大学物理(电磁学)综合复习资料
- 格式:doc
- 大小:310.50 KB
- 文档页数:20
题8-12图8-12 两个无限大的平行平面匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体的电荷体密度为ρ,若在球挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E,ρ-球在O 点产生电场'dπ4π3430320OO r E ερ= ∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερr E PO=,3ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E OP PO P=='-=+='∴腔场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R q Rq0π41ε=O U )3(R q R q -R q0π6ε-=∴ Rqq U U qA o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d RRx x xxU ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强 rE 0π2ελ=电子受力大小 re eE F e0π2ελ==∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qxi xU E2/3220π4+=∂∂-=ε (3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U Erεθ=∂∂-=30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同. 证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即222204321=---εσεσεσεσ 又∵ +2σ3=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d21===ACAB AB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S qσCC10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使球壳接地,此时球壳上的电荷以及外球壳上的电势的改变量.解: (1)球带电q +;球壳表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R q rr q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,表面电荷仍为q -.所以球壳电势由球q +与表面q -产生:0π4π42020=-=R q R q U εε(3)设此时球壳带电量为q ';则外壳表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε 得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力. 解: 由题意知 202π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε*8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+65432154326543002101σσσσσσσσσσεσσσσεσσd U S qSq d U U C S S q B A解得 Sq 261==σσ Sq dU2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E00422εεσ+==)2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质、外的场强;(2)电介质层、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内303π4,π4r rQ E r Qr D ε==外(2)介质外)(2R r >电势rQ E U 0rπ4r d ε=⋅=⎰∞外介质)(21R r R <<电势2020π4)11(π4R Q R r q rεεε+-=)11(π420R r Q r r-+=εεε (3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdr R R Rr r Qdr rQ εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则rlDSD S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQ D π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w Wεευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==*8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41rq