 与MN 交于点3Q ,3Q 点的坐标是(a ,3122+a ). 解:(I )如图1, BM 、NC 、MN 之间的数量关系 BM+NC=MN .此时32=L Q . (II )猜想:结论仍然成立.证明:如图,延长AC 至E ,使CE=BM ,连接DE .CD BD =,且 120=∠BDC .∴ 30=∠=∠DCB DBC .又ABC ∆是等边三角形,∴90MBD NCD ∠=∠=.在MBD ∆与ECD ∆中:⎪⎩⎪⎨⎧=∠=∠=DC BD ECD MBD CE BM ∴≅∆MBD ECD ∆(SAS) .∴DM=DE, CDE BDM ∠=∠ ∴ 60=∠-∠=∠MDN BDC EDN在MDN ∆与EDN ∆中:⎪⎩⎪⎨⎧=∠=∠=DN DN EDN MDN DE DM ∴≅∆MDN EDN ∆(SAS) ∴MN=NE=NC+BMAMN ∆的周长Q=AM+AN+MN=AM+AN+(NC+BM)=(AM+BM)+(AN+NC) =AB+AC =2AB而等边ABC ∆的周长L=3AB∴3232==AB AB L Q . (III )如图3,当M 、N 分别在AB 、CA 的延长线上时,若AN=x ,则Q=2x +L 32(用x 、L 表示).B组解答题1.(2011 天一实验学校 二模)已知:如图,直线l :13y x b =+,经过点M(0,41),一组抛物线的顶点112233(1)(2)(3)()n n B y B y B y B n y ,,,,,,,,(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0), A 2(x 2,0), A 3(x 3,0),……A n+1(x n+1,0)(n 为正整数),设101x d d =<<().(1)求b 的值;(2)求经过点112A B A 、、的抛物线的解析式(用含d 的代数式表示)(3)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当01d d <<()的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d 的值.答案:⑴∵M(0,)41在直线y=31x+b 上, ∴b=41 ⑵由⑴得y=31x+41,∵B 1(1,y 1)在直线l 上,∴当x=1时,y 1=31×1+41=127∴B 1(1,127) 又∵A 1(d,0) A 2(2-d,0) 设y=a(x-d)(x-2+d),把B 1(1,127)代入得:a=-2)1(127-d∴过A 1、B 1、A 2三点的抛物线解析式为y=-2)1(127-d (x-d)(x-2+d) (或写出顶点式为y=-2)1(127-d (x-1)2+127)⑶存在美丽抛物线。
2012中考数学四大必考点解题技巧东方网5月8日消息:据《新闻晚报》报道,中考有四大板块比较容易拉分,为此,笔者为考生介绍以下解题技巧。
联系实际问题求解实际问题,其一般程序可分以下几步。
审题。
仔细阅读题目,弄清题意,理顺关系。
读题时要注意对语言去粗取精,提炼加工,抓住关键的字词句。
建模。
选取基本变量,将文字语言抽象概括成数学语言,依据有关定义、公理和数学知识,建立数学模型。
解模。
根据数学知识和数学方法,求解数学模型,得到数学问题的结果。
检验(回归)。
把数学结果回归到实际问题中去,通过分析、判断、验证得到实际问题的结果,回归时要利用实际意义的条件进行检验取舍,找出正确结果。
初中阶段常用的数学模型,由所建立的模型来分主要归类为列方程(组)解应用题;列不等式(组)解应用题;建立函数的解析式、图像、图表解应用题、利用统计的统计量(平均数、中位数、众数、方差)和一表五图(统计表、扇形图、折线图、条形图、频数直方图、频率直方图)解应用题;建立直角三角形用锐角三角比解应用题;建立几何模型、三角形模型、直角坐标系模型(实际上就是线性规划)解应用题等几种,涵盖了大部分中学数学模型类题型。
几何论证题中考中对几何论证题的难度有所控制,但是几何论证题作为考查考生思维能力的一个重要方面,在中考中仍占有相当的比例。
以几何重点知识为载体,要求考生根据题意设计有一定层次、一定长度的推理过程,以检测考生的逻辑思维能力、基本图形分析能力和数学语言的表达能力,仍是中考命题的重点之一。
几何论证题突出了对几何基本图形掌握情况的考查、数学逻辑思维能力和数学表达能力的考查。
试题中出现的几何图形全是学生平时学习中常见的基本图形。
填辅助线也体现出常规要求。
