2016年普通高等学校招生全国统一考试(江苏卷)
- 格式:doc
- 大小:1.04 MB
- 文档页数:7
2016年普通高等学校招生全国统一考试(江苏卷)英语试题二、单选题(本大题共15小题,每小题____分,共____分。
)21. It is often the case___D___anything is possible for those who hang on to hope.A. whyB. whatC. asD. that22. More efforts, as reported, ___B___in the years ahead to accelerate the supply-side structural reform.A. are madeB. will be madeC. are being madeD. have been made23. Many young people, most___C___were well-educated, headed for remote regions to chase their dreams.A. of whichB. of themC. of whomD. of those24. —Can you tell us your__A__ for happiness and a long life?—Living every day to the full, definitely.A. recipeB. recordC. rangeD. receipt25. He did not__C_ Ceasily, but was willing to accept any constructive advice for a worthy cause.A. approachB. wrestleC. compromiseD. communicate26. ___D__some people are motivated by a need for success, others are motivated by a fear of failure.A. BecauseB. IfC. UnlessD. While27. If it a__A_ for his invitation the other day, I should not be here now.A. had not beenB. should not beC. were not to beD. should not have been28. In art criticism, you must assume the artist has a secret message ___B__ within the work.A. to hideB. hiddenC. hidingD. being hidden29. Dashan, who__D___ crosstalk, the Chinese comedic tradition, for decades, wants to mix it up with the Western stand-up tradition.A. will be learningB. is learningC. had been learningD. has been learning30. Many businesses started up by college students have ___B___thanks to the comfortable climate for business creation.A. fallen offB. taken offC. turned offD. left off31. His comprehensive surveys have provided the most__A_statements of how, and on what basis, data are collected.A. explicitB. ambiguousC. originalD. arbitrary32. —Only those who have a lot in common can get along well.—_____D____ . Opposites sometimes do attract.A. I hope notB. I think soC. I appreciate thatD. I beg to differ33. Parents should actively urge their children to___C___the opportunity to join sports teams.A. gain admission toB. keep track ofC. take advantage ofD. give rise to34. Not until recently___C___the development of tourist-related activities in the rural areas.A. they had encouragedB. had they encouragedC. did they encourageD. they encouraged35. —Jack still can’t help being anxious about his job interview.—Lack of self-confidence is his___A___, I am afraid.A. Achilles’ heelB. child’s playC. green fingersD. last straw三、完型填空(本大题共20小题,每小题____分,共____分。
【说明】: 【参考版答案】非官方版正式答案,有可能存在少量错误,仅供参考使用。
2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12,,,n x x x 的方差()2211n i i s x x n ==-∑,其中11ni i x x n ==∑.棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高.棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1. 已知集合{}1,2,3,6A =-,{}|23B x x =-<<,则A B = . 【答案】{}1,2-;【解析】由交集的定义可得{}1,2A B =- .2. 复数()()12i 3i z =+-,其中i 为虚数单位,则z 的实部是 . 【答案】5;【解析】由复数乘法可得55i z =+,则则z 的实部是5.3. 在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是 .【答案】【解析】c,因此焦距为2c =.4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 . 【答案】0.1; 【解析】 5.1x =,()22222210.40.300.30.40.15s =++++=. 5.函数y 的定义域是 . 【答案】[]3,1-;【解析】2320x x --≥,解得31x -≤≤,因此定义域为[]3,1-.6. 如图是一个算法的流程图,则输出a 的值是 .【答案】9;【解析】,a b 的变化如下表:则输出时9a =.7. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 【答案】56; 【解析】将先后两次点数记为(),x y ,则共有6636⨯=个等可能基本事件,其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为305366=. 8. 已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 . 【答案】20;【解析】设公差为d ,则由题意可得()2113a a d ++=-,151010a d +=,解得14a =-,3d =,则948320a =-+⨯=.9. 