八年级数学下册综合测试题2
- 格式:doc
- 大小:286.50 KB
- 文档页数:7
八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。
2022-2023学年人教版数学八年级下册期末综合检测卷(全卷三个大题,共24个小题;满分100分,考试用时120分钟)姓名 班级 学号 成绩一、选择题(本大题共12小题.每小题只有一个正确选项,每小题3分,共36分)1.下列条件不能判定四边形是平行四边形的是( ) A .,B .,C .,D .,2.下列各数组是勾股数的是( )A .1、2、3B .6、8、10C .5、11、13D .2、1.5、2.53.如图所示,在中,对角线交于点O ,下列式子中一定成立的是( )A .B .C .D .4.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如图所示,下列结论正确的是:()A .爷爷比小强先出发20分钟B .小强爬山的速度是爷爷的2倍C .表示的是爷爷爬山的情况,表示的是小强爬山的情况D .山的高度是480米5.如图,中,,于点D ,,,则的长为()A .5B.C .D .26.为调查某班学生每天使用零花钱的情况,小丽随机调查了20名同学,结果如表:ABCD AB CD =AD BC =A C ∠=∠B D ∠=∠AB CD P AD BC=AB CD P B D∠=∠ABCD Y AC BD 、AC BD ⊥OA OC =AC BD =AO OD =1l 2l ABC V 90ACB ∠=︒CD AB ⊥3AC =4BC =CD 52125每天使用零花钱(单位:元) 10 15 20 25 30 人数13655则这20名同学每天使用的零花钱的众数是( ) A .10B .15C .20D .307.若直线y=+n 与y =mx ﹣1相交于点(1,﹣2),则()A .m =,n =﹣B .m =,n =﹣1C .m =﹣1,n =﹣D .m =﹣3,n =﹣8.如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=70°,则∠EDC 的大小为( )A .10°B .15°C .20°D .30°9.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连结EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( )A .AB=BEB .CE ⊥DEC .∠ADB=90°D .BE ⊥AB10.如图,正方形的边长为1,点E 是边AD 上一点,且,点F 是边上一个动点,连接EF ,以为边作菱形,且,连接,点P 为的中点,在点F 从点A 运动到点B 的过程中,点运动所走的路径长为( )A .B .1CD .11.如图,在中,,,平分,对角线相交于点O ,连接,下列结论中正确的有()①;②;③;④;⑤2x1252125232ABCD 14AE AD =AB EF EFGH 60EFG ∠=︒DG DG P 1214ABCD Y 120ABC ∠=︒2BC AB =DE ADC ∠AC BD 、OE 30ADB ∠=︒2AB OE =DE AB =OD CD =ABCD S AB BD=⋅YA .2个B .3个C .4个D .5个12.如图,在菱形中,,,点P 是菱形内部一点,且满足,则的最小值是( )A .B .C .6D .二、填空题(本大题共4小题,每小题2分,共8分)13.把中根号外的移入根号内得 . 14.如图,在菱形中,点P 在对角线上,,垂足为E ,,则点P 到的距离是 .15.如图,在△ABC 中,,分别以点A 、点B为圆心,大于的长为半径画弧交于两点,过这两点的直线交BC 于点D ,连接AD .若cm ,cm ,则△ACD 的周长为 cm .16.如图,在中,,P 为边上一动点,于点E ,于F ,则的最小值为 .ABCD 6AB =120A ∠=︒16PCD ABCDS S =V 菱形PC PD +(a -(1)a -ABCD AC PE AB ⊥5PE =AD 90C ∠=︒12AB 5AB =3AC =ABC V 51213AB AC BC ===,,BC PE AB ⊥PF AC ⊥EF三、解答题(本答题共8小题,共56分)17.计算: (1(2)18.文明其精神,野蛮其体魄.体育课上张老师对全班学生进行了体能测试,从跑步、立定跳远、跳绳三个方面进行了量化考核.小字和小彬的各项成绩如下表(百分制):姓名跑步立定跳远跳绳小宇859590小彬958688若跑步、立定跳远、跳绳的成绩按 确定体能综合成绩,则小宇和小彬谁的体能综合成绩高?请通过计算说明理由.19.要把宣传牌,装订在教室的黑板上面(如图所示).一架梯子(米)靠在宣传牌,底端落在地板E 处,然后移动的梯子使顶端落在宣传牌的B 处,而底端E 向外移到了1米到C 处(米).测量得米.求宣传牌的高度(结果用根号表示).20.如图,在四边形中,,求四边形的面积.()()11-+433::()AB 5AE =()AB A ()AB 1CE =4BM =()AB ABCD 3590AB AD BC CD B ====∠=o ,,ABCD21.如图,在平行四边形中,对角线,交于点,过点交于点,交于点.求证:.22.如图,在矩形ABCD 中, , ,菱形 的三个顶点 分别在矩形 的边 上, , ,求证:四边形为正方形.23.如图,在平面直角坐标系中,函数的图像分别交x 轴,y 轴于A ,B 两点,过点A 的直线交y 轴正半轴于点M ,且BM=2MO .在平面直角坐标系内存在点C ,使得以A ,B ,M ,C 为顶点的四边形是平行四边形,请你画出图形,确定点C的坐标.ABCD AC BD O EF O AD E BC F OE OF =6AD =8DC =EFGH ,,E G H ABCD ,,AB CD DA 2AH =2DG =EFGH xOy 26y x =-+24.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.。
