有理数加法应用题
- 格式:pptx
- 大小:95.08 KB
- 文档页数:7
一、有理数加法1. 计算:2 + 32. 计算:5 + (8)3. 计算:7 + (4)4. 计算:6 + 5 + 25. 计算:3 + 2 + (1) + 46. 计算:7 + (2) + 5 + (3)7. 计算:4 + (1) + 3 + (6)8. 计算:2 + 5 + (3) + 49. 计算:6 + (4) + 2 + (1)10. 计算:3 + 2 + (5) + 4二、有理数减法1. 计算:5 32. 计算:8 (2)3. 计算:7 (4)4. 计算:6 55. 计算:3 2 16. 计算:7 (2) 57. 计算:4 1 + 38. 计算:2 + 5 39. 计算:6 4 + 210. 计算:3 2 + 5三、有理数加减混合运算1. 计算:2 + 3 52. 计算:5 8 + 23. 计算:7 (4) + 14. 计算:6 + 5 25. 计算:3 + 2 1 + 46. 计算:7 (2) + 5 37. 计算:4 1 + 3 68. 计算:2 + 5 3 + 49. 计算:6 4 + 2 110. 计算:3 2 + 5 4四、有理数加减法应用题1. 甲数比乙数大5,乙数比丙数大3,求甲数比丙数大多少?2. 一支铅笔比一支钢笔贵1元,一支钢笔比一支圆珠笔贵2元,一支圆珠笔比一支水笔贵3元,求一支铅笔比一支水笔贵多少元?3. 一个班级有男生40人,女生比男生少10人,求这个班级女生有多少人?4. 一辆汽车行驶了300千米,比原计划少行驶了20千米,求原计划行驶的千米数。
5. 一本书原价100元,打八折后售价为80元,求这本书的折扣率。
五、有理数加减法综合题1. 计算:3 + 4 2 + 5 12. 计算:7 (3) + 2 5 + 63. 计算:8 + (4) 3 + 2 (1)4. 计算:5 (2) + 3 4 + (1)5. 计算:6 + 7 3 + 4 (2)6. 计算:5 (3) + 2 1 + 57. 计算:4 + 6 (2) + 3 48. 计算:2 5 + 4 (3) + 19. 计算:7 + 3 (2) + 5 610. 计算:6 (4) + 2 3 + 1六、有理数加减法应用题1. 一辆自行车以每小时15千米的速度行驶,行驶了3小时后,又以每小时10千米的速度行驶了2小时,求这辆自行车总共行驶了多少千米?2. 一个长方形的长是10厘米,宽是6厘米,求这个长方形的面积。
初中数学有理数的加法和减法运算的解题应用题是什么解题应用题1:题目:小明去超市买东西,他花费了50元。
如果他支付了30元,还欠15元,那么他以多少元的有理数借了钱?解题步骤:1. 设小明借的钱为x元。
2. 根据题意,我们可以写出方程:30 + x = 50 - 15。
3. 化简方程:x = 50 - 15 - 30。
4. 计算:x = 5元。
答案:小明以5元的有理数借了钱。
解题应用题2:题目:在一场比赛中,小红的得分是-15,小明的得分是10。
他们的总得分是多少?解题步骤:1. 小红的得分是-15,小明的得分是10。
2. 计算总得分:-15 + 10 = -5。
答案:他们的总得分是-5。
解题应用题3:题目:小明家的温度计显示-8摄氏度,他把温度计放在阳台上,经过一段时间后,温度显示变为了3摄氏度。
温度的变化是多少摄氏度?解题步骤:1. 温度计的初始温度是-8摄氏度,变化后的温度是3摄氏度。
2. 计算温度的变化:3 - (-8) = 3 + 8 = 11摄氏度。
答案:温度的变化是11摄氏度。
解题应用题4:题目:小明在一家书店买了一本书,原价是50元,打折后的价格是-40元。
小明支付了-30元,他实际上还要支付多少钱?解题步骤:1. 书的原价是50元,打折后的价格是-40元。
2. 计算小明还要支付的钱:-40 - (-30) = -40 + 30 = -10元。
答案:小明还要支付-10元。
解题应用题5:题目:小明的银行账户里有100元,他取出了-50元,还款给朋友借的钱。
他账户里还剩下多少钱?解题步骤:1. 小明的账户里有100元,取出了-50元。
2. 计算账户剩下的钱:100 + (-50) = 100 - 50 = 50元。
答案:小明账户里还剩下50元。
通过这些解题应用题,我们可以更好地理解有理数的加法和减法运算在实际生活中的应用。
这些应用题能够帮助我们将数学的知识与实际问题相结合,提高解决实际问题的能力。
有理数应用题一、有理数加减法1)温度问题1、如图是某地方春季一天的气温随时间的变化图象:请根据上图回答:(1)、何时气温最低?最低气温是多少?(2)、当天的最高气温是多少?这一天最大温差是多少?2、某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃。