定义在区间[]0,3π上的函数s i n 2y x =的图象与c o s y x =的图象的交点个数是 . 【答案】7;【解析】画出函数图象草图,共7个交点.10. 如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b+=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是.【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭, 由90BFC∠=︒可得0BF CF ⋅= ,2b BF c⎛⎫=+- ⎪ ⎪⎝⎭ ,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭ , 则22231044c a b -+=,由222b a c =-可得223142c a =,则c e a ==.11. 设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上(),10,2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a ∈R ,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是 .【答案】25-;。
绝密★启封前2016普通高等学校招生全国统一考试(江苏卷)英语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷第一部分听力(共两节,满分 30 分)做题时,现将答案标在试卷上,录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共 5 小题;每小题 1.5 分,满分 7.5 分)(略)听下面 5 段对话,每段对话后有一个小题。
从题中所给的 A,B,C 三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有 10 秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例: How much is the shirt?A.£ 19.15B.£ 9.18C.£ 9.15答案是 C。
1.What are the speakers talking about?A. Having a birthday party.B. Doing some exercise.C. Getting Lydia a gift.2.What is the woman going to do?A. Help the man.B. Take a bus.C. Get a camera.3.What does the woman suggest the man do?A. Tell Kate,s to stop.B. Call Kate,s friends.C. Stay away from Kate.4.Where does the conversation probably take place?A. In a wine shop.B. In a supermarket.C. In a restaurant.5.What doer the woman mean?A. Keep the window closed.B. Go out for fresh air,C. Turn on the fan.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
...因此 BE CE4a b4 5 137 .2288 8在锐角三角形 ABC 中, sin A 2sin B sin C ,那么 tan A tan B tan C 的最小值是 .8;xiv.由 sin Asin π A sin B C sin B cosC cos B sin C , sin A 2sin Bsin C ,可得 sin B cosC cos B sin C 2sin Bsin C 〔 * 〕,由三角形 ABC 为锐角三角形,那么 cosB 0,cos C 0 ,在〔 * 〕式两侧同时除以 cos B cosC 可得 tan B tan C2tan Btan C ,又 tan Atan π Atan BCtan B tan C (#) ,1 tan B tanC那么 tan A tan B tan Ctan B tan C1tan B tanC ,tan B tanC2由 tan B tanC2 tan B tanC2 tan B tanC 可得 tan A tan B tanC1,tan B tan C令 tan B tanC t ,由 A, B, C 为锐角可得 tan A0, tan B0,tanC 0 ,由(#)得 1 tan B tan C 0 ,解得 t 1tan A tan B tan C2t 2 2 ,t11 1t 2t1 1 1 1 21 1 11,由 t 1 那么0 ,因此 tan Atan B tanC最小值为 8,t2tt24 t2t4当且仅当 t 2 时取到等号,此时 tan B tan C 4 , tan B tan C 2 ,解得 tan B22,tan C22,tan A 4 〔或 tan B,tan C 互换〕,此时 A, B,C 均为锐角.二、解答题: 本大题共 6 小题,共计 90 分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤.〔本小题总分值14 分〕在△ABC 中, AC 6 , cos B4, Cπ.54⑴求 AB 的长;⑵求 cos Aπ 的值.6⑴ 5 2;⑵7 26 .201.cos B4, B 为三角形的内角5sin B 3 5AB ACsinC sin BAB623,即: AB 5 2 ;25a) cos A cos C B sin B sin C cos B cosC2cos A10又A为三角形的内角72sin A10cos Aπ3cos A1s in A726.62220〔本小题总分值14分〕如图,在直三棱柱ABC A1 B1C1中, D, E 分别为 AB , BC 的中点,点F在侧棱 B1B 上,且 B D A F AC1A B C111,1 1 1 .求证:⑴直线 DE // 平面 AC FA1B1;11⑵平面 BDE平面AC F.111F 见解析;2.D, E 为中点,DE 为ABC 的中位线DE // AC又ABC A B C 为棱柱,AC //AC1 1 111CEA D BDE // AC1 1,又AC1 1平面 AC11F,且DEAC1 1FDE //平面AC F;1 1a)ABC A1B1C1为直棱柱,AA1平面 A1B1C1AA AC,又AC1A B1 1 11 1 1且AA1 A1 B1 A1, AA1 , A1 B1平面 AA1B1 BAC1平面AAB B,11113又 A 1FB 1D , DE B 1DD ,且 DE, B 1D平面 B 1 DEA F平面B DE,又A FAC F1111 1平面 B DE平面AC 1 F.11〔本小题总分值14 分〕现需要设计一个仓库,它由上下两局部组成,上局部的形状是正四棱锥P A 1 B 1C 1D 1,下局部的形状是正四棱柱 ABCD A 1B 1C 1 D 1〔如下图〕 ,并要求正四棱柱的高O 1O 是正四棱锥的高 PO 1的 4 倍.⑴假设AB6 m , PO 12 m ,那么仓库的容积是多少;PD 1 C 1⑵ 假设正四棱锥的侧棱长为6 m ,当 PO 1为多少时,仓库的容积最大?O 1A 1B 13;⑵ 2 3 m ; DC⑴ 312 mO3. PO 1 2 m ,那么OO 18 m ,ABV P A 1B 1C 1D 1=1S ABCD PO 11 62 224 m 3, V ABCDA 1B 1C 1D 1=S ABCD OO 1628 288 m 3 ,33V =V PABCDV ABCDABCD312 m3 ,11 1 111 11故仓库的容积为 312 m 3;a) 设 PO 1x m ,仓库的容积为 V ( x)那么 OO 1 4 x m , AO 1 136 x 2 m , A 1B 12 36 x 2 m ,11212V P A 1B 1C 1D 1= S ABCD PO 172 2 x 2x72x 2 x 3 24xx 3 m 3 ,3 3332233V ABCD A 1B 1C 1D 1=S ABCD OO 1724 x 288x2x 8 x m ,V x =V PABCDV ABCD ABC D24x 2 x 3 288x8x 326 x 3 312 x 0 x6 ,1 11 11 1 1 133V ' x26x 2 312 26 x 212 0 x 6 ,当 x 0,2 3 时,V' x0 , V x 单调递增,当 x2 3,6 时,V'x0 , V x 单调递减,因此,当 x2 3时,Vx 取到最大值,即 PO 1 23 m 时,仓库的容积最大.〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,。