q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF、900 V”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q Cq U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的、外半径分别为2R =4.0cm 和3R =5.0cm ,当球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,球带电Q ,外球壳表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r r Q E ε =3R r >时 302π4r r Q E ε = ∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r r Q E ε =,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J (3)电容器电容 )11/(π422102R R Q W C-==ε 121049.4-⨯=F。
2.用力F 把电容器中的电介质拉出,在图(a )和图(b )两种情况下,电容
器中储存的静电能量将:
A .均减少;
B .均增加;
C .(a )中减少,(b )中增加;
D .(a )中增加,(b )中减少。
3.在静电场中,高斯定理告诉我们:
A .高斯面内不包围电荷,则面上各点E 的大小处处为零;
B .高斯面上各点的E 只与面内电荷有关,与面外电荷无关;
C .穿过高斯面的E 通量,仅与面内电荷有关,但与面内电荷如何分布
无关;
D .穿过高斯面的
E 通量为零,则面上各点的E 必为零。
4.下列说法中,正确的是:
A .初速度为零的点电荷置于静电场中,将一定沿一条电场线运动;
(a)
(b)
F
充电后仍与 电源连接
充电后与 电源断开
第2题图。
大学物理复习题(电磁学部分)一、选择题1.三个一样大小的绝缘金属小球A 、B 、C ,A 、B 两小球带有等量同号电荷,它们之间的距离远大于小球本身的直径,相互作用力为F ,若将不带电的小球C 引入,先和A 小球接触,然后和B 小球接触后移去,这时A 小球与B 小球间的相互作用力将变为: A .F/2 B. F/4 C. F/8 D. 3F/8 2、电场中高斯面上各点的电场强度是由:A 、分布在高斯面内的电荷决定的;B 、分布在高斯面外的电荷决定的;C 、空间所有的电荷决定的;D 、高斯面内电荷代数和决定的。
3、以下说法正确的是:A 、场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零。
B 、场强大小相等的地方,电势也相等,等势面上各点场强大小相等。
C 、带正电的物体,电势一定是正的,不带电的物体,电势一定等于零。
D 、沿着均场强的方向,电势一定降低。
4.关于导体有以下几种说法: A .接地的导体都不带电。
B .接地的导体可带正电,也可带负电。
C .一导体的电势零,则该导体不带电。
D .任何导体,只要它所带的电量不变,则其电势也是不变的。
5.在半径为R 的均匀带电球面上,任取面积元S ∆,则此面积元上的电荷所受的电场力应是: A 0 ; B2S σε⋅∆(σ是电荷面密度); C22Sσε⋅∆ ; D 以上说法都不对。
6.平行板电容器在接入电源后,把两板间距拉大,则电容器的:A 电容增大;B 电场强度增大;C 所带电量增大;D 电容、电量及两板内场强都减小。
7.一个电阻,一个电感线圈和一个电容器与交流电源组成串联电路,通过电容器的电流应与下列哪一个的电压同位相A 电阻;B 电感线圈;C 电容器;D 全电路。
8.以下关于磁场的能量密度正确的是: A 、22B Bw μ=B 、012B w E B ε=⨯C 、012B w B μ=D 、22B w B μ=9.如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将A .顺时针转动同时离开ab ;B .顺时针转动同时靠近ab ;C .逆时针转动同时离开ab ;D .逆时针转动同时靠近ab 。
大学物理电磁学知识点总结篇一:大学物理电磁学知识点总结大学物理电磁学总结一、三大定律库仑定律:在真空中,两个静止的点电荷q1和q2之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。
uuurqqurF21=k122errurur高斯定理:a)静电场:Φe=EdS=∫s∑qiiε0(真空中)b)稳恒磁场:Φm=uurrBdS=0∫s环路定理:a)静电场的环路定理:b)安培环路定理:二、对比总结电与磁∫LurrLEdl=0∫urrBdl=0∑Ii(真空中)L电磁学静电场稳恒磁场稳恒磁场电场强度:E磁感应强度:B定义:B=ururF定义:E=(N/C)q0基本计算方法:1、点电荷电场强度:E=urrurdF(dF=Idl×B)(T)Idlsinθ方向:沿该点处静止小磁针的N极指向。