浙教版八年级数学下册第2章综合素质评价一、选择题(每题3分,共30分)1.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=1C.x2=-4x D.x2+y=42.一元二次方程x(x-2)=0的解是()A.x=2 B.x=0C.x1=0,x2=2 D.x1=0,x2=-2 3.【2022·龙港期中】用配方法解方程x2+4x-3=0,下列变形正确的是() A.(x+2)2=1 B.(x+2)2=7C.(x-2)2=1 D.(x-2)2=74.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为() A.-2 B.2 C.-4 D.45.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x 个队参赛,根据题意,可列方程为()A.12x(x-1)=36 B.12x(x+1)=36C.x(x-1)=36 D.x(x+1)=366.如果关于x的一元二次方程(m-1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是()A.m≤2 B.m<2C.m≤2且m≠1 D.m<2且m≠17.一个等腰三角形的底边长是5,腰长是一元二次方程x2-6x+8=0的一个根,则此三角形的周长是()A.12 B.13 C.14 D.12或14 8.已知关于x的方程x2-(2m-1)x+m2=0的两实数根为x1,x2,若(x1+1)(x2+1)=3,则m的值为()A.-3 B.-1 C.-3或3 D.-1或3 9.我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=-3C.x1=-1,x2=3 D.x1=-1,x2=-310.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:如图,先画Rt△ABC,使∠ACB=90°,BC=a2,AC=b,再在斜边AB上截取BD=a2,则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长二、填空题(每题4分,共24分)11.方程2x2+1=3x的解为________.12.以-2和3为根且二次项系数为1的一元二次方程是________.13.若一元二次方程2x2-4x+m=0有两个相等的实数根,则m=________.14.【2022·杭州】某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x>0),则x=________(用百分数表示).15.【2022·成都】若一个直角三角形两条直角边的长分别是一元二次方程x2-6x+4=0的两个实数根,则这个直角三角形斜边的长是________.16.《代数学》中记载,形如x2+8x=33的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7-4=3.”小聪按此方法解关于x的方程x2+10x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解是________.三、解答题(共66分)17.(6分)解下列方程:(1)x2-6x-3=0; (2)3x(x-1)=2(1-x).18.(6分)【2022·南充】已知关于x的一元二次方程x2+3x+k-2=0有实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=-1,求k的值.19.(6分)定义新运算“★”如下:当a≥b时,a★b=ab+b;当a<b时,a★b=ab -a.若(2x-1)★(x+2)=0,求x的值.20.(8分)已知a是不等式5(m-2)+8<6(m-1)+7的最小整数解,请用配方法解关于x的方程x2+2ax+a+1=0.21.(8分)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16 m,宽(AB)9 m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为112 m2,则小路的宽应为多少?22.(10分)某水果店销售一种新鲜水果,平均每天可售出120箱,每箱盈利60元,为了扩大销售减少库存,水果店决定采取适当的降价措施,经调查发现,如果每箱水果每降价5元,水果店平均每天可多售出20箱.(1)当每箱水果降价10元时,每箱利润________元,平均每天可售出________箱;(2)若销售该种水果平均每天盈利8 100元,则每箱应降价多少元?23.(10分)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量比3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1 000元,5月份再生纸产量比上月增加m%,5月份每吨再生纸的利润比上月增加m2%,则5月份再生纸项目月利润达到66万元.求m的值.24.(12分)阅读材料:各类方程的解法.求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解.类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解.由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x -2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=__________,x3=________;(2)拓展:用“转化”的思想求方程2x+3=x的解;(3)应用:如图,已知长方形草坪ABCD的长AD=8 m,宽AB=3 m,小华把一根长为10 m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD,DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.