绝密★启封并使用完毕前试题类型: 2016年普通高等学校招生全国统一考试物理试题(江苏卷)注意事项:考生在答题前请认真阅读本注意事项及各题答案要求1.本试卷共8页,包含选择题(第1题~第9题,共9题)和非选择题(第10题~第15题,共6题)两部分。
本卷满分为120分,考试时间为100分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,考生务必将自己的姓名、准考证号用0.5毫米黑色水笔填写在试卷和答题卡规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号和本人是否相符。
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再涂选其他答案。
做大非选择题,必须用0.5毫米黑色的签字笔在答题卡上的指定位置做大,在其他位置作答一律无效。
5.如需作图,需用2B铅笔绘、写清楚,线条、符号等需加黑、加粗。
第Ⅰ卷一、单项选择题:本题共5小题,每小题3分,共计15分,每小题只有一个选项符合题意。
1.一轻质弹簧原长为8 cm,在4 N的拉力作用下伸长了2 cm,弹簧未超出弹性限度,则该弹簧的劲度系数为()(A)40 m/N(B)40 N/m(C)200 m/N (D)200 N/m【答案】D【解析】试题分析:由题意知弹簧的弹力为4N时,弹簧伸长2cm,根据胡克定律F=kx,代入可得弹簧的劲度系数k=200 N/m,所以A、B、C错误;D正确。
2.有A、B两小球,B的质量为A的两倍。
现将它们以相同速率沿同一方向抛出,不计空气阻力。
图中①为A 的运动轨迹,则B的运动轨迹是()(A)①(B)②(C)③(D)④【答案】A试题分析:由题意知A、B两球抛出的初速度相同,虽然质量不同,但牛顿第二定律知,两球运动的加速度相同,所以运动的轨迹相同,故A正确;B、C、D错误。
3.一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示。
容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是()(A)A点的电场强度比B点的大(B)小球表面的电势比容器内表面的低(C)B点的电场强度方向与该处内表面垂直(D)将检验电荷从A点沿不同路径到B点,电场力所做的功不同【答案】C4.一自耦变压器如图所示,环形铁芯上只饶有一个线圈,将其接在a、b间作为原线圈。
2016年普通高等学校招生全国统一考试(江苏卷)第一部分听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £ 19.15.B. £ 9.18.C. £ 9.15.答案是C。
1. What are the speakers talking about?A. Having a birthday party.B. Doing some exercise.C. Getting Lydia a gift.2. What is the woman going to do?A. Help the man.B. Take a bus.C. Get a camera.3. What does the woman suggest the man do?A. Tell Kate to stop.B. Call Kate’s friends.C. Stay away from Kate.4. Where does the conversation probably take place?A. In a wine shop.B. In a supermarket.C. In a restaurant.5. What does the woman mean?A. Keep the window closed.B. Go out for fresh air.C. Turn on the fan.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式: 样本数据12,,,n x x x 的方差()2211ni i s x xn ==-∑,其中11ni i x x n ==∑.棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高.棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{}1,2,3,6A =-,{}|23B x x =-<<,则AB = .【答案】{}1,2-;【解析】由交集的定义可得{}1,2AB =-.2. 复数()()12i 3i z =+-,其中i 为虚数单位,则z 的实部是 .【答案】5;【解析】由复数乘法可得55i z =+,则则z 的实部是5.3. 在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是 .【答案】【解析】c =2c =4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 .【答案】0.1; 【解析】 5.1x =,()22222210.40.300.30.40.15s =++++=. 5.函数y 的定义域是 .【答案】[]3,1-;【解析】2320x x --≥,解得31x -≤≤,因此定义域为[]3,1-.6. 如图是一个算法的流程图,则输出a 的值是 .【答案】9;【解析】,a b 的变化如下表:则输出时9a =.7. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 .【答案】56; 【解析】将先后两次点数记为(),x y ,则共有6636⨯=个等可能基本事件,其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为305366=. 8. 已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 . 【答案】20;【解析】设公差为d ,则由题意可得()2113a a d ++=-,151010a d +=, 解得14a =-,3d =,则948320a =-+⨯=.9. 定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 .【答案】7;【解析】画出函数图象草图,共7个交点.10. 如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2by =与椭圆交于,B C两点,且90BFC ∠=︒,则该椭圆的离心率是.【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭, 由90BFC ∠=︒可得0BF CF ⋅=,2b BFc ⎛⎫=+- ⎪ ⎪⎝⎭,2b CF c ⎛⎫=-- ⎪ ⎪⎝⎭, 则22231044c a b -+=,由222b a c =-可得223142c a =,则c e a ===. 11. 