基本计算方法:urqurer4πε0r21ruruIdl×er0r1、毕奥-萨伐尔定律:dB=24πr2、连续分布的电流元的磁场强度:2、电场强度叠加原理:urnur1E=∑Ei=4πε0i=1rqiuueri∑r2i=1inrururur0Idl×erB=∫dB=∫4πr23、安培环路定理(后面介绍)4、通过磁通量解得(后面介绍) 3、连续分布电荷的电场强度:urρdVurE=∫ev4πεr2r0urdSururλdlurE=∫er,E=∫es4πεr2l4πεr2r004、高斯定理(后面介绍)5、通过电势解得(后面介绍)几种常见的带电体的电场强度公式:几种常见的磁感应强度公式:1、无限长直载流导线外:B=2、圆电流圆心处:电流轴线上:B=ur1、点电荷:E=qurer4πε0r210I2R0I2πr2、均匀带电圆环轴线上一点:urE=B=3、圆rqxi22324πε0(R+x)R2IN2(x2+R2)3210α23、均匀带电无限大平面:E=2ε0(N为线圈匝数)4、无限大均匀载流平面:B=4、均匀带电球壳:E=0(r<R)(α是流过单位宽度的电流)urE=qurer(r>R)4πε0r25、无限长密绕直螺线管内部:B=0nI(n是单位长度上的线圈匝数)6、一段载流圆弧线在圆心处:B=(是弧度角,以弧度为单位)7、圆盘圆心处:B=rurqr(rR)20I4πR0ωR2(是圆盘电荷面密度,ω圆盘转动的角速度)6、无限长直导线:E=λ2πε0xλ0(r>R)2πε0r7、无限长直圆柱体:E=E=λr(r<R)4πε0R2电场强度通量:N·m2·c-1)(磁通量:wb)(sΦe=∫dΦe=∫EcosθdS=∫ssururEdS通量uurrΦm=∫dΦm=∫BdS=∫BcosθdSsss若为闭合曲面:Φe=∫sururEdS若为闭合曲面:uurrΦm=BdS=BcosθdS∫∫ss均匀电场通过闭合曲面的通量为零。
稳恒电流1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们又涉及到了场的概念)2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。
3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电导率、电阻率、电阻温度系数、理解超导现象4.电阻的计算(这是重点)。
5.金属导电的经典微观解释(了解)。
6.焦耳定律两种形式(积分、微分)。
(这里要明白一点:微分型方程是精确的,是强解。
而积分方程是近似的,是弱解。
)7.电动势、电源的作用、电源做功。
、8.含源电路欧姆定律。
9.基尔霍夫定律(节点电流定律、环路电压定律。
明白两者的物理基础。
)习题:13.19;13.20真空中的稳恒磁场电磁学里面极为重要的一章1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用)3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律)4. 毕奥-萨伐尔定律的应用(重点)。
5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本)6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比)7. 安培环路定理的应用(重要——求磁场强度)8. 磁场对电流的作用(安培力、安培定律积分、微分形式)9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功)10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。
11. 三场作用叠加(霍尔效应、质谱仪、例14.4)习题:14.20,14.22,14.27,14.32,14.46,14.47磁介质(与电解质对比)1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁质、弱磁质、强磁质。
(请自己阅读并绘制磁场和电场相关概念和公式的对照表)2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗磁质的形成原理。
大学物理力学公式总结第一章(质点运动学)1.r=r(t)=x(t)i+y(t)j+z(t)kΔr=r(t+Δt)- r(t)一般地|Δr|≠Δr2.v=dr / dt a=dv / dx=d^2r / dt^23.匀加速运动:a=常矢v0=v x+v y+v z r=r0+v0t+at24.匀加速直线运动:v= v0+at x=v0t+at2 v2-v02=2ax5.抛体运动:a x=0 a y=-gv x=v0cos v y=v0sinθ-gtx=v0cosθ•t y=v0sinθ•t-gt26.圆周运动:角速度ω=dθ / dt=v/t角加速度α=dω/ dt加速度a=a n+a t法相加速度a n=v^2 / R=Rω,指向圆心切向加速度a t=dv/dt=Rα,沿切线方向7.伽利略速度变换:v=v’+u第二章(牛顿运动定律)1.牛顿运动定律:第一定律:惯性和力的概念,惯性系的定义第二定律:F=dp/dt , p=m v当m为常量时,F=m a第三定律:F12=-F21力的叠加原理:F=F1+F2+……2.常见的几种力:重力:G=m g弹簧弹力:f=-kx3.用牛顿定律解题的基本思路:1)认物体2)看运动3)查受力(画示力图)4)列方程(一般用分量式)第三章(动量与角动量)1.动量定理:合外力的冲量等于质点(或质点系)动量的增量,即F dt=d p2.动量守恒定律:系统所受合外力为零时,p=i pi=常矢量3.质心的概念:质心的位矢r c=(i miri)/m(离散分布) 或r c = rdm/m(连续分布)4.质心运动定理:质点系所受的合外力等于其总质量乘以质心的加速度,即F=m a c5.质心参考系:质心在其中静止的平动参考系,即零动量参考系。