几何证明分层设置,立足于常规思路掌握情况的考查。
重点考查学生解决问题的方法和几何语言表达的逻辑性、准确性。
所有试题,都注重对基础知识、基本技能和基本思想方法的考查,学生若没有扎实的数学基础,靠猜题押题,临时突击,是很难取得好成绩的。
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)第十一章 因式分解(分3个考点精选48题)11.1 提公因式法(2012北京,9,4)分解因式:269mn mn m ++= .【解析】原式=m (n 2+6n +9)=m (n +3)2【答案】m (n +3)2【点评】本题考查了提公因式及完全平方的知识点。
(2012广州市,13, 3分)分解因式a 2-8a 。
【解析】提取公因式即可分解因式。
【答案】:a(a -8).【点评】本题考查了因式分解的方法。
比较简单。
(2012浙江省温州市,5,4分)把24a a -多项式分解因式,结果正确的是( )A. ()4a a -B. (2)(2)a a +-C. (2)(2)a a a +-D. 2(2)4a --【解析】分解因式按“一提二套”原则:有公因式的先提取公因式,再套用平方差公式或完全平方公式,本题可直接提公因式.【答案】A【点评】有公因式的要先提取公因式,然后再考虑运用平方差公式或完全平方公式进行分解.因式分解要分解到每个多项式因式都不能再分解为止,此题较基础.(湖南株洲市3,9)因式分解:22a a -= .【解析】22(2)a a a a -=-【答案】(2)a a -【点评】本题主要考查因式分解的常用方法及步骤:先提取公因式,再运用公式法进行分解. (2012四川成都,1l ,4分)分解因式:25x x -=________.解析:因式分解的基本方法是提取公因式法、公式法、分组分解法。
本题只有两项,所以,只能用提取公因式法和平方差公式法。
观察可知有公因式x ,提取公因式法分解为x(x-5)。
答案:x(x-5)。
点评:公因式的确定方法是:系数是各项系数的最大公约数,字母是各项都有的字母,指数取最小。
(2012湖北随州,11,4分)分解因式:249x -=______________________。
解析:22249(2)3(23)(23)x x x x -=-=+-。
EDCB A解答开放题我们知道中考数学试卷中会有一些开放性试题,这些试题考查的知识点较多,综合性强,还考查对数学的理解和对数学知识的运用,灵活多变,有一定的难度。
开放性试题,可以分为三类,即条件开放性试题、过程开放性试题、结论开放性试题,这些试题没有固定的解题步骤和解答的程序,且答案不唯一。
下面我们就看几个例题,希望能帮助你掌握解答这类试题的基本方法。
例1 如图,在下面四个等式:①AB DC =,②BE CE =,③B C ∠=∠,④BAE CDE ∠=∠中选出两个作为条件,推出AED △是等腰三角形.写出所有的方法,并完成其中一种的证明.分析:这是一个条件开放的题目。
首先,我们将条件进行组合。
根据下表可以得到12种组合,由于其中(1,2)与(2,1)表示同一种意思,所以去掉重合后共有6种组合。
即: (1)①AB DC =,②BE CE = (2)①AB DC =,③B C ∠=∠ (3)①AB DC =,④BAE CDE ∠=∠ (4)②BE CE =,③B C ∠=∠ (5)②BE CE =,④BAE CDE ∠=∠ (6)③B C ∠=∠,④BAE CDE ∠=∠然后,我们从结论出发去思考。
(1)若AED △是等腰三角形,则必须AE = DE ,需要△ABE ≌△DCE (2)若AED △是等腰三角形,则必须∠EAD =∠EDA ,需要△ABD ≌△DCA显然,每个组合中的两个条件是不够的,题目中还有哪些隐含的条件呢?我们发现,图中的∠AEB =∠DEC (对顶角相等)。
这样,我们发现:组合(1):①AB DC =,②BE CE =再加上图中的∠AEB =∠DEC (对顶角相等)不能证明△ABE ≌△DCE 或△ABD ≌△DCA 全等。