设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上(),10,2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a ∈R ,若5922f f⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是 . 【答案】25-;【解析】由题意得511222f f a ⎛⎫⎛⎫-=-=-+ ⎪ ⎪⎝⎭⎝⎭,91211225210f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭, 由5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-.12.已知实数,x y满足240,220,330,x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩则22x y+的取值范围是.【答案】4,135⎡⎤⎢⎥⎣⎦;【解析】在平面直角坐标系中画出可行域如下22x y+为可行域内的点到原点距离的平方.可以看出图中A点距离原点最近,此时距离为原点A到直线220x y+-=的距离,d==,则()22min45x y+=,图中B 点距离原点最远,B点为240x y-+=与330x y--=交点,则()2,3B,则()22max13x y+=.13.如图,在ABC△中,D 是BC的中点,,E F 是AD上两个三等分点,4BA CA⋅=,1BF CF⋅=-,则BE CE⋅的值是.【答案】78;【解析】令DF a=,DB b=,则DC b=-,2DE a=,3DA a=,则3BA a b=-,3CA a b=+,2BE a b=-,2CE a b=+,BF a b=-,CF a b=+,则229BA CA a b⋅=-,22BF CF a b⋅=-,224BE CE a b⋅=-,由4BA CA⋅=,1BF CF⋅=-可得2294a b-=,221a b-=-,因此22513,88a b==,因此22451374888BE CE a b⨯⋅=-=-=.14. 在锐角三角形ABC 中,sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 .【答案】8;【解析】由()()sin sin πsin sin cos cos sin A A B C B C B C =-=+=+,sin 2sin sin A B C =, 可得sin cos cos sin 2sin sin B C B C B C +=(*), 由三角形ABC 为锐角三角形,则cos 0,cos 0B C >>,在(*)式两侧同时除以cos cos B C 可得tan tan 2tan tan B C B C +=, 又()()tan tan tan tan πtan 1tan tan B CA ABC B C+=--=-+=--(#),则tan tan tan tan tan tan tan 1tan tan B CA B C B C B C+=-⨯-,由tan tan 2tan tan B C B C +=可得()22tan tan tan tan tan 1tan tan B C A B C B C=--,令tan tan B C t =,由,,A B C 为锐角可得tan 0,tan 0,tan 0A B C >>>, 由(#)得1tan tan 0B C -<,解得1t >2222tan tan tan 111t A B C t t t=-=---,221111124t t t ⎛⎫-=-- ⎪⎝⎭,由1t >则211104t t >-≥-,因此tan tan tan A B C 最小值为8, 当且仅当2t =时取到等号,此时tan tan 4B C +=,tan tan 2B C =,解得tan 224B C A ===(或tan ,tan B C 互换),此时,,A B C 均为锐角.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 15. (本小题满分14分)在ABC △中,6AC =,4cos 5B =,π4C =. ⑴ 求AB 的长; ⑵ 求πcos 6A ⎛⎫- ⎪⎝⎭的值.【答案】⑴. 【解析】⑴ 4cos 5B =,B 为三角形的内角 3sin 5B ∴=sinC sin AB ACB=635=,即:AB=⑵()cos cos sin sin cos cosA CB BC B C=-+=-cos A∴=又A为三角形的内角sin10A∴=π1cos sin62A A A⎛⎫∴-=+⎪⎝⎭16.(本小题满分14分)如图,在直三棱柱111ABC A B C-中,,D E分别为,AB BC的中点,点F在侧棱1B B上,且11B D A F⊥,1111AC A B⊥.求证:⑴直线//DE平面11AC F;⑵平面1B DE⊥平面11AC F.【答案】见解析;【解析】⑴,D E为中点,DE∴为ABC∆的中位线//DE AC∴又111ABC A B C-为棱柱,11//AC AC∴11//DE AC∴,又11AC ⊂平面11AC F,且11DE AC F⊄//DE∴平面11AC F;⑵111ABC A B C-为直棱柱,1AA∴⊥平面111A B C111AA AC∴⊥,又1111AC A B⊥且1111AA A B A=,111,AA A B⊂平面11AA B B11AC∴⊥平面11AA B B,又11//DE AC,DE∴⊥平面11AA B B又1A F ⊂平面11AA B B,1DE A F∴⊥又11A FB D⊥,1DE B D D=,且1,DE B D⊂平面1B DE1A F∴⊥平面1B DE,又111A F AC F⊂∴平面1B DE⊥平面11AC F.FECBAC1B1A117. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的4倍. ⑴ 若6m AB =,12m PO =,则仓库的容积是多少;⑵ 若正四棱锥的侧棱长为6m ,当1PO 为多少时,仓库的容积最大?【答案】⑴3312m;⑵m ;【解析】⑴12m PO =,则18m OO =,1111231116224m 33P A B C D ABCD V S PO -⋅=⨯⨯==,111123168288m ABCD A B C D ABCD V S OO -⋅=⨯==,111111113312m =P A B C D ABCD A B C D V V V --+=,故仓库的容积为3312m ;⑵设1m PO x =,仓库的容积为()V x则14m OO x =,11m AO =,11m A B =,()111123331111272224m 3333P A B C D ABCD V S PO x x x x x -⋅=⨯⨯=-=-=,1111233142888m ABCD A B C D ABCD V S OO x x x-⋅=⨯=-=,()()111111113332262428883120633=P A B C D ABCD A B C D V x V V x x x x x x x --+=-+-=-+<<, ()()22'263122612V x x x =-+=--()06x <<,当(x ∈时,()'0V x >,()V x 单调递增,当()x ∈时,()'0V x <,()V x 单调递减,因此,当x =()V x 取到最大值,即1m PO =时,仓库的容积最大.18. (本小题满分14分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+= 及其上一点()2,4A .1A⑴ 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; ⑵ 设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;⑶ 设点(),0T t 满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围.