若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?3.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1ºC,乙此时在山脚测得温度是5ºC,已知该地区每增加100米,气温大约降低0.6ºC,这个山峰的高度大约是多少米?4、已知水结成冰的温度是 0C,酒精冻结的温度是–117℃。
现有一杯酒精的温度为12℃,放在一个制冷装置里、每分钟温度可降低1.6℃,要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)2)时差问题1.下表列出了国外几个大城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)(1)如果现在是北京时间上午8:00,那么东京时间是多少?(2)如果小强在北京时间下午15:00打电话给远在纽约的姑姑,你认为合适吗?试说明你的理由。
3)路程问题1.柳州出租车司机小李,一天下午以白沙客站为出发点,在南北走向的跃进路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-13, +10,-7,-8,+12,+4,-5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发白沙客站多远? 在白沙客站的什么方向?(2)若每千米的价格为3.5元,这天下午小李的营业额是多少?2. 某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、-3、-5、+4、-8、+6、-3、-6、-4、+10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?3.李老师在学校西面的南北路上从某点A出发来回检查学生的植树情况,设定向南的路程记为正数.向北的路程记为负数,那么李老师所行路程依次为(单位:百米):+12,-l0,+10,-8,-6,-5,-3.(1)求李老师最后是否回到出发点A?(2)李老师离开出发点A最远时有多少千米? (3)李老师共走了多少千米?4.在一条东西走向的马路旁,有青少年宫、党校、商场、医院四家公共场所.已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处,若将马路近似地看作一条直线,以学校为原点,向东为正方向,用1个单位长度表示100m.(1)在数轴上表示四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.5.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米):+8、-9、+4、+7、-2、-10、+18、-3、+7、+5 回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?6. 某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行-+-++--驶为负,一天中七次行驶纪录如下。
初一有理数计算试题及答案试题一:有理数的加减法1. 计算:(-3) + (-5)2. 计算:7 + (-2)3. 计算:(-4) + 6试题二:有理数的乘除法1. 计算:(-2) × (-3)2. 计算:(-4) ÷ (-2)3. 计算:(-6) × 0试题三:有理数的混合运算1. 计算:[(-3) + 4] - 22. 计算:(-5) × 2 - 33. 计算:(-2) ÷ (-4) + 3试题四:有理数的比较大小1. 比较大小:-7 和 -32. 比较大小:-2 和 03. 比较大小:-5 和 -9试题五:有理数的应用题1. 一个数是 -8,另一个数比它大 3,求另一个数。
2. 一个数是 5,另一个数是它的相反数,求另一个数。
3. 一个数的一半是 -4,求这个数。
答案:试题一:1. (-3) + (-5) = -82. 7 + (-2) = 53. (-4) + 6 = 2试题二:1. (-2) × (-3) = 62. (-4) ÷ (-2) = 23. (-6) × 0 = 0试题三:1. [(-3) + 4] - 2 = 1 - 2 = -12. (-5) × 2 - 3 = -10 - 3 = -133. (-2) ÷ (-4) + 3 = 0.5 + 3 = 3.5试题四:1. -7 < -32. -2 < 03. -9 < -5试题五:1. -8 + 3 = -52. 5 的相反数是 -53. -4 × 2 = -8结束语:通过这些有理数的计算试题,同学们可以加深对有理数概念的理解,掌握加减乘除等基本运算规则,以及如何比较有理数的大小。
希望同学们能够通过练习,不断提高自己的计算能力。
七年级数学有理数加减混合运算应用题
以下是一些七年级数学有理数加减混合运算应用题的例子:
1.小明从A地出发,向北走20米到达B地,然后向东走30米到达C地,最
后再向南走40米到达D地。
请问他最终离出发点A地有多远?