组合(2):①AB DC =,③B C ∠=∠再加上图中的∠AEB =∠DEC (对顶角相等)→△ABE ≌△DCE (SAS )1 2 3 4 1(1,2)(1,3) (1,4) 2 (2,1) (2,3)(1,4) 3 (3,1) (3,2) (3,4)4 (4,1)(4,2)(4,3)EDCB A组合(3):①AB DC =,④BAE CDE ∠=∠再加上图中的∠AEB =∠DEC (对顶角相等)→△AB E ≌△DCE (SAS )组合(4)②BE CE =,③B C ∠=∠再加上图中的∠AEB =∠DEC (对顶角相等)→△ABE ≌△DCE (ASA )组合(5)②BE CE =,④BAE CDE ∠=∠再加上图中的∠AEB =∠DEC (对顶角相等)→△ABE ≌△DCE (SAS )组合(6):③B C ∠=∠,④BAE CDE ∠=∠再加上图中的∠AEB =∠DEC (对顶角相等)也不能证明△ABE ≌△DCE 或△ABD ≌△DCA 全等。
而根据上面的组合,使△ABD ≌△DCA 全等不可能。
下面完成解答: 答:方法1:①③; 方法2:①④; 方法3:②③; 方法4:②④.已知:①③(或①④,或②③,或②④) 求证:AED △是等腰三角形.证明:在ABE △和DCE △中,B C AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴A B E D C E △≌△∴AE DE = 即AED △是等腰三角形条件开放性试题,需要考虑完备性,即要将所有可能的情况都考虑到,这就需要选择方法,在这里我们使用了在计算概率时常用的方法——列表法,以保证各种情况都考虑到。
条件开放性试题,由于条件是开放的,因此,这类问题常常需要从结论出发进行分析思考,寻求结论成立所需要的条件,这是一种逆向思维的方法。
条件开放题,常常出现一些条件不能使结论成立,这类条件需要通过正确的判断进行甄别,将不符合要求的条件舍去。
PE DCAFEDA''A'C B AE PAC D例2 如图,直线1l 的解析表达式为33y x =-+, 且1l 与x 轴交于点D ,直线2l 经过点A ,B ,直线1l ,2l 交于点C .在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点 P 的坐标.分析:这是一个过程开放的题目。
我们发现所求的P 点必须满足两个条件: 条件1,点P 在直线2l 上;条件2,使得ADP △与ADC △的面积相等。
我们知道,两个三角形面积相等的条件有: 图1(1)等底同高的两个三角形的面积相等。
如图1,A 是CP 的中点,DE ⊥CP ,垂足为E ,则ADP △与ADC △的面积相等。
(2)同底等高的两个三角形面积相等。
如图2, AD ⊥BC ,A /D ⊥BC ,A //D ⊥BC ,垂足分别为D 、E 、F ,且AD = A /D = A //D ,则ABC △与△A /BC 、 图2 △A //BC 的面积相等。
(3)全等三角形的面积相等。
如图3,延长DA 到E ,使AE =DA ,在CA 的延长线上取点P ,使CA =AP ,连接EP ,显然构造的△AEP 与△ADC 全等,则ADP △与ADC △的面积相等。
图3我们发现,根据条件1,ADP △与ADC △的位置应该 与图1或图3类似。
对于图1,我们只要使PA =AC 即可。
也就是将点C 绕 点A 旋转180°,就得到P 点。
只要知道了点C 的坐标,就可以写出点P 的坐标了。
从图中我们可以直观的看 出C (-3,2),则P (6,3)。
对于图3,我们要使AE =AD ,还要使PA =AC ,同样只要知道点C 的坐标,就可以写出点P 的坐标了。
MO 1BAOyxO 1yxMBP AO这时我们还需要再找一下,看还有没有满足条件的点。
显然没有了。
另外我们还可以验证一下,我们找到的P 点,是否在l 2上:根据图中提供的信息,我们知道A (4,0),B (3,32-),这时,直线l 2的解析表达式为362y x =-,将P (6,3)代入解析式,等式成立。
因此,P (6,3)就是符合条件的点。
例3 如图,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(2,0),线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.分析:这是一个结论开放的题目。
我们发现所求的P 点必须满足两个条件: 条件1,点P 在线段OM 上;条件2,使得以P O A ,,为顶点的三角形与△OO 1M 相似。
我们知道1OO M △是直角三角形,且OO 1=2,O 1M =1,根据勾股定理,可得MO =3。
若以P O A ,,为顶点的三角形与△OO 1M 相似,则它也一定是直角三角形,且∠MOO 1为公共角。
显然这样的三角形是很容易作出来的,点P 一定存在。