【答案】⑴()()22611x y -+-=⑵25y x =+或215y x =-⑶2⎡-+⎣; 【解析】⑴ 因为N 在直线6x =上,设()6,N n ,因为与x 轴相切,则圆N 为()()2226x y n n -+-=,0n >又圆N 与圆M 外切,圆M :()()226725x x -+-=,则75n n -=+,解得1n =,即圆N 的标准方程为()()22611x y -+-=;⑵由题意得OA =2OA k = 设:2l y x b =+,则圆心M 到直线l 的距离d ==则BC ==BC =解得5b =或15b =-,即l :25y x =+或215y x =-;⑶TA TP TQ +=,即TA TQ TP PQ =-=,即TA PQ =,(TA t =又10PQ ≤,10,解得2t ⎡∈-+⎣,对于任意2t ⎡∈-+⎣,欲使TA PQ =,此时10TA ≤,只需要作直线TA 2TA必然与圆交于P Q 、两点,此时TA PQ =,即TA PQ =,因此对于任意2t ⎡∈-+⎣,均满足题意,综上2t ⎡∈-+⎣.19. (本小题满分14分)已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠. ⑴ 设2a =,12b =. ① 求方程()2f x =的根;② 若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值; ⑵ 若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值.【答案】⑴ ①0x =;②4;⑵1;【解析】⑴ ① ()122xxf x ⎛⎫=+ ⎪⎝⎭,由()2f x =可得1222x x +=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =;② 由题意得221122622x x x x m ⎛⎫++- ⎪⎝⎭≥恒成立, 令122x x t =+,则由20x >可得2t =≥, 此时226t mt --≥恒成立,即244t m t t t +=+≤恒成立 ∵2t ≥时44t t +≥,当且仅当2t =时等号成立,因此实数m 的最大值为4.()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x xxxa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由01a <<,1b >可得1b a >,令()ln ln xb ah x a b⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b a a x b ⎛⎫=- ⎪⎝⎭时()00h x =,因此()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <;()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;则()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22a x a a >=,0x b >,则()0g x >; x >log b 2时,0x a >,log 22b x b b >=,则()0g x >;因此1log 2a x <且10x x <时,()10g x >,因此()g x 在()10,x x 有零点,2log 2b x >且20x x >时,()20g x >,因此()g x 在()02,x x 有零点, 则()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x , 可得()00g x =, 由()00020g a b =+-=, 因此00x =,因此ln log 0ln b a a b ⎛⎫-= ⎪⎝⎭,即ln 1ln a b -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.20. (本小题满分14分) 记{}1,2,,100U =.对数列{}n a (*n ∈N )和U 的子集T ,若T =∅,定义0T S =;若{}12,,,k T t t t =,定义12k T t t t S a a a =+++.例如:{}1,3,66T =时,1366T S a a a =++.现设{}n a (*n ∈N )是公比为3的等比数列,且当{}2,4T =时,30T S =. ⑴ 求数列{}n a 的通项公式;⑵ 对任意正整数k (1100k ≤≤),若{}1,2,,T k ⊆,求证:1T k S a +<;⑶ 设C U ⊆,D U ⊆,C D S S ≥,求证:2C CDD S S S +≥.【答案】⑴13n n a -=;⑵⑶详见解析;【解析】⑴ 当{}2,4T =时,2422930T S a a a a =+=+=,因此23a =,从而2113a a ==,13n n a -=;⑵ 2112131133332k k k T k k S a a a a -+-++=++++=<=≤;⑶设()C A CD =ð,()D B C D =ð,则A B =∅,C A CDS S S =+,D B CDS S S =+,22C C DD A B S S S S S +-=-,因此原题就等价于证明2A B S S ≥.由条件C D S S ≥可知A B S S ≥.① 若B =∅,则0B S =,所以2A B S S ≥.② 若B ≠∅,由A B S S ≥可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m , 若1m l +≥,则由第⑵小题,1A l m B S a a S +<≤≤,矛盾. 因为A B =∅,所以l m ≠,所以1l m +≥,211123113332222m m m lA B m a a S S a a a -+-+++=++++=<≤≤≤,即2A B S S >.综上所述,2A B S S ≥,因此2C C DD S S S +≥.数学Ⅱ(附加题)21. [选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,在ABC △中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 是BC 中点. 求证:EDC ABD ∠=∠.【答案】详见解析;【解析】由BD AC ⊥可得90BDC ∠=︒, 由E 是BC 中点可得12DE CE BC ==, 则EDC C ∠=∠,由90BDC ∠=︒可得90C DBC ∠+∠=︒, 由90ABC ∠=︒可得90ABD DBC ∠+∠=︒, 因此ABD C ∠=∠,又EDC C ∠=∠可得EDC ABD ∠=∠.B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵1202⎡⎤=⎢⎥-⎣⎦A ,矩阵B 的逆矩阵111202-⎡⎤-⎢⎥=⎢⎥⎣⎦B ,求矩阵AB . 【答案】51401⎡⎤⎢⎥⎢⎥-⎣⎦;【解析】()11112124221010222--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦B B ,因此151121440210102⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦AB .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长. EDCBA【答案】167; 【解析】直线l0y -=,椭圆C 方程化为普通方程为2214y x +=,联立得22014y y x --=⎨+=⎪⎩,解得10x y =⎧⎨=⎩或17x y ⎧=-⎪⎪⎨⎪=⎪⎩,因此167AB ==.D .[选修4-5:不等式选讲](本小题满分10分)设0a >,13a x -<,23ay -<,求证:24x y a +-<.【答案】详见解析;【解析】由13a x -<可得2223a x -<, 22422233a ax y x y a +--+-<+=≤.[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线()2:20C y px p =>. ⑴ 若直线l 过抛物线C 的焦点,求抛物线C 的方程; ⑵ 已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 上的中点坐标为()2,p p --; ②求p 的取值范围.