解答:小明从A地出发,先向北走20米到B地,再向东走30米到C地,最后向南走40米到D地。
因为北和南是相反的方向,所以20米和40米会相互抵消,只剩下向东的30米。
因此,他最终离A地30米。
2.一个书架上有10本图书,第一天借出了4本,第二天归还了2本。
请问两
天后书架上还剩多少本书?
解答:开始时有10本书,第一天借出了4本,所以剩下10 - 4 = 6本。
第二天归还了2本,所以6 + 2 = 8本。
因此,两天后书架上还剩8本书。
3.小华和小明一起从学校出发去图书馆。
小华先走了20分钟,然后小明开始
追赶他。
如果小明的速度是每小时6公里,而小华的速度是每小时4公里,请问小明需要多长时间才能追上小华?
解答:因为小华先走了20分钟,所以他已经走了4×20/60 = 1.33公里。
小明每小时比小华快6 - 4 = 2公里,所以他需要追赶1.33公里。
因此,所需时间为1.33/2 = 0.665小时,也就是40分钟。
初中数学有理数的加法和减法运算的应用题是什么以下是一些初中数学中关于有理数加法和减法运算的应用题:1. 问题解决:a) 一个温度计上的温度为-5摄氏度,经过3小时后温度上升了7摄氏度,求现在的温度是多少摄氏度?b) 一辆汽车从一个城市出发,行驶了120公里后向左转行驶了80公里,最后又向右转行驶了100公里,求汽车最后所在的位置离出发点的距离是多少公里?2. 债务问题:a) 小明向小红借了20元钱,小红又向小明借了15元钱,最后小明又向小红借了8元钱,求小明最后欠小红多少元钱?b) 爸爸从银行取了200元钱,妈妈又从银行取了150元钱,然后他们一起去商场购物,最后付款时他们还剩下350元钱,求他们在商场上花了多少钱?3. 海拔问题:a) 一个城市的海拔为-100米,另一个城市的海拔为150米,求这两个城市的海拔差是多少米?b) 一个滑雪场的海拔为2400米,一个登山基地的海拔为3800米,求这两个地点的海拔差是多少米?4. 温度变化问题:a) 早晨气温为-3摄氏度,中午气温上升了8摄氏度,晚上气温下降了5摄氏度,求晚上的气温是多少摄氏度?b) 一天中的最高气温为30摄氏度,最低气温为15摄氏度,求一天的温差是多少摄氏度?5. 账户余额问题:a) 小明的银行账户里有300元钱,他向账户存入了120元钱,然后又从账户取出了80元钱,最后账户里还剩多少钱?b) 爸爸的信用卡欠款为-500元钱,他向信用卡还款了200元钱,然后又向信用卡借款了100元钱,最后信用卡欠款是多少元钱?这些应用题涉及到有理数加法和减法在实际问题中的应用。
通过解决这些问题,学生可以将数学知识与现实生活相结合,提高解决实际问题的能力。
建议学生在解决问题时,先分析问题,提取关键信息,然后应用有理数加法和减法的规则进行计算。
希望这些应用题能够帮助学生更好地理解有理数运算的实际应用,并提高数学解题的能力。
有理数和除法竖式练习题一、有理数的加减法1. 计算:3 + (2)2. 计算:4 (5)3. 计算:7 + 9 34. 计算:8 + 15 65. 计算:12 18 + 24二、有理数的乘除法1. 计算:3 × 42. 计算:5 × (6)3. 计算:7 ÷ 24. 计算:8 ÷ (4)5. 计算:9 × (10)三、混合运算1. 计算:(3 + 5) × (2)2. 计算:4 (6 8) × 33. 计算:7 × (3) + 9 ÷ 34. 计算:5 × (4 2) 6 ÷ (3)5. 计算:8 + 15 ÷ (3) × 2四、除法竖式计算1. 计算:24 ÷ 32. 计算:56 ÷ 73. 计算:81 ÷ 94. 计算:100 ÷ 255. 计算:144 ÷ 12五、应用题1. 小明有5个苹果,他吃掉了2个,然后又得到了3个,现在他有几个苹果?2. 小红买了4本书,每本书的价格是8元,她一共花了多少钱?3. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
4. 一辆汽车行驶了120公里,平均速度为40公里/小时,求汽车行驶的时间。
5. 一个班级有40人,其中男生占全班人数的50%,求这个班级女生的人数。
六、有理数的比较1. 比较:5 和 3 的大小。
2. 比较:2 和 7 的大小。
3. 比较:4.5 和 4.5 的大小。
4. 比较:0 和 0.01 的大小。
5. 比较:100 和 99 的大小。
七、有理数的化简1. 化简:2 + 2 22. 化简:3 (3) + 33. 化简:4 × (4) ÷ 44. 化简:5 ÷ (5) × (5)5. 化简:6 + 6 6 + 6八、有理数的乘方1. 计算:(2)^32. 计算:3^43. 计算:(5)^24. 计算:4^3 ÷ 2^35. 计算:(3)^3 × (3)^2九、除法竖式计算(带余数)1. 计算:17 ÷ 52. 计算:23 ÷ 43. 计算:38 ÷ 74. 计算:51 ÷ 95. 计算:65 ÷ 11十、综合应用题1. 一个数加上它的相反数等于0,这个数是多少?2. 一个数的2倍减去4等于这个数,求这个数。
有理数加法应用题
1.为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西方向的公路上行驶接送老师,如果规定向东为正,向西为负,出租车的行程(单位:km)如下:+15,—4,+13,—10,—12,+3,—13,—17.
