第六章 第二讲 算术平均数与几何平均数
- 格式:ppt
- 大小:882.50 KB
- 文档页数:45
6.2.3 算术平均数与几何平均数●教学目标(一)教学知识点1.两个正数的和为定值时,它们的积有最大值,即若a ,b ∈R +,且a +b =M ,M 为定值,则ab ≤42M ,等号当且仅当a =b 时成立. 2.两个正数的积为定值时,它们的和有最小值,即若a ,b ∈R +,且ab =P ,P 为定值,则a +b ≥2P ,等号当且仅当a =b 时成立.(二)能力训练要求通过两个例题的研究,进一步掌握均值不等式定理,并会用此定理求某些函数的最大、最小值.(三)德育渗透目标掌握两个正数的算术平均数和几何平均数顺序定理及相应的一组不等式,使学生认清定理的结构特点和取“=”条件.要在分析具体问题的特点的过程中寻求运用公式的适当形式和具体方式,自觉提高学生分析问题和解决问题的能力.●教学重点基本不等式a 2+b 2≥2ab 和2b a +≥ab (a >0,b >0)的应用,应注意: (1)这两个数(或三个数)都必须是正数,例如:当xy =4时,如果没有x 、y 都为正数的条件,就不能说x +y 有最小值4,因为若都是负数且满足xy =4,x +y 也是负数,此时x +y 可以取比4小的值.(2)这两个(或三个)数必须满足“和为定值”或“积为定值”,如果找不出“定值”的条件,就不能用这个定理.例如,求当x >0时,y =x 2+x 1的最小值,若写成y =x 2+x 1≥2x xx 212=⋅,就说“最小值为2x ”是错误的,因为x 2·x 1不是定值,而2x 仍为随x 变化而变化的值.正确的解法是:由于x 2·x 21·x 21=41为定值,故x 2+x 1=x 2+x21+x 21≥3·3322232121=⋅⋅x x x ,即y 的最小值为2233. (3)要保证等号确定能成立,如果等号不能成立,那么求出的值仍不是最值. ●教学难点如何凑成两个(或三个)数的和或积是定值.例如“教学重点”(2)中y =x 2+x 1凑成y =x 2+x 21+x21. ●教学方法启发式教学法●教具准备投影片一张●教学过程Ⅰ.课题导入上一节课,我们学习了一个重要定理:两个正数的算术平均数不小于它们的几何平均数(以下简称均值不等式).这个定理有时可以直接运用,有时用它的变形或推广形式,(打出投影片§6.2.2 A ,教师引导学生略作分析),使同学们掌握下面几个重要的不等式:(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取“=”号; (2)ab b a ≥+2(a >0,b >0),当且仅当a =b 时取“=”号; (3) ba ab +≥2(ab >0),当且仅当a =b 时取“=”号; (4) 33abc c b a ≥++(a >0,b >0,c >0),当且仅当a =b =c 时取“=”号; (5)a 3+b 3+c 3≥3abc (a >0,b >0,c >0),当且仅当a =b =c 时取“=”号.在此基础上,上述重要不等式有着广泛的应用,例如:证明不等式,求函数最值,判断变量或数学式子的取值范围等等.它们涉及到的题目活,变形多,必须把握好凑形技巧.今天,我们就来进一步学习均值不等式的应用.Ⅱ.讲授新课[例1]已知x 、y 都是正数,求证:(1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ;(2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值41S 2. [师]本题显然是均值不等式的应用,在运用均值不等式时应注意:“算术平均数”是以“和”为其本质特征,而“几何平均数”是以“积”为其本质特征.[生]∵x ,y 都是正数∴xy y x ≥+2(1)当积xy =P 为定值时,有P y x ≥+2, 即x +y ≥2P .上式中,当x =y 时取“=”号,因此,当x =y 时,和x +y 有最小值2P .(3)当和x +y =S 为定值时,有2S xy ≤, 即xy ≤41S 2. 