【答案】⑴28y x =;⑵①见解析;②40,3⎛⎫⎪⎝⎭【解析】⑴:20l x y --=,∴l 与x 轴的交点坐标为()2,0即抛物线的焦点为()2,0,22p∴= 28y x ∴=;⑵① 设点()11,P x y ,()22,Q x y则:21122222y px y px ⎧=⎪⎨=⎪⎩,即21122222y x p y x p ⎧=⎪⎪⎨⎪=⎪⎩,12221212222PQ y y p k y y y y p p -==+- 又,P Q 关于直线l 对称,1PQ k ∴=-即122y y p +=-,122y y p +∴=- 又PQ 中点一定在直线l 上 12122222x x y y p ++∴=+=- ∴线段PQ 上的中点坐标为()2,p p --;②中点坐标为()2,p p --122212122422y y p y y x x p p +=-⎧⎪∴+⎨+==-⎪⎩即1222212284y y p y y p p +=-⎧⎨+=-⎩ 12212244y y py y p p+=-⎧∴⎨=-⎩,即关于222440y py p p ++-=有两个不等根 0∴∆>,()()2224440p p p -->,40,3p ⎛⎫∴∈ ⎪⎝⎭.23. (本小题满分10分)⑴ 求34677C 4C -的值;⑵ 设*,m n ∈N ,n m ≥,求证:()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m n n n m m m n n m +++-++++++++++=+.【答案】⑴0;⑵详见解析;【解析】⑴ 34677C 4C 7204350-=⨯-⨯=;⑵对任意的*m ∈N ,① 当n m =时,左边()1C 1m m m m =+=+,右边()221C 1m m m m ++=+=+,等式成立,② 假设()n k k m =≥时命题成立,即()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m k k k m m m k k m +++-++++++++++=+,当1n k =+时,左边=()()()()()12111C 2C 3C C 1C 2C m m mm m mm m m k k k m m m k k k ++-++++++++++++()()2211C 2C m m k k m k +++=+++,右边()231C m k m ++=+,而()()22321C 1C m m k k m m +++++-+,()()()()()()()()()()()()()()()()13!2!12!1!2!!2!1312!1!1!2!1!2C m k k k m m k m m k m k m k k m m k m k k m k m k +⎡⎤++=+-⎢⎥+-++-⎢⎥⎣⎦+=+⨯+--+⎡⎤⎣⎦+-++=+-+=+因此()()()222131C 2C 1C m m m k k k m k m ++++++++=+,因此左边=右边,因此1n k =+时命题也成立,综合①②可得命题对任意n m ≥均成立.另解:因为()()111C 1C m m k k k m +++=+,所以 左边()()()1111211C 1C 1C m m m m m n m m m ++++++=++++++()()1111211C C C m m m m m n m ++++++=++++又由111C C C k k k n n n ---=+,知2212112111112111221121C C C C C C C C C C C C m m m m m m m m m m m m n n n n n n m m n m m n ++++++++++++++++++++++=+=++==+++=+++,所以,左边=右边.。
绝密★启封前绝密★启封前2016普通高等学校招生全国统一考试(江苏卷)英 语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
框涂黑。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷第Ⅰ卷第一部分第一部分 听力(共两节,满分听力(共两节,满分 30 分)分)做题时,现将答案标在试卷上,录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
到答题卡上。
第一节(共第一节(共 5 小题;每小题小题;每小题 1.5 分,满分分,满分 7.5 分)(略)(略)听下面听下面 5 段对话,每段对话后有一个小题。
从题中所给的 A,B,C 三个选项中选出最佳选项,并标在试卷的相应位置。
并标在试卷的相应位置。
听完每段对话后,听完每段对话后,你都有你都有 10 秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
小题。
每段对话仅读一遍。
例:例: How much is the shirt? A.£A.£ 19.15 B.£ 19.15 B.£ 9.18 C.£ 9.18 C.£ 9.15 9.15 答案是答案是 C 。
1.What are the speakers talking about? A.Having a birthday party. B.Doing some exercise. C.Getting Lydia a gift. 2.What is the woman going to do? A.Help the man. B.Take a bus. C.Get a camera. 3.What does the woman suggest the man do? A.Tell Kate ,s to stop. B. Call Kate ,s frends. C.Stay away from Kate. 4.Where does the conversation probably take place? A.In a wine shop. B. In a supermarket. C. In a restaurant. 5.What doer the woman mean? A.Keep the wondow closed. B.Go out for fresh air, C.Turn on the fan. 第二节第二节 (共15小题;每小题1.5分,满分22.5分)分)听下面5段对话或独白。
绝密★启用前2016年普通高等学校招生全国统一考试(江苏卷)数 学Ⅰ注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,均为非选择题(第1题—第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡上的制定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:样本数据12,,,n x x x ⋅⋅⋅的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑棱柱的体积公式: V =Sh ,其中S 是棱柱的底面积,h 为高.棱锥的体积公式:V13Sh ,其中S 是棱锥的底面积,h 为高.一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合{1,2,3,6},{|23},A B x x =-=-<< 则=A B ________▲________. 2.复数(12i)(3i),z =+- 其中i 为虚数单位,则z 的实部是________▲________.3.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________.5.函数y 的定义域是 ▲ .6.如图是一个算法的流程图,则输出的a 的值是 ▲ .7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ . 9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是 ▲ .10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0 的右焦点,直线2b y = 与椭圆交于B ,C 两点,且90BFC ∠= ,则该椭圆的离心率是 ▲ .(第10题)11.设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则f (5a )的值是 ▲ .12. 已知实数x ,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则x 2+y 2的取值范围是 ▲ .13.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BA CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .14.在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是 ▲ .二、解答题 (本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)在ABC △中,AC =6,4πcos .54BC ,(1)求AB 的长;(2)求πcos(6A)的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥ .求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .17.(本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的四倍.。
2016年普通高等学校招生全国统一考试(江苏卷)数 学Ⅰ注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,均为非选择题(第1题—第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡上的制定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:样本数据12,,,n x x x ⋅⋅⋅的方差()2211ni i s x x n ==-∑,其中11n i i x x n ==∑棱柱的体积公式: V =Sh ,其中S 是棱柱的底面积,h 为高. 棱锥的体积公式:V13Sh ,其中S 是棱锥的底面积,h 为高. 一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合{1,2,3,6},{|23},A B x x =-=-<< 则=AB ________▲________.2.复数(12i)(3i),z =+- 其中i 为虚数单位,则z 的实部是________▲________.3.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________. 5.函数y =232x x -- 的定义域是 ▲ .6.如图是一个算法的流程图,则输出的a 的值是 ▲ .7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ . 9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是 ▲ .10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0 的右焦点,直线2b y = 与椭圆交于B ,C 两点,且90BFC ∠= ,则该椭圆的离心率是 ▲.(第10题)11.设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则f (5a )的值是 ▲ .12. 已知实数x ,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则x 2+y 2的取值范围是 ▲ .13.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BA CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .14.在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是 ▲ .二、解答题 (本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分) 在ABC △中,AC =6,4πcos .54B C ==, (1)求AB 的长; (2)求πcos(6A -)的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥ .求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A BC D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1OO 是正四棱锥的高1PO 的四倍. (1) 若16m,2m,AB PO ==则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m,则当1PO 为多少时,仓库的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4)(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2) 设平行于OA 的直线l 与圆M 相交于B 、C 两点,且BC =OA ,求直线l 的方程;(3) 设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=,求实数t 的取值范围。
绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试(江苏卷)物理第Ⅰ卷一、单项选择题:本题共5小题,每小题3分,共计15分。
每小题只有一个....选项符合题意。
1.一轻质弹簧原长为8cm,在4N的拉力作用下伸长了2cm,弹簧未超出弹性限度。
则该弹簧的劲度系数为A.40 m/N B.40 N/m C.200 m/N D.200 N/m2.有A、B两小球,B的质量为A的两倍。
现将它们以相同速率沿同一方向跑出,不计空气阻力。
图中①为A的运动轨迹,则B的运动轨迹是A.①B.②C.③D.④3.一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示。
容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是A.A点的电场强度比B点的大B.小球表面的电势比容器内表面的低C.B点的电场强度方向与该处内表面垂直D.将检验电荷从A点沿不同路径到B点,电场力所做的功不同4.一自耦变压器如图所示,环形铁芯上只饶有一个线圈,将其接在a、b间作为原线圈。
通过滑动触头取该线圈的一部分,接在c、d间作为副线圈。
在a、b间输入电压为U1的交变电流时,c、d间的输出电压为U2,在将滑动触头从M点顺时针旋转到N点的过程中A.U2>U1,U2降低B.U2>U1,U2升高C.U2<U1,U2降低D.U2<U1,U2升高5.小球从一定高度处由静止下落,与地面碰撞后回到原高度再次下落,重复上述运动,取小球的落地点为原点建立坐标系,竖直向上为正方向,下列速度v和位置x的关系图象中,能描述该过程的是二、多项选择题:本题共4个小题,每小题4分,共计16分,每个选择题有多个选项符合题意。
全部选对的得4分,选对但不全的得2分,选错或不选的得0分。
6.电吉他中电拾音器的基本结构如图所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发生声音,下列说法正确的有A.选用铜质弦,电吉他仍能正常工作B.取走磁体,电吉他将不能正常工作C.增加线圈匝数可以增大线圈中的感应电动势D .磁振动过程中,线圈中的电流方向不断变化7.如图所示,两质量相等的卫星A 、B 绕地球做匀速圆周运动,用R 、T 、E k 、S 分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积。