我们可以通过作垂线构造直角三角形:(1)如图,过A 作PA ⊥x 轴,垂足为P 。
P 点的横坐标就是线段OA 的长度1,纵坐标就是线段AP 的长度。
我们可以利用“相似三角形对应边成比例”求得线段OA 、AP 的长度: 由于△OAP ∽△OMO 1→1OA AP OM M O =→131AP =→AP =33,故P (1,33)。
我们还可以利用“锐角三角函数”求线段AP 的长度: 在Rt △OMO 1中,由于OO 1=2,O 1M =1,所以,H O 1yxMBP AOtan ∠MOO 1=113M O OM =在Rt △OAP 中,由于OA =1,所以tan ∠AOP =1AP APOA =因为∠MOO 1=∠AOP ,所以tan ∠MOO 1=tan ∠AOP ,即113AP =故AP =33,P (1,33)。
我们还可以利用“特殊的直角三角形的性质” 求线段AP 的长度: 在Rt △OMO 1中,由于OO 1=2,O 1M =1,所以∠MOO 1=30° 在Rt △OAP 中,由于OA =1,tan ∠AOP = tan 30°=1AP APOA ==33 故AP =33,P (1,33)。
(2)如图,过A 作AP ⊥OM ,垂足为P ,过P 点作PH ⊥x 轴,垂足为H ,这时点P 的横坐标就是 线段OH 的长度,纵坐标就是线段HP 的长度。
在Rt △OAP 中,由于OA =1,∠AOP =30°,cos30°=OPOP OA==32 在Rt △OHP 中,由于OP=32,∠HOP =30°, sin 30°=HPOP→HP =OP sin30°=32×12=34cos30°=OHOP→OH =OP cos30°=32×32=34故P (34,34)符合条件的P 点坐标有(1,33)和(34,34)PBA y xOPBA yxOPBA y xOyxB AOyxBAO例4 如图,在平面直角坐标系xOy 中,OAB △的顶点A 的坐标为(10,0),顶点B 在第一象限内,且||35AB =,5sin 5OAB ∠=.在过O ,B ,A 的抛物线上是否存在一点P ,使以P O B A ,,,为顶点的四边形为梯形?若存在,有几个这样的点P ?并求出在第一象限的点P 的坐标;若不存在,请说明理由;分析:根据已知条件:OAB △的顶点A 的坐标为(10,0),顶点B 在第一象限内,且||35AB =,5sin 5OAB ∠=。
我们知道 这样的三角形是唯一确定的。
为求出点P ,我们需要完成下列任务: (1)画出过O ,B ,A 的抛物线的草图; (2)在抛物线上画出梯形;(3)出点P 的坐标(只求在第一象限的点的坐标)我们知道点B 不是抛物线的顶点,因此,抛物线的对称轴应该是线段OA 的中垂线,这样可以画出草图(如下图):我们知道:“有一组对边平行的四边形是梯形”,同时,以O ,B ,A 为顶点的三角形有三条边,我们可以过三角形的任意一个顶点,作对边的平行线,看这条平行线是否与抛物线相交,如果相交,交点就是P 。
如下图:yxCB AOPBA y xOPBA yxOPBA y xOBP ∥OA OP ∥AB AP ∥OB我们可以清楚的看到符合条件的点P 共有三个。
当BP ∥OA 时,点P 在第一象限;当OP ∥AB 时,点P 在第四象限;当AP ∥OB 时,点P 在第三象限。
当P 在第一象限时,点P 的纵坐标与点B 的纵坐标相同。
我们可以这样来解:解:如图,存在,共有3个。
过B 作BC ⊥OA ,垂足为C在Rt △ABC 中 ∵5s i n 5O A B ∠=即BC AB=55 ∴BC =55AB=55×35=3 由勾股定理,得BC 2+AC 2=AB 2∴AC =224596BC AB -=-=∴OC =OA -CA =4 ∴B (4,3)设过O 、A 、B 三点的抛物线为:y =ax 2+bx (a ≠0)根据题意,得 1001001643a b a b +=⎧⎨+=⎩ 解得 1854a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴y =18-x 2+54x设P (x ,3)在y =18-x 2+54x 上,当y =3时,得 18-x 2+54x =3整理,得 x 2-10x +24=0解得x1=4(与点B重合,舍去)x2=6∴P(6,3)你发现了吗?题目中并没有要求我们画图、求点B的坐标、求二次函数的解析式,我们为什么要做这些呢?首先,画图是为了能够清楚地表达我们找到的点P的位置。