上式中,当x =y 时取“=”号,因此,当x =y 时积x y 有最大值41 S 2. [师生共析]通过对本题的证明,运用均值不等式解决函数的最值问题时,有下面的方法:若两个正数之和为定值,则当且仅当两数相等时,它们的积有最大值;若两个正数之积为定值,则当且仅当两数相等时,它们的和有最小值.在利用均值不等式求函数的最值问题时,我们应把握好以下两点:(1)函数式中,各项(必要时,还要考虑常数项)必须都是正数.例如,对于函数式x +x1,当x <0时,绝不能错误地认为关系式x +x 1≥2成立,并由此得出x +x 1的最小值是2.事实上,当x <0时,x +x1的最大值是-2,这是因为x <0⇒-x >0,-x 1>0⇒-(x +x 1)=(-x )+(-x 1)≥2)1()(x x -⋅-=2⇒x +x1≤-2.可以看出,最大值是-2,它在x =-1时取得.(2)函数式中,含变数的各项的和或积必须是常数,并且只有当各项相等时,才能利用均值不等式求函数的最值.[例2]已知a ,b ,c ,d 都是正数,求证(ab +cd )(ac +bd )≥4abcd .[师]运用均值不等式,结合不等式的基本性质,是证明本题的关键.[生]∵a ,b ,c ,d 都是正数,∴ab >0,cd >0,ac >0,bd >0. ∴cd ab cd ab ⋅≥+2>0, bd ac bd ac ⋅≥+2>0. 由不等式的性质定理4的推论1,得4))((bd ac cd ab ++≥abcd 即(ab +cd )(ac +bd )≥4abcd .[师生共析]用均值不等式证明题时,要注意为达到目标可先宏观,而后微观;均值不等式在运用时,常需先凑形后运用;均值不等式和不等式的基本性质联合起来证题是常用的行之有效的方法.利用算术平均数与几何平均数的关系定理(均值不等式),可以很容易地解决本章开始的引言中提出的问题:某工厂要建造一个长方体无盖贮水池,其容积为4800 m 3,深为3 m ,如果池底每1 m2的造价为150元,池壁每1 m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?[师]应用题的最值问题,主要是选取适当的变量,再依据题设,建立数学模型(即函数关系式),由变量和常量之间的关系,选取基本不等式求最值.(在教师的引导分析下,师生共同完成解答过程).[生]设水池底面一边的长度为x m ,则另一边的长度为x34800m ,又设水池总造价为l元.根据题意,得l=150×34800+120(2×3x +2×3×x34800) =240000+720(x +x 1600). ≥240000+720×2xx 1600⋅ =240000+720×2×40=297600.当x =x1600,即x =40时,l有最小值297600. 因此,当水池的底面是边长为40 m 的正方形时,水池的总造价最低,最低总造价是297600元.[师生共析]我们应用两个正数的算术平均数与几何平均数的定理(即均值不等式)顺利解决了本章引例中的问题.用均值不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.Ⅲ.课堂练习1.已知x ≠0,当x 取什么值时,x 2+281x的值最小?最小值是多少? 分析:注意到x 2+281x 是和的形式,再看x 2·281x=81为定值,从而可求和的最小值. 解:x ≠0⇒x 2>0,281x >0. ∴x 2+281x ≥22281xx ⋅=18, 当且仅当x 2=281x ,即x =±3时取“=”号. 故x =±3时,x 2+281x 的值最小,其最小值是18. 2.一段长为L m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?分析:均值不等式在实际问题中的应用相当广泛,解题过程中要(1)先构造定值,(2)建立函数关系式,(3)验证“=”号成立,(4)确定正确答案.解法一:设矩形菜园的宽为x m ,则长为(L-2x )m ,其中0<x <21,其面积 S =x (L-2x ) =21·2x (L-2x )≤218)222(22L x L x =-+当且仅当2x =L-2x ,即x =4L 时菜园面积最大,即菜园长2L m ,宽为4L m 时菜园面积最大为82L m 2. 