答案一、1.C 2.C 3.B 4.B 5.A 6.D 7.B 8.A 提示:由题意可知,⎩⎨⎧x 1+x 2=2m -1,x 1·x 2=m 2,∵(x 1+1)(x 2+1)=x 1·x 2+x 1+x 2+1=3, ∴m 2+(2m -1)+1=3, 解得m =-3或m =1.又∵(2m -1)2-4m 2≥0,即m ≤14, ∴m =-3.9.D 提示:根据题意,得2x +3=1或2x +3=-3,解得x 1=-1,x 2=-3. 10.B 提示:用求根公式求得x 1=-4b 2+a 2-a 2,x 2=4b 2+a 2-a 2.∵∠ACB =90°,BC =a2,AC =b , ∴AB =b 2+a 24,∴AD =b 2+a 24-a2=4b 2+a 2-a 2,∴AD 的长就是方程的一个正根. 二、11.x 1=1,x 2=12 12.(x +2)(x -3)=0 13.2 14.30%15.2 7 提示:∵一个直角三角形两条直角边的长分别是一元二次方程x 2-6x+4=0的两个实数根,∴由公式法解一元二次方程x 2-6x +4=0可得x =6±36-162=6±2 52=3±5,∴根据勾股定理可得直角三角形斜边的长是(3+5)2+(3-5)2=28=2 7.16.-5+5 3 提示:∵阴影部分的面积+四个小正方形的面积=大正方形的面积,∴50+4×⎝ ⎛⎭⎪⎫522=⎝ ⎛⎭⎪⎫x +2×522,即75=(x +5)2, 解方程得x =-5±5 3. ∴方程的正数解为-5+5 3. 三、17.解:(1)移项,得x 2-6x =3,配方,得x 2-6x +9=12, 即(x -3)2=12, ∴x -3=±2 3,∴x 1=2 3+3,x 2=3-2 3. (2)移项,得3x (x -1)-2(1-x )=0, 左边提公因式,得(x -1)(3x +2)=0, ∴x -1=0或3x +2=0, 解得x 1=1,x 2=-23.18.解:(1)∵一元二次方程x 2+3x +k -2=0有实数根,∴b 2-4ac ≥0,即32-4(k -2)≥0, 解得k ≤174.(2)∵方程的两个实数根分别为x 1,x 2, ∴x 1+x 2=-3,x 1x 2=k -2. ∵(x 1+1)(x 2+1)=-1, ∴x 1x 2+x 1+x 2+1=-1, ∴k -2-3+1=-1,解得k =3. 19.解:当2x -1≥x +2,即x ≥3时,(2x -1)★(x +2)=(2x -1)(x +2)+x +2=0, 解得x =0或x =-2.∵x≥3,∴x=0和x=-2均舍去;当2x-1<x+2,即x<3时,(2x-1)★(x+2)=(2x-1)(x+2)-(2x-1)=0,解得x=-1或x=1 2.综上,x的值为-1或1 2.20.解:解不等式5(m-2)+8<6(m-1)+7,得m>-3,∴最小整数解为-2,∴a=-2.将a=-2代入方程x2+2ax+a+1=0,得x2-4x-1=0,配方,得(x-2)2=5,解得x1=2+5,x2=2- 5.21.解:设小路的宽为x m,根据题意得(16-2x)(9-x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽应为1 m.22.解:(1)50;160(2)设每箱降价5x元,由题意得(60-5x)(120+20x)=8 100.解得x1=x2=3,3×5=15(元).答:每箱应降价15元.23.解:(1)设3月份再生纸产量为x吨,则4月份的再生纸产量为(2x-100)吨,由题意得x+2x-100=800,解得x=300,∴2x-100=500.答:4月份再生纸的产量为500吨.(2)由题意得500(1+m%)·1 000(1+m2%)=660 000,解得m%=20%或m%=-320%(不合题意,舍去),∴m=20.24.解:(1)-2;1(2)2x+3=x,方程的两边平方,得2x+3=x2,即x2-2x-3=0,解得x1=3,x2=-1,当x=-1时,2x+3=1=1≠-1,∴x=-1不是原方程的解.当x=3时,2x+3=9=3,∴原方程的解是x=3.(3)∵四边形ABCD是长方形,∴∠A=∠D=90°,AB=CD=3 m.设AP=x m,则PD=(8-x)m.∵BP+CP=10 m,BP=AP2+AB2,CP=CD2+PD2.∴9+x2+(8-x)2+9=10.∴(8-x)2+9=10-9+x2.两边平方,得(8-x)2+9=100-20 9+x2+9+x2.整理,得5 x2+9=4x+9.两边平方并整理,得x2-8x+16=0.即(x-4)2=0,∴x=4.经检验,x=4是方程的解.答:AP的长为4 m.。
期末素养综合测试(二)(满分120分,限时100分钟)一、选择题(每小题3分,共30分)1.(2022广东广州市华侨外国语学校月考)由下列长度组成的各组线段中,不能组成直角三角形的是()A.cm,cm,2 cmB.1 cm,2 cm,cmC.cm,2 cm,cmD.cm,cm,1 cm2.下列计算正确的是()A.+=B.2-2=C.(-)×=-=3-2=1D.==23.(2022山东济南历城二中期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,下列说法正确的是()A.∠ABD=∠CBDB.∠BAD=2∠ABCC.OB=ODD.OD=AD 4.(2021陕西中考)在平面直角坐标系中,若将一次函数y=2x+m-1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.-5B.5C.-6D.65.七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,现在从七年级800名学生中选出20名学生统计各自家庭一个月的节水情况如下表:节水量(m3)0.20.250.30.40.5家庭数(户)24482那么这组数据的众数和平均数分别是()A.0.4和0.34B.0.4和0.3C.4和4D.0.25和0.36.下列有关一次函数y=-3x+2的说法中,错误的是()A.y的值随着x值的增大而减小B.函数图象与y轴的交点坐标为(0,2)C.当x>0时,y>2D.函数图象经过第一、二、四象限7.