下列关系式正确的有A .T A >TB B .E k A >E k BC .S A =S BD .3322A BA BR R T T8.如图所示的电路中,电源电动势为12 V ,内阻为2 Ω,四个电阻的阻值已在图中标出。
闭合开关S ,下列说法正确的有 A .路端电压为10 V B .电源的总功率为10 W C .a 、b 间电压的大小为5 VD .a 、b 间用导线连接后,电路的总电流为1 A9.如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面。
若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中 A .桌布对鱼缸摩擦力的方向向左B .鱼缸在桌布上的滑动时间和在桌面上的相等C .若猫增大拉力,鱼缸受到的摩擦力将增大D .若猫减小拉力,鱼缸有可能滑出桌面第II 卷三、简答题:本题分必做题(第10、11题)和选做题(第12题)两部分,共计42分。
请将解答填写在答题卡相应位置。
10.(8分)小明同学通过实验探究某一金属电阻的阻值R 随温度t 的变化关系。
已知该金属电阻在常温下的阻值约10 Ω,R 随t 的升高而增大。
实验电路如图所示,控温箱用以调节金属电阻的温值。
实验时闭合S ,先将开关K 与1端闭合,调节金属电阻的温度,分别记下温度t 1,t 2,…和电流表的相应示数I 1,I 2,….然后将开关K 与2端闭合,调节电阻箱使电流表的实数再次为I 1,I 2,…,分别记下电阻箱相应的示数R 1,R 2,….(1)有以下两电流表,实验电路中应选用 . (A )量程0~100 mA ,内阻约2Ω (B )量程0~0.6 A ,内阻可忽略(2)实验过程中,要将电阻箱的的阻值由9.9 Ω调节至10.0Ω,需旋转图中电阻箱的旋钮“a ”、“b ”、“c ”,正确的操作顺序是 . ①将旋钮a 由“0”旋转至“1” ②将旋钮b 由“9”旋转至“0” ③将旋钮c 由“9”旋转至“0”(3)实验记录的t 和R 的数据见下表:请根据表中数据,在答题卡的方格纸上作出R —t 图象。
由图线求得R 随t 的变化关系为R = Ω.11.(10分)某同学用如题11-1图所示的装置验证机械能守恒定律。
一根细线系住钢球,悬挂着铁架台上,钢球静止与A 点,光电门固定在A 的正下方。
在钢球底部竖直地粘住一片宽带为d 的遮光条。
将钢球拉至不同位置由静止释放,遮光条经过光电门的挡光时间t 时由计时器测出,取dv t作为钢球经过A 点时的速度。
记录钢球每次下落的高度h 和计时器示数t ,计算并比较钢球在释放点和A 点之间的势能变化大小ΔE p 与动能变化大小ΔE k ,就能验证机械能是否守恒。
(1)ΔE p =mgh 计算钢球重力势能变化的大小,式中钢球下落高度h 应测量释放时的钢球球心到 之间的竖直距离。
A .钢球在A 点时的顶端B .钢球在A 点时的球心C .钢球子啊A 点时的底端(2)用ΔE k =212mv 计算钢球动能变化的大小,用刻度尺测量遮光条宽度,示数如题11-2图所示,其读数为 cm .某次测量中,计时器的示数为0.0100 s ,则钢球的速度为v = m/s . (3)下表为该同学的实验结果:p k 理由。
(4)请你提出一条减小上述差异的改进建议。
12.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按A 、B 两小题评分。
A .[选修3−3](12分)(1)在高原地区烧水需要使用高压锅,水烧开后,锅内水面上方充满饱和汽,停止加热,高压锅在密封状态下缓慢冷却,在冷却过程中,锅内水蒸汽的变化情况为 .A .压强变小B .压强不变C .一直是饱和汽D .变为未饱和汽(2)如题12A−1图所示,在斯特林循环的p −V 图象中,一定质量理想气体从状态A 依次经过状态B 、C 和D 后再回到状态A ,整个过程由两个等温和两个等容过程组成B →C 的过程中,单位体积中的气体分子数目 (选填“增大”、“减小”或“不变”),状态A 和状态D 的气体分子热运动速率的统计分布图象如题12A−2图所示,则状态A 对应的是 (选填“①”或“②”)。
(3)如题12A-1图所示,在A →B 和D →A 的过程中,气体放出的热量分别为4J 和30J .在B →C 和C →D 的过程中,气体吸收的热量分别为20J 和12J.求气体完成一次循环对外界所做的功。
B .[选修3—4](12分)(1)一艘太空飞船静止时的长度为30m ,他以0.6c (c 为光速)的速度沿长度方向飞行经过地球,下列说法正确的是 .A .飞船上的观测者测得该飞船的长度小于30mB .地球上的观测者测得该飞船的长度小于30mC .飞船上的观测者测得地球上发来的光信号速度小于cD .地球上的观测者测得飞船上发来的光信号速度小于c(2)杨氏干涉实验证明光的确是一种波,一束单色光投射在两条相距很近的狭缝上,两狭缝就成了两个广元,它们发出的光波满足干涉的必要条件,则两列光的 相同。
如图所示,在这两列光波相遇的区域中,实线表示波峰,虚线表示波谷,如果放置光屏,在 (选填“A”、“B”或“C”)点会出现暗条纹。
(3)在上述杨氏干涉试验中,若单色光的波长λ=5.89×10-7m ,双缝间的距离d=1mm ,双缝到屏的距离l =2m .求第1个亮光条到第11个亮条纹的中心 C .[选修3-5](12分)(1)贝克勒尔在120年前首先发现了天然放射现象,如今原子核的放射性在众多领域中有着广泛应用。
下列属于放射性衰变的是 .A .14140671C N e -→+B .2351131103192053390U +n I Y 2n →++ C .23411120H +H He+n → D .427301213150He +Al P+n →(2)已知光速为c ,普朗克常数为h ,则频率为μ的光子的动量为 .用该频率的光垂直照射平面镜,光被镜面全部垂直反射回去,则光子在反射前后动量改变量的大小为 . (3)几种金属的溢出功W 0见下表:为4.0×10-7~7.6×10-6 m ,普朗克常数h=6.63×10-34J·s .四、计算题:本题共3小题,共计47分。
解答时请写出必要的文字说明、方程式和重要的验算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位。
13.(15分)据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以熟读v =7.7 km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20 m ,地磁场的磁感应强度垂直于v 、MN 所在平面的分量B =1.0×105 T ,将太阳帆板视为导体。
(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g =9.8m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字)。
14.(16分)如图所示,倾角为α的斜面A 被固定在水平面上,细线的一端固定于墙面,另一端跨过斜面顶端的小滑轮与物块B 相连,B 静止在斜面上.滑轮左侧的细线水平,右侧的细线与斜面平行.A 、B 的质量均为m .撤去固定A 的装置后,A 、B 均做直线运动.不计一切摩擦,重力加速度为g.求:(1)A 固定不动时,A 对B 支持力的大小N ; (2)A 滑动的位移为x 时,B 的位移大小s ; (3)A 滑动的位移为x 时的速度大小v x .15.(16分)回旋加速器的工作原理如题15-1图所示,置于真空中的D 形金属盒半径为R ,两盒间狭缝的间距为d ,磁感应强度为B 的匀强磁场与盒面垂直,被加速粒子的质量为m ,电荷量为+q ,加在狭缝间的交变电压如题15-2图所示,电压值的大小为U b 。
周期T =2mqBπ。
一束该粒子在t=0-错误!未找到引用源。
时间内从A 处均匀地飘入狭缝,其初速度视为零。