6.质点的角动量:对于某一点,L=r×p=m r×v7.角动量定理:M=dL/dt其中M 为合外力距,M=r×F,他和L都是对同一定点说的。
电磁学部分总结 静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动,电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。
电场强度 电势2、反映静电场基本性质的两条定理是高斯定理和环路定理要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是高斯定理的理解和应用。
3、应用(1)、电场强度的计算a)、由点电荷场强公式 及场强叠加原理 计算场强q FE =⎰∞⋅==aa ar d E q W U 0∑⎰⎰=⋅=ΦiSe qS d E 01ε ⎰=⋅0r d E L 02041r rq E πε=iiE E ∑=一、离散分布的点电荷系的场强二、连续分布带电体的场强其中,重点掌握电荷呈线分布的带电体问题b)、由静电场中的高斯 定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。
还有可能结合电势的计算一起进行。
c)、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。
(2)、电通量的计算2041i ii i i i r r q E E πε∑=∑=⎰⎰π==0204d r rq E d E εUgradU E -∇=-=)(k zU j y U i x U ∂∂+∂∂+∂∂-=a)、均匀电场中S 与电场强度方向垂直b)、均匀电场,S 法线方向与电场强度方向成q 角c)、由高斯定理求某些电通量(3)、电势的计算a)、场强积分法(定义法)——根据已知的场强分布,按定义计算b)、电势叠加法——已知电荷分布,由点电荷电势公式,利用电势叠加原理计算第二部分:静电场中的导体和电介质 一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。
一、教学内容1. 库仑定律:描述静电力的大小和方向,公式为F=kq1q2/r^2,其中k为库仑常数,q1和q2分别为两个点电荷的电量,r为它们之间的距离。
2. 电场强度:描述电场对电荷的作用力,公式为E=F/q,其中F为电场对电荷的作用力,q为电荷的电量。
3. 高斯定律:描述电场通过一个闭合曲面的通量与该闭合曲面内部的总电荷之间的关系,公式为Φ=Q/ε0,其中Φ为电通量,Q为闭合曲面内部的总电荷,ε0为真空中的电常数。
4. 磁感应强度:描述磁场对运动电荷的作用力,公式为B=F/IL,其中F为磁场对运动电荷的作用力,I为电流的大小,L为电流所在导线的有效长度。
5. 安培定律:描述电流产生的磁场,公式为B=μ0I/2πr,其中B为磁场的大小,I为电流的大小,r为电流所在导线到被测点的距离,μ0为真空中的磁常数。
6. 法拉第电磁感应定律:描述磁场变化产生的电动势,公式为E=ΔΦ/Δt,其中E为电动势,ΔΦ为磁通量的变化量,Δt为时间的变化量。
二、教学目标1. 掌握大学物理电磁学的基本概念和公式。
2. 能够运用电磁学的知识解决实际问题。
3. 培养学生的科学思维和解决问题的能力。
三、教学难点与重点重点:库仑定律、电场强度、高斯定律、磁感应强度、安培定律、法拉第电磁感应定律。
难点:高斯定律、安培定律、法拉第电磁感应定律的理解和应用。
四、教具与学具准备教具:黑板、粉笔、PPT课件。
学具:教材、笔记本、笔。
五、教学过程1. 实践情景引入:讲解库仑定律时,可以引入两个点电荷之间的相互作用力。
2. 例题讲解:讲解电场强度时,可以举例一个正点电荷对周围电荷的作用力。
3. 随堂练习:让学生计算一个负点电荷对周围电荷的作用力。
4. 讲解高斯定律:讲解高斯定律时,可以举例一个闭合曲面内部的电荷对曲面外的电场的影响。
5. 讲解磁感应强度:讲解磁感应强度时,可以举例磁场对运动电荷的作用力。
6. 讲解安培定律:讲解安培定律时,可以举例电流产生的磁场对周围导线的影响。
大学物理(电磁学)综合复习资料一.选择题:l.(本题3分)真空中一“无限大”均匀带负电荷的平面如图所示,其电场的场强分布图应是(设场强方向向右为正、向左为负)[ ]2.(本题3分)在静电场中,下列说法中哪一个是正确的?(A)带正电荷的导体,其电势一定是正值.(B)等势面上各点的场强一定相等.(C)场强为零处,电势也一定为零.(D)场强相等处,电势梯度矢量一定相等.[ ]3.(本题3分)电量之比为1:3:5的三个带同号电荷的小球A、B、C,保持在一条直线上,相互间距离比小球直径大得多.若固定A、C不动,改变B的位置使B所受电场力为零时,AB与BC比值为(A)5.(B)l/5.(C )5. (D )5/1 [ ] 4.(本题3分)取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的∑I 不变, L 上各点的B不变. (B )回路L 内的∑I 不变, L 上各点的B改变.(C )回路L 内的∑I 改变, L 上各点的B不变.(D )回路L 内的∑I 改变, L 上各点的B改变.[ ] 5.(本题3分)对位移电流,有下述四种说法,请指出哪一种说法正确. (A )位移电流是由变化电场产生的. (B )位移电流是由线性变化磁场产生的. (C )位移电流的热效应服从焦耳—楞次定律. (D )位移电流的磁效应不服从安培环路定理. 