解法二:设矩形的长为x m ,则宽为2x L -m ,面积 S =2)(2)(2x L x x L x -⋅=- ≤82)2(22L x L x =-+(m 2). 当且仅当x =L-x ,即x =2L (m )时,矩形的面积最大.也就是菜园的长为2L m ,宽为4L m 时,菜园的面积最大,最大面积为82L m 2. 3.设0<x <2,求函数f (x )=)38(3x x -的最大值,并求出相应的x 值. 分析:根据均值不等式:2b a ab +≤,研究)38(3x x -的最值时,一要考虑3x 与8-3x 是否为正数;二要考查式子21[3x +(8-3x )]是否为定值. 解:∵0<x <2∴3x >0,8-3x >0 ∴f (x )=)38(3x x -≤2)38(3x x -+=4 当且仅当3x =8-3x 时,即x =34时取“=”号. 故函数f (x )的最大值为4,此时x =34. Ⅳ.课时小结本节课我们用两个正数的算术平均数与几何平均数的关系定理及其推广的几个重要不等式顺利解决了函数的一些最值问题.在解决问题时,我们重点从以下三个方面加以考虑:一是均值不等式成立的条件(各因式或项都取正值);二是合理寻求各因式或项的积或和为定值;三是确定等号能够成立.只有这样,我们才能在分析具体问题的特点的过程当中合理运用公式的适当形式和具体方式,解决某些函数的最值问题.Ⅴ.课后作业(一)课本P 11习题6.2 4、5、7.(二)1.预习内容:课本P 12 §6.3.1 不等式的证明.2.预习提纲:(1)用比较法证明不等式.(2)用比较法证明不等式的一般步骤:作差(或商)→变形→判断差的符号(或商与1的大小)→得证.●板书设计。
计算平均数的三种方法计算一个数据集的平均数是一个基本的数学概念,它是衡量数据集的中心位置的一种方法。
一般来说,平均数就是将多个数相加然后除以数的个数,但是在实际的计算中,有三种方法可以计算平均数。
这篇文章将会介绍这三种方法,并指导读者如何使用它们。
方法一:算术平均数算术平均数是最常见的计算平均数的方法。
它的计算公式是将所有数值相加,然后除以数的个数,即 Arithmetic Mean = (a1 + a2 + … + an) / n。
其中,a1至an为数据集中的所有数据,n代表数据集的大小。
为了计算算术平均数,需要首先将数据集中的所有数字加起来,然后除以数字的个数。
例如,如果有一个数字序列是4,8,6,7,那么计算它们的算术平均数就是 (4+8+6+7)/4 = 6.25。
也就是说,这个数字序列的平均值是6.25。
算术平均数是最简单的平均数,它可以体现数据整体的特征,但是它不适用于含有异常值的数据集。
因为异常值的存在会使得平均数受到影响。
方法二:几何平均数几何平均数是计算平均数的另一种方法。
它的计算公式是将所有数据的乘积开n次方,即Geometric Mean = (a1 × a2 ×… × an) ^ (1/n)。
几何平均数可以很好地反映数据集的比例分布特征。
例如,如果一个群体中有50%的人口增长了20%而另外50%的人口增长了10%,那么这个群体的平均增长率就是几何平均数(Geometric Mean):(1+20%)×(1+10%)^ 0.5 - 1 = 14.14%。
这样平均增长率就能比算术平均数更好地反映出不同组的影响。
方法三:加权平均数如果数据集中的每个数字都有不同的权重,那么使用加权平均数可更好地反映这些数据的重要性。
加权平均数的计算公式是将每个数字与它们的权重相乘,然后将它们相加并除以权重总和,即 Weighted Mean = (w1a1 + w2a2 + … + wnan) / (w1 + w2 + … + wn)。
第三教时教材:算术平均数与几何平均数目的:要求学生掌握算术平均数与几何平均数的意义,并掌握“平均不等式”及其推导过程。