(1)最后一名老师被送到目的地时,小王距出发点距离是多少?
(2)若汽车的耗油量为0.1升每千米,则这天上午汽车共耗油多少升?若每升汽油7.85元,则小王一共花了多少元钱?
2,某玩具店老板用300元购买了玩具10件,按自定义价格每件48元作为标准出售,超出的钱数记为正数,不足的钱数记为负数,现记录如下:(单位:元)+5,—2,+9,
—6,—1,0,—9,+4,—8,+3,请你帮助这个老板计算一下当他卖完这10件玩具后盈利还是亏损?
3,10名同学参加二中开展的数学比赛,以90分为标准,超过分数记为正数,不足的分数为负数,评分记录如下:+10,+15,—10,—9,—8,+6,—2,+2,
—3,+7
(1)这10名同学的总分以10×90分为基准,是超过还是不足?超过还或不足多少分?
(2)实际总分是多少?
4,国庆黄金周的某天下午,出租车司机的客运路线是南北走向的大街,如果规定向南为正,向北为负,这天下午行程里程(单位:km)如下:+3,+10,—5,+6,—4,—3,+12,—8,—6,+7,—21。
(1)求收工时小张距下午的出发点多远?在出发点的什么方向?
(2)若汽车耗油量为0.2升每千米.则这天下午小张共耗油多少升?。
有理数加减混合运算应用题
哎呀,前几天我去超市购物,可真是经历了一场“有理数加减混合运算大冒险”!
那天我兴高采烈地走进超市,准备大采购一番。
一进去,就被琳琅满目的商品迷花了眼。
我先拿了一袋薯片,标价 5 块 5。
接着又看到了巧克力,8 块 9 一盒,毫不犹豫地放进了购物篮。
走到水果区,红彤彤的苹果吸引了我。
苹果 3 块一斤,我挑了两斤。
然后又看到了香蕉,2 块 5 一斤,称了三斤。
这时候,我遇到了我的好朋友小李。
她笑着跟我说:“你买这么多,小心超预算啦!”我自信地回答:“没事,我心里有数!”
接着我来到了饮料区,拿了一瓶可乐,4 块 8。
还选了一瓶果汁,6 块 2。
当我推着满满当当的购物车去结账时,心里开始默默计算起来。
薯片 5.5 元,巧克力 8.9 元,苹果 3×2 = 6 元,香蕉 2.5×3 = 7.5 元,可乐 4.8 元,果汁 6.2 元。
我在心里嘀咕着:“5.5 8.9 6 7.5 4.8 6.2,哎呀,这可怎么算呀!”收银员小姐姐迅速地操作着收银机,一边扫码一边说:“一共 38.9 元。
”
我掏出 50 块递给她,心里想着:“50 - 38.9 = 11.1 元,应该找我 11.1 元。
”果然,小姐姐很快就找给了我 11 块 1 毛。
拎着购物袋走出超市,我得意地跟小李说:“看,我算得准吧!”小李冲我竖起大拇指:“厉害啦!”
这次超市购物,让我深深感受到了有理数加减混合运算在生活中的大用处,真是有趣又实用呢!。