6.(本题3分)将一个试验电荷q 0(正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F .若考虑到电量q 0不是足够小,则 (A )0/q F 比P 点处原先的场强数值大. (B )0/q F 比P 点处原先的场强数值小. (C )0/q F 等于原先P 点处场强的数值.(D )0/q F 与P 点处场强数值关系无法确定. [ ]7.(本题3分)图示为一具有球对称性分布的静电场的E~r关系曲线.请指出该静电场是由下列哪种带电体产生的.(A)半径为R的均匀带电球面.(B)半径为R的均匀带电球体.(C)半径为R的、电荷体密度为Arρ(A为常数)的非均匀带=电球体.(D)半径为R的、电荷体密度为rρ(A为常数)的非均匀=A/带电球体.[ ]8.(本题3分)电荷面密度为σ-的两块“无限大”均匀带电的平行平板,+和σ放在与平面相垂直的X轴上的+a和-a位置上,如图所示.设坐标原点O处电势为零,则在-a<x<+a区域的电势分布曲线为[ ]9.(本题3分)静电场中某点电势的数值等于(A )试验电荷q 0置于该点时具有的电势能. (B )单位试验电荷置于该点时具有的电势能. (C )单位正电荷置于该点时具有的电势能.(D )把单位正电荷从该点移到电势零点外力所作的功. 10.(本题3分)在图(a )和(b )中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b )图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A )2121,P P L L B B l d B l d B =⋅=⋅⎰⎰.(B )2121,P P L L B B l d B l d B =⋅≠⋅⎰⎰.(C )2121,P P L L B B l d B l d B ≠⋅=⋅⎰⎰.(D )2121,P P L L B B l d B l d B ≠⋅≠⋅⎰⎰. [ ]11.(本题3分)电位移矢量的时间变化率dt dD /的单位是 (A )库仑/米2. (B )库仑/秒.(C )安培/米2. (D )安培·米2. [ ] L2.(本题3分)有四个等量点电荷在OXY 平面上的四种不同组态,所有点电荷均与原点等距.设无穷远处电势为零,则原点O 处电场强度和电势均为零的组态是 [ ]13.(本题3分)如图示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A ) A <0且为有限常量. (B ) A >0且为有限常量. (C ) A =∞. (D ) A =0. [ ]14.(本题3分)一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A )0,0==M F. (B )0,0≠=M F.(C )0,0=≠M F.(D )0,0≠≠M F.[ ]15.(本题3分)当一个带电导体达到静电平衡时: (A )表面上电荷密度较大处电势较高.(B )表面曲率较大处电势较高.(C )导体内部的电势比导体表面的电势高.(D )导体内任一点与其表面上任一点的电势差等于零. [ ]16.(本题3分)如图所示,螺线管内轴上放入一小磁针,当电键K 闭合时,小磁针的N 极的指向(A )向外转90O . (B )向里转90O . (C )保持图示位置不动. (D )旋转180O .(E )不能确定. [ ]17.(本题3分)如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A ),0=⋅⎰Ll d B且环路上任意一点 B =0.(B ),0=⋅⎰Ll d B且环路上任意一点0≠B .(C ),0≠⋅⎰Ll d B且环路上任意一点 0≠B .(D ),0≠⋅⎰Ll d B且环路上任意一点B=常量.[ ]I18.(本题3分)附图中,M、P、O为由软磁材料制成的棒,三者在同一平面内,当K闭合后,(A)M的左端出现N极.(B)P的左端出现N极.(C)O右端出现N极.(D)P的右端出现N极.[ ]二.填空题:1.(本题3分)如图所示,在边长为a的正方形平面的中垂线上,距中心O点a12处,有一电量为q的正点电荷,则通过该平面的电场强度通量为.2.(本题3分)电量分别为q1,q2,q3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R,则b点处的电势U=3.(本题3分)在静电场中,场强沿任意闭合路径的线积分等于零,即0=⋅⎰Ll d E,这表明静电场中的电力线 .4.(本题3分)空气的击穿电场强度为m V /1026⨯,直径为0.10m 的导体球在空气中时的最大带电量为 . (22120/1085.8m N C ⋅⨯=-ε) 5.(本题3分)长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H = ,磁感应强度的大小B = . 6.(本题3分)一“无限长”均匀带电的空心圆柱体,内半径为a ,外半径为b ,电荷体密度为ρ.若作一半径为r (a <r <b ),长度为L 的同轴圆柱形高斯柱面,则其中包含的电量q = . 7.(本题3分)一静止的质子,在静电场中通过电势差为100V 的区域被加速,则此质子的末速度是 . (leV =1.6×10-19J ,质子质量m P =1.67×l0-27kg ) 8.