过程:一、定理:如果R b a ∈,,那么ab b a 222≥+(当且仅当b a =时取“=”) 证明:222)(2b a ab b a -=-+⇒⎭⎬⎫>-≠=-=0)(0)(22b a b a b a b a 时,当时,当ab b a 222≥+ 1.指出定理适用范围:R b a ∈,2.强调取“=”的条件b a =二、定理:如果b a ,是正数,那么ab b a ≥+2(当且仅当b a =时取“=”) 证明:∵ab b a 2)()(22≥+ ∴ab b a 2≥+即:ab b a ≥+2 当且仅当b a =时 ab b a =+2注意:1.这个定理适用的范围:+∈R a2.语言表述:两个正数的算术平均数不小于它们的几何平均数。
三、推广:定理:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时取“=”)证明:∵abc ab b a c b a abc c b a 333)(32233333---++=-++)(3])())[((22c b a ab c c b a b a c b a ++-++-+++=]32)[(222ab c bc ac b ab a c b a -+--++++=))((222ca bc ab c b a c b a ---++++=])()())[((21222a c c b b a c b a -+-+-++= ∵+∈R c b a ,, ∴上式≥0 从而abc c b a 3333≥++指出:这里+∈R c b a ,, ∵0<++c b a 就不能保证推论:如果+∈R c b a ,,,那么33abc cb a ≥++(当且仅当c b a ==时取“=”)证明:3333333333)()()(c b a c b a ⋅⋅≥++⇒33abc c b a ≥++⇒33abc cb a ≥++四、关于“平均数”的概念1.如果++∈>∈N n n R a a a n 且1,,,,21 则:n a a a n+++ 21叫做这n 个正数的算术平均数n n a a a 21叫做这n 个正数的几何平均数2.点题:算术平均数与几何平均数3.基本不等式: n a a a n+++ 21≥n n a a a 21n i R a N n i ≤≤∈∈+1,,*这个结论最终可用数学归纳法,二项式定理证明(这里从略)语言表述:n 个正数的算术平均数不小于它们的几何平均数。
算术平均数与几何平均数教案第一章:算术平均数的定义与性质1.1 算术平均数的定义引导学生回顾平均数的概念,引入算术平均数的概念。
通过具体例子,让学生理解算术平均数的含义。
1.2 算术平均数的性质引导学生探究算术平均数的性质,如非负性、交换律、结合律等。
通过小组讨论和练习,让学生掌握算术平均数的性质。
第二章:几何平均数的定义与性质2.1 几何平均数的定义引导学生回顾几何平均数的概念,引入几何平均数的概念。
通过具体例子,让学生理解几何平均数的概念。
2.2 几何平均数的性质引导学生探究几何平均数的性质,如非负性、交换律、结合律等。
通过小组讨论和练习,让学生掌握几何平均数的性质。
第三章:算术平均数与几何平均数的关系3.1 算术平均数与几何平均数的联系引导学生探究算术平均数与几何平均数之间的关系,如算术平均数大于等于几何平均数等。
通过具体例子和练习,让学生理解算术平均数与几何平均数之间的关系。
3.2 算术平均数与几何平均数的应用引导学生运用算术平均数与几何平均数解决实际问题,如求平均速率、平均增长率等。
通过案例分析和练习题,让学生掌握算术平均数与几何平均数的应用。
第四章:算术平均数与几何平均数的计算4.1 算术平均数的计算引导学生掌握算术平均数的计算方法,如将数据相加后除以数据个数等。
通过练习题,让学生熟练计算算术平均数。
4.2 几何平均数的计算引导学生掌握几何平均数的计算方法,如将数据相乘后再开方等。
通过练习题,让学生熟练计算几何平均数。
第五章:算术平均数与几何平均数在实际问题中的应用5.1 算术平均数在实际问题中的应用引导学生运用算术平均数解决实际问题,如求平均成绩、平均消费等。
通过案例分析和练习题,让学生掌握算术平均数在实际问题中的应用。
5.2 几何平均数在实际问题中的应用引导学生运用几何平均数解决实际问题,如求平均速率、平均增长率等。
通过案例分析和练习题,让学生掌握几何平均数在实际问题中的应用。
第六章:算术平均数与几何平均数的扩展应用6.1 算术平均数与几何平均数在概率论中的应用引导学生了解算术平均数和几何平均数在概率论中的作用,如期望值和方差的计算。