【数学文化】在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB为1尺,将它往前水平推送10尺时,即A'C=10尺,秋千的踏板离地距离A'D 就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA 的长为()A.13.5尺B.14尺C.14.5尺D.15尺8.【转化思想】(2023山东滨州期末)如图,在Rt△ABC中,∠BAC=90°,AB=5, AC=12,点D是BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为()A. B.13 C. D.9.(2023湖北武汉调研)小海鸥从家出发,步行到离家a米的公园散步,速度为50米/分钟,6分钟后咩咩也从家出发沿着同一路线骑自行车到公园,咩咩到达公园后立即以原速返回家中,两人离家的距离y(米)与小海鸥出发的时间x(分钟)的函数关系如图所示.小海鸥出发多长时间与咩咩第二次相遇() A.9.5分钟 B.9.6分钟C.9.8分钟D.10分钟10.(2022河南郑州模拟)如图,正方形ABCD中,AB=12,点E在边CD上,将△ADE 沿AE翻折至△AFE,延长EF交边BC于点G,且BG=CG,连接AG、CF.下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是()A.2B.3C.4D.5二、填空题(每小题4分,共32分)11.已知x为正整数,写出一个使在实数范围内没有意义的x值:.12.(2021广东广州市华侨外国语学校期末)在Rt△ABC中,∠C=90°,若AB-AC=2,BC=8,则AB的长是.13.(2021北京中考)有甲、乙两组数据,如下表所示:甲1112131415乙1212131414甲、乙两组数据的方差分别为、,则(填“>”“<”或“=”).14.若0<a<1,则化简+的结果是.15.(2023北京丰台期末)如图,四边形ABCD 是菱形,AC、BD交于点O,DH⊥AB 于H,连接OH,若AC=8,OH=3,则DH=.16.(2023山东枣庄二模)如图,直线y=x+4与x轴交于点A,与y轴交于点B,点D 为OB的中点,▱OCDE的顶点C在x轴上,顶点E在直线AB上,则▱OCDE的面积为.17.【新考向·代数推理】观察下列各式:=1+=1+,=1+=1+,=1+=1+,……请利用你发现的规律计算:+++…+=. 18.如图,有一张矩形纸条ABCD,AB=10 cm,BC=3 cm,点M,N分别在边AB,CD 上,CN=1 cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'处.在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为cm.三、解答题(共58分)19.[含评分细则](6分)计算:(1)2+3-×;(2)÷+|1-|-.20.[含评分细则](6分)如图,网格是由小正方形拼成的,每个小正方形的边长都为1,四边形ABCD的四个点都在格点上.(1)四边形ABCD的面积为,周长为;(2)求证:∠BAD是直角.21.[含评分细则](8分)【课本再现】已知:如图1,在△ABC中,D,E分别是AB,AC的中点.求证:DE∥BC,且DE=BC.(1)下面是证明三角形中位线定理的两种添加辅助线的方法,选择其中一种,完成证明.方法一:如图2,过点C作AB的平行线交DE的延长线于点F.方法二:如图3,过点E作AB的平行线交BC于点N,过点A作BC的平行线交NE的延长线于点M.【知识应用】(2)如图4,在四边形ABCD中,AD∥BC,AD≠BC,E,F分别为AB,CD的中点,判断线段EF,AD,BC之间的数量关系,并说明理由. 22.[含评分细则](2023江西适应性考试)(8分)“双减”形势下,各地要求初中学生作业量不超过90分钟,其中作业量应以学习程度中等的学生完成作业所需时间为基准.某校推行作业时间公示制度,数学小组从七、八年级各随机抽取20名同学,将他们每天的作业完成时间(单位:分钟)记录下来,并进行统计、分析,共分为四个时段(x表示作业完成时间,x取整数):A.60<x≤70;B.70<x≤80;C.80<x≤90;D.90<x≤100.过程如下.【收集数据】七年级:80,70,80,95,65,100,90,85,85,80,95,75,80,90,70,80,95,75,100,90;八年级:85,80,95,100,90,95,85,70,75,85,90,90,70,90,100,80,80,90,95,75.【整理数据及分析数据】七、八年级抽取的学生每天的作业完成时间统计表统计量年级平均数众数中位数方差七年级84a82.599八年级8690b79(1)补全条形统计图.(2)填空:a=,b=.(3)根据以上数据,你认为该校七、八年级中哪个年级的作业量布置得更合理?并说明理由.(4)若该校七、八年级共1 000名学生,请估计每天的作业完成时间在90分钟以内(含90分钟)的学生人数.23.[含评分细则]【新独家原创】(8分)【知识回顾】(1)通过学习我们知道一次函数y=5-x和y=2x-1的图象如图1所示,所以方程组的解为.【知识探究】(2)小友结合学习一次函数的经验,对函数y=-2|x|+5的图象进行了探究.下面是小友的探究过程:①列表:把下表补充完整.x…-4-3-2-101234…y…-31353-1-3…②描点、连线:在给出的平面直角坐标系中描出以表中各对对应值为坐标的点,画出该函数的图象. 【知识应用】(3)利用一次函数与二元一次方程(组)的关系,结合函数图象可知,方程组的解为.24.[含评分细则](2023广西南宁师大附中期末)(10分)如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)判断四边形ODEC的形状,并说明理由;(2)连接AE,交CD于点F,当∠ADB=60°,AD=2时,求AE的长.25.[含评分细则](2023江苏南通二模)(12分)某水果店销售甲、乙两种苹果,售价分别为25元/kg、20元/kg.