(本题3分)两个电容器1和2,串联以后接上电动势恒定的电源充电.在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差电容器1极板上的电量 .(填增大、减小、不变) 9.(本题3分)磁场中任一点放一个小的载流试验线圈可以确定该点的磁感应强度,其大小等于放在该点处试验线圈所受的 和线圈的 的比值. 10.(本题3分)在点电荷系的电场中,任一点的电场强度等于 ,这称为场强叠加原理. 11.(本题3分)一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布为(r表示从球心引出的矢径):=)(r E)(R r <,=)(r E)(R r >. 12.(本题3分)在静电场中,电势不变的区域,场强必定为 .三.计算题: l .(本题10分)一空气平行板电容器,两极板面积均为 S ,板间距离为 d ( d 远小于极板线度),在两极板间平行地插入一面积也是S 、厚度为 t (< d )的金属片.试求: (l )电容C 等于多少?(2)金属片放在两极板间的位置对电容值有无影响?2.(本题10分)计算如图所示的平面载流线圈在P 点产生的磁感应强度,设线圈中的电流强度为I .3.(本题10分)图中所示为水平面内的两条平行长直裸导线LM 与L ’M ’,其间距离为l 其左端与电动势为0 的电源连接.匀强磁场B垂直于图面向里.一段直裸导线ab 横放在平行导线间(并可保持在导线间无摩擦地滑动)把电路接通.由于磁场力的作用,ab 将从静止开始向右运动起来.求(1) ab 能达到的最大速度V .(2) ab 达到最大速度时通过电源的电流I .4.(本题10分)两电容器的电容之比为2:1:21 C C(l )把它们串联后接到电压一定的电源上充电,它们的电能之比是多少?(2)如果是并联充电,电能之比是多少?(3)在上述两种情形下电容器系统的总电能之比又是多少? 5.(本题10分)在一平面内有三根平行的载流直长导线,已知导线1和导线2中的电流I 1=I 2且方向相同,两者相距 3×10-2m ,并且在导线1和导线2之间距导线1为10-2m 处B =0,求第三根导线放置的位置与所通电流I 3之间的关系.6.(本题10分)一圆柱形电容器,内圆柱的半径为R 1,外圆柱的半径为R 2,长为L )]([12R R L ->>,两圆柱之间充满相对介电常数为r ε的各向同性均匀电介质.设内外圆柱单位长度上带电量(即电荷线密度)分别为λ和λ-,求:(l )电容器的电容; (2)电容器储存的能量. 7.(本题10分)从经典观点来看,氢原子可看作是一个电子绕核作高速旋转的体系.已知电子和质子的电量为-e 和e ,电子质量为m e ,氢原子的圆轨道半径为r ,电子作平面轨道运动,试求电子轨道运动的磁矩m p的数值?它在圆心处所产生磁感应强度的数值B 0为多少? 8.(本题10分)一无限长直导线通有电流t e I I 30-=.一矩形线圈与长直导线共面放置,其长边与导线平行,位置如图所示.求:(l )矩形线圈中感应电动势的大小及感应电流的方向; (2)导线与线圈的互感系数.四.证明题:(共10分) 1.(本题10分)一环形螺线管,共N 匝,截面为长方形,其尺寸如图,试证明此螺线管自感系数为:ab h N L ln 220πμ=大学物理(电磁学)参考答案 一.选择题:1.(D ) 2.(D ) 3.(D ) 4.(B ) 5.(A )6.(A ) 7.(B ) 8.(C ) 9.(C ) 10.(C ) 11.(C )12.(D ) 13.(D ) 14.(B ) 15.(D ) 16.(C ) 17.(B ) 18.(B )二.填空题:(共27分) 1.(本题3分) )6/(0εq 2.(本题3分))22(813210q q q R++πε3.(本题3分) 不可能闭合 4.(本题3分) 5.6×10-7C 5.(本题3分))2/(r I π )2/(r I H πμμ= 6.(本题3分))(22a r L -ρπ 7(本题3分)1.38×105m 8.(本题3分)增大 增大 9.(本题3分)最大磁力矩 磁矩10.(本题3分)点电荷系中每一个点电荷在该点单独产生的电场强度的矢量和 11.(本题3分)r rR 302εσ12.(本题3分)零三.计算题: 1.(本题10分)解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为 )/(01S q E ε= 金属板与B 板间场强为 )/(02S q E ε= 金属片内部场强为0'=E 则两极板间的电势差为 d E d E U U B A 21+=-))](/([210d d S q +=ε))](/([0t d S q -=ε 由此得)/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容无影响.2.(本题10分)解:如图,CD 、AF 在P 点产生的 B =0 EF D E BC AB B B B B B+++= )sin (sin 4120ββπμ-=a IB AB ,方向⊗其中0sin ,2/1)2/(sin 12===ββa a aIB AB 240μ=∴,同理:aIB BC 240μ=,方向⊗.同样 aIB B EF DE 280μ==,方向⊙.a IaI a I B 8224242000μμμ=-=∴3.解:(1)导线ab 运动起来时,切割磁感应线,产生动生电动势。