甲种苹果的进货总金额y(单位:元)与甲种苹果的进货量x(单位:kg)之间的关系如图所示,乙种苹果的进价为14元/kg.(1)求甲种苹果进货总金额y(单位:元)与甲种苹果的进货量x(单位:kg)之间的函数解析式,并写出x的取值范围;(2)若该水果店购进甲、乙两种苹果共200 kg,并能全部售出,其中甲种苹果的进货量不低于50 kg,且不高于100 kg.①求销售两种苹果所获总利润w(单位:元)与甲种苹果进货量x(单位:kg)之间的函数关系式,并给出总利润最大的进货方案;②为回馈客户,水果店决定在总利润最大的前提下对两种苹果进行让利销售,甲、乙两种苹果的售价均降低a元/kg(a>0),若要保证所获总利润不低于940元,求a的取值范围.5年中考3年模拟·初中数学·人教版·八年级下册答案全解全析1.C+=22,12+=22,+22≠,+12=,所以选项A 、B 、D 中的三条线段能组成直角三角形.故选C.2.D与不能合并,故A 不符合题意;2与-2不能合并,故B不符合题意;(-)×=-=,故C不符合题意;==2,故D符合题意.故选D.3.C∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.故选C. 4.A将一次函数y=2x+m-1的图象向左平移3个单位后,得到y=2(x+3)+m-1,把(0,0)代入得0=6+m-1,解得m=-5.故选A.5.A∵节水量为0.4 m3的一共有8户家庭,户数最多,∴众数为0.4,平均数为×(2×0.2+4×0.25+4×0.3+8×0.4+2×0.5)=0.34,故选A.6.C∵k=-3<0,∴y的值随着x值的增大而减小,故A说法正确;令x=0,得y=2,∴函数图象与y轴的交点坐标为(0,2),故B说法正确;当x>0时,y<2,故C说法错误;∵k=-3<0,b=2>0,∴函数图象经过第一、二、四象限,故D说法正确.故选C. 7.C由题意得OA=OA',∠A'CO=90°,BC=A'D=5尺,设绳索OA的长为x尺,则OC=OA+AB-BC=(x+1-5)尺,OA'=OA=x尺,在Rt△OA'C 中,由勾股定理得102+(x+1-5)2=x2,解得x=14.5,故绳索OA的长为14.5尺.故选C.8.C连接AD(图略),∵∠BAC=90°,且BA=5,AC=12,∴BC==13,∵DM⊥AB,DN ⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时△ABC的面积=AB·AC=BC·AD,∴AD==,∴MN的最小值为.故选C.9.B由题图可得小海鸥家到公园的路程为50×12=600(米),∴a=600,设点C的坐标为(m,n),由题意得m=6+=9,n=a=600,∴点C的坐标是(9,600),由题图得点D的坐标是(12,0),设CD所在直线的解析式为y=kx+b(k≠0),∴解得∴y=-200x+2 400,由题意可知OA所在直线的解析式为y=50x,联立解得∴小海鸥出发9.6分钟与咩咩第二次相遇.故选B.10.D∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠GCE=∠D= ∠BAD=90°,由翻折得AF=AD,∠AFE=∠D=90°,∴∠AFG=90°=∠B,AB=AF,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),故①正确;∴∠BAG=∠FAG,BG=GF,由翻折得∠DAE=∠FAE,∴∠EAG=∠BAD=45°,故②正确;∵AB=12,BG=CG,∴GF=BG=CG=6,由翻折得EF=DE,设DE=EF=x,则CE=12-x,GE=x+6,在直角△ECG中,根据勾股定理得CE2+CG2=GE2,即(12-x)2+62 =(x+6)2,解得x=4,∴DE=4,CE=8,∴CE=2DE,故③正确;∵CG=GF,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∵∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,∴∠AGB=∠GCF,∴AG ∥CF,故④正确;∵GF=6,EF=4,∴S△GFC∶S △FCE=6∶4=3∶2,∵S△GCE=GC·CE=×6×8=24,∴S△GFC=×24=,故⑤正确.故选D.11.答案1(答案也可以是2或3) 解析要使在实数范围内没有意义,则x-4<0,∴x<4,∵x为正整数,∴x的值是1,2,3(任意写一个即可).12.答案17解析∵在Rt△ABC中,∠C=90°,AB-AC=2,BC=8,∴AC2+BC2=AB2,即(AB-2)2+82=AB 2,解得AB=17.13.答案>解析=×(11+12+13+14+15)=13,=×[(11-13)2+(12-13)2+(13-13)2+(14-13)2+(15-13)2]=2,=×(12+12+13+14+14)=13,=×[(12-13)2+(12-13)2+(13-13)2+(14-13)2+(14-13)2]=0.8,∵2>0.8,∴>.14.答案解析∵+4=a 2+2+=,-4=a2-2+=,∴原式=+,∵0<a<1,∴a+>0,a-=<0,∴原式=+=a+-=.15.答案解析∵四边形ABCD是菱形,∴OD=OB,OA=OC=AC=4,∠AOB=90°,∵DH⊥AB,∴OH=BD=OB,∴BO=3,BD=6,∴S菱形ABCD=×6×8=24,在Rt△AOB 中,AB===5,∴AB·DH=×24=12,∴×5DH=12,∴DH=.16.答案 4解析∵直线y=x+4与x轴交于点A,与y轴交于点B,∴当x=0时,y=4,当y=0时,x=-4,∴A(-4,0),B(0,4),∴OA=OB=4,∵点D 为OB的中点,∴OD=OB=2,∴D(0,2),∵四边形OCDE是平行四边形,∴DE∥AC,把y=2代入y=x+4,得x=-2,∴E(-2,2),∴DE=2,∴S▱OCDE=OD·DE=2×2=4.17.答案2021解析由题意可得, 原式=1++1++1++…+1+=2 021+1-=2 021.18.答案(-1)解析如图,当点M与点A重合时,由折叠可知∠NAB=∠NAE,∵AB∥CD,∴∠BAN=∠ENA,∴∠EAN=∠ENA,∴AE=EN,设AE=EN=x cm,则DE=(10-1-x)cm,在Rt△ADE中,由勾股定理得x2=32+(10-1-x)2,解得x=5,∴DE=10-1-5=4(cm).如图,当点M运动到MB'⊥AB 时,DE'的值最大,此时DE'=10-1-3=6(cm).如图,当点M运动到点B'落在CD 上时,由勾股定理得NB'===(cm),此时DB'(即DE″)=10-1-=(9-)cm.∴点E的运动轨迹为E →E'→E″,运动路径长=6-4+6-(9-)=(-1)cm.19.解析(1)原式=4+2-=4+2-2=4.3分(2)原式=+-1-=4+-1-2+=1+2.6分20.解析(1)10.5;4+.2分提示:由题意得,四边形ABCD 的面积=4×5-×2×1-×5×1-×2×4-×(1+3)×1=20-1-2.5-4-2=10.5.由题图可得CD2=12+22=5,AD2=12+22=5,BC2=12+52=26,AB 2=22+42=20, ∴CD=,AD=,BC=,AB==2,∴四边形ABCD的周长=CD+AD+BC+AB=4+.(2)证明:如图,连接BD,由题意得,BD2=42+32=25,∵AD2+AB2=5+20=25,∴BD2=AD2+AB2,4分∴△BAD是直角三角形,∴∠BAD是直角.6分21.解析(1)任选一个方法证明即可.(方法一)证明:∵AB∥CF,∴∠DAE=∠FCE.∵E是AC的中点,∴AE=CE.在△ADE与△CFE中,∴△ADE≌△CFE(ASA),∴AD=CF,DE=FE=DF.∵D是AB的中点,∴BD=AD,∴BD=CF.∴四边形DBCF是平行四边形,∴DF∥BC,DF=BC,∴DE∥BC,DE=BC.4分(方法二)证明:∵AM∥BC,∴∠MAC=∠BCA.在△AEM与△CEN中,∴△AEM≌△CEN(ASA),∴AM=CN,EN=EM. ∵AB∥MN,AM∥BC,∴四边形ABNM是平行四边形,∴AM=BN,AB=MN.∵AM=NC,∴BN=BC.∵D是AB的中点,∴BD=AB=MN=EN,∴四边形DBNE是平行四边形,∴DE=BN=BC,DE∥BC.4分(2)EF=(BC+AD).5分理由:如图,连接AF并延长交BC的延长线于点G.∵AD∥BC,∴∠DAF=∠G,∠D=∠FCG.又∵DF=FC,∴△ADF≌△GCF(AAS).∴AD=CG,AF=FG.7分又∵AE=EB.∴EF=BG=(BC+CG)=(BC+AD).8分22.解析(1)补全统计图如下: 2分(2)80;87.5.4分提示:将所有数据从低到高排列.七年级:65,70,70,75,75,80,80,80,80,80,85,85,90,90,90,95,95,95,100,100,八年级:70,70,75,75,80,80,80,85,85,85,90,90,90,90,90,95,95,95,100,100,∴a=80,b==87.5.(3)(答案不唯一)例如:①七年级的作业量布置得更合理.理由:七年级学生每天完成作业的平均时间低于八年级学生每天完成作业的平均时间.②七年级的作业量布置得更合理.理由:七年级大多数学生每天完成作业的时间低于八年级大多数学生每天完成作业的时间.③七年级的作业量布置得更合理.理由:七年级的一大半学生每天完成作业的时间低于八年级的一大半学生每天完成作业的时间.④八年级的作业量布置得更合理.理由:八年级学生每天完成作业的时间波动小些.6分(4)1 000×=1 000×=750(人).∴每天的作业完成时间在90分钟以内(含90分钟)的学生约有750人.8分23.解析(1)2分(2)①补全表格如下:4分x…-4-3-2-101234…y …-3-113531-1-3…②描点、连线,画出函数图象如图1所示.6分(3)或8分提示:如图2,画出一次函数y=x+2的图象,由图可知,方程组的解为或24.解析(1)四边形ODEC是矩形.1分理由:∵CE∥BD,DE∥AC,∴四边形ODEC 是平行四边形,3分∵四边形ABCD是菱形,∴AC ⊥BD,∴∠DOC=90°,∴四边形ODEC是矩形.5分(2)∵Rt△AOD中,∠ADB=60°,∴∠OAD=30°,∴OD=AD=1,∴AO==,∴AC=2,8分∵四边形ODEC 是矩形,∴EC=OD=1,∠ACE=90°,∴AE==.10分25.解析(1)当0≤x≤60时,y=x=20x,当60<x≤120时,y=1 200+(x-60)=18x+120,∴y=3分(2)①当50≤x≤60时,w=25x+20(200-x)-20x-14(200-x)=-x+1 200,∵-1<0,∴当x=50时,w取得最大值,为-50+1 200=1 150,此时购进甲种苹果50 kg,乙种苹果150 kg,5分当60<x≤100时,w=25x+20(200-x)-(18x+120)-14(200-x)=x+1 080,∵1>0,∴当x=100时,w取得最大值,为100+1 080=1 180,此时购进甲种苹果100 kg,乙种苹果100 kg,7分∵1 180>1 150,∴购进甲种苹果100 kg,乙种苹果100 kg时,总利润最大.9分②由①知,x=100时,总利润最大,∴(25-a)×100+(20-a)(200-100)-(18×100+120)-14×(200-100)≥940,10分解得a≤1.2,∴a的取值范围是0<a≤1.2.12分。
2021八年级下册反比例函数与几何综合解答题专题练习(2)1.如图,在平面直角坐标系中,四边形ABCD 是平行四边形,点A 、B 在x 轴上,点C 、D 在第二象限,点M 是BC 中点.已知AB=6,AD=8,∠DAB=60°,点B 的坐标为(-6,0).(1)求点D 和点M 的坐标;(2)如图∠,将□ABCD 沿着x 轴向右平移a 个单位长度,点D 的对应点D 和点M 的对应点M '恰好在反比例函数ky x=(x>0)的图像上,请求出a 的值以及这个反比例函数的表达式; (3)如图∠,在(2)的条件下,过点M ,M '作直线l ,点P 是直线l 上的动点,点Q 是平面内任意一点,若以,B C '',P 、Q 为顶点的四边形是矩形,请直接写出所有满足条件的点Q 的坐标. 2.如图,正方形AOCB 的边长为4,反比例函数的图象过点()3,4E .(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC 交于点D ,直线12y x b =-+过点D ,与线段AB 相交于点F ,求点F 的坐标;(3)连接,OF OE ,探究AOF ∠与EOC ∠的数量关系,并证明.3.阅读理解:己知:对于实数a≥0,b≥0,满足 a = b 时,等号成立,此时取得代数式a+b 的最小值.根据以上结论,解决以下问题:(1)拓展:若a>0,当且仅当a=___时,a+1a有最小值,最小值为____; (2)应用:∠如图1,已知点P 为双曲线y=4x(x>0)上的任意一点,过点P 作PA∠x 轴,PB 丄y 轴,四边形OAPB 的周长取得最小值时,求出点P 的坐标以及周长最小值: ∠如图2,已知点Q 是双曲线y=8x(x>0)上一点,且PQ∠x 轴, 连接OP 、OQ ,当线段OP 取得最小值时,在平面内取一点C ,使得以0、P 、Q 、C 为顶点的四边形是平行四边形,求出点C 的坐标.4.在平面直角坐标系第一象限中,已知点A 坐标为()1,0,点D 坐标为()1,3,点G 坐标为()1,1,动点E 从点G 出发,以每秒1个单位长度的速度匀速向点D 方向运动,与此同时,x 轴上动点B 从点A 出发,以相同的速度向右运动, 两动点运动时间为:(02)t t <<, 以AD AB 、分别为边作矩形ABCD , 过点E 作双曲线交线段BC 于点F ,作CD 中点M ,连接BE EF EM FM 、、、 (1)当1t =时,求点F 的坐标.(2)若BE 平分AEF ∠, 则t 的值为多少? (3)若EMF ∠为直角, 则t 的值为多少?5.如图,在直角坐标系xOy 中,矩形ABCD 的DC 边在x 轴上,D 点坐标为(6,0)-边AB 、AD 的长分别为3、8,E 是BC 的中点,反比例函数ky x=的图象经过点E ,与AD 边交于点F .(1)求k 的值及经过A 、E 两点的一次函数的表达式;(2)若x 轴上有一点P ,使PE PF +的值最小,试求出点P 的坐标;(3)在(2)的条件下,连接EF 、PE 、PF ,在直线AE 上找一点Q ,使得QEF PEF S S ∆∆=直接写出符合条件的Q 点坐标.6.如图,在平面直角坐标系中,直线12y x =-与反比例函数ky x=的图象交于A ,B 两点(点A 在点B 左侧),已知A 点的纵坐标是2.(1)求反比例函数的表达式;(2)点A 上方的双曲线上有一点C ,如果ABC 的面积为30,直线BC 的函数表达式.7.如图,双曲线y 1=1k x与直线y 2=2x k 的图象交于A 、B 两点.已知点A 的坐标为(4,1),点P (a ,b)是双曲线y 1=1k x上的任意一点,且0<a <4. (1)分别求出y 1、y 2的函数表达式;(2)连接PA 、PB ,得到∠PAB ,若4a =b ,求三角形ABP 的面积; (3)当点P 在双曲线y 1=1k x上运动时,设PB 交x 轴于点E ,延长PA 交x 轴于点F ,判断PE 与PF 的大小关系,并说明理由.8.已知边长为4的正方形ABCD ,顶点A 与坐标原点重合,一反比例函数图象过顶点C ,动点P 以每秒1个单位速度从点A 出发沿AB 方向运动,动点Q 同时以每秒4个单位速度从D 点出发沿正方形的边DC→CB→BA 方向顺时针折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .∠求出该反比例函数解析式;∠连接PD ,当以点Q 和正方形的某两个顶点组成的三角形和∠PAD 全等时,求t 值;9.如图,在平面直角坐标系中有Rt ABC ,90BAC ∠=︒,AB AC =,(3,0)A -,(0,1)B ,(,)C m n . (1)请直接写出C 点坐标.(2)将ABC 沿x 轴的正方向平移t 个单位,'B 、'C 两点的对应点、正好落在反比例函数ky x=在第一象限内图象上.请求出t ,k 的值.(3)在(2)的条件下,问是否存x轴上的点M和反比例函数kyx图象上的点N,使得以'B、'C,M,N为顶点的四边形构成平行四边形?如果存在,请求出所有满足条件的点M和点N的坐标;如果不存在,请说明理由.10.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.11.如图,A、B是双曲线y=kx上的两点,过A点作AC∠x轴,交OB于D点,垂足为C,过B点作BE∠x轴,垂足为E.若∠ADO的面积为1,D为OB的中点,(1)求四边形DCEB的面积.(2)求k 的值.12.如图,在∠ABC 中,AC=BC ,AB∠x 轴于A ,反比例函数y=kx(x >0)的图象经过点C ,交AB 于点D ,已知AB=4,BC=52. (1)若OA=4,求k 的值.(2)连接OC ,若AD=AC ,求CO 的长.13.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点.(1)求一次函数的解析式; (2)根据图象直接写出60kx b x+-<的x 的取值范围; (3)求AOB的面积.14.已知一次函数()10y kx n n =+<和反比例函数()20,0my m x x=>>.(1)如图1,若2n =-,且函数1y 、2y 的图象都经过点()3,4A . ∠求m ,k 的值;∠直接写出当12y y >时x 的范围;(2)如图2,过点()1,0P 作y 轴的平行线l 与函数2y 的图象相交于点B ,与反比例函数()30ny x x=>的图象相交于点C .∠若2k =,直线l 与函数1y 的图象相交点D .当点B 、C 、D 中的一点到另外两点的距离相等时,求m n -的值;∠过点B 作x 轴的平行线与函数1y 的图象相交于点E .当m n -的值取不大于1的任意实数时,点B 、C 间的距离与点B 、E 间的距离之和d 始终是一个定值.求此时k 的值及定值d . 15.如图,已知一次函数y=32 x−3与反比例函数y=kx的图象相交于点A(4,n),与x 轴相交于点B .(1)填空:n 的值为___,k 的值为___;(2)以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; (3)观察反比例函数y=kx的图象,当y∠−2时,请直接写出自变量x 的取值范围。
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷一.选择题(共8小题,满分24分)1.①3>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个2.已知实数a,b满足a+1>b+1,则下列选项错误的是()A.a>b B.﹣a>﹣b C.a+2>b+2 D.2a>2b3.用不等式表示图中的解集,以下选项正确的是()A.x>1 B.x<1 C.x≥1 D.x≤14.解不等式时,去分母步骤正确的是()A.1+x≤1+2x+1 B.1+x≤1+2x+6C.3(1+x)≤2(1+2x)+1 D.3(1+x)≤2(1+2x)+65.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b<0的解集为()A.x B.x<C.x>3 D.x<36.已知点P(3a﹣9,a﹣1)在第二象限,且它的坐标都是整数,则a=()A.1 B.2 C.3 D.07.关于x的不等式组有四个整数解,则a的取值范围是()A.B.C.D.8.某学校要召学生代表大会,规定各班每10人推选1名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[] B.y=[] C.y=[] D.y=[]二.填空题(共8小题,满分24分)9.x的3倍与2的差不小于1,用不等式表示为.10.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).11.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.12.不等式1﹣4x≥x﹣8的非负整数解为.13.若不等式组的解集是x<3,则m的取值范围是.14.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,请写出原来每天生产汽车x辆应满足的不等式为.15.已知关于x的不等式组有2019个整数解,则m的取值范围是.16.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x <n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.三.解答题(共7小题,满分52分)17.解不等式(组):(1)19﹣3(x+7)≤0 (2)18.解不等式组,并把它的解集在数轴上表示出来.19.已知不等式组:(1)解此不等式组;(2)直接写出x可能取到的所有整数之和为.20.学校计划购买一批标有单价为3000元的某型号电脑,需要数量在10至20台之间,以下是甲、乙两个商家的优惠政策,学校购买哪家的电脑更合算呢?优惠政策:甲店:每台八折.乙店:先赠一台,其余每台九折.21.字母m、n分别表示一个有理数,且m≠n.现规定min{m,n}表示m、n中较小的数,例如:min{3,﹣1}=﹣1,min{﹣1,0}=﹣1.据此解决下列问题:(1)min{﹣,﹣}=.(2)若min{,2)=﹣1,求x的值;(3)若min{2x﹣5,x+3}=﹣2,求x的值.22.如图,直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3);直线y=1﹣mx分别与x轴交于点C,与直线AB交于点D,已知关于x的不等式kx+b>1﹣mx的解集是x>﹣.(1)分别求出k,b,m的值;(2)求S△ACD.23.2019年“519(我要走)全国徒步日(江夏站)”暨第六届“环江夏”徒步大会5月19日在美丽的花山脚下隆重举行.组公(活动主办方)为了奖励活动中取得了好成绩的参赛选手,计划购买共100件的甲、乙两纪念品发放其中甲种纪念品每件售价120元,乙种纪念品每件售价80元,(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?(2)设购买甲种纪念品m件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?参考答案一.选择题(共8小题)1.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选:C.2.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b,2a>2b.故选:B.3.【解答】解:由题意,得x≥1,故选:C.4.【解答】解:,去分母得:3(1+x)≤2(1+2x)+6,故选:D.5.【解答】解:∵一次函数y=﹣2x+b的图象过A(0,3),∴b=3,∴函数解析式为y=﹣2x+3,当y=0时,x=,∴B(,0),∴不等式﹣2x+b<0的解集为x>,故选:A.6.【解答】解:∵点P(3a﹣9,a﹣1)在第二象限,∴,解得1<a<3,又∵它的坐标都是整数,∴a=2,故选:B.7.【解答】解:,∵解不等式①得:x>8,解不等式②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵关于x的不等式组有四个整数解,是9、10、11、12,∴12<2﹣4a≤13,解得:﹣≤a<﹣,故选:B.8.【解答】解:由题意可得,当各班人数除以10的余数不大于6时,应舍去,当各班人数除以10的余数大于等于7时,就增加一名代表,故y与x的函数关系式是y=[],故选:B.二.填空题(共8小题)9.【解答】解:由题意得:3x﹣2≥1,故答案为:3x﹣2≥1.10.【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.11.【解答】解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0 ∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.12.【解答】解:∵1﹣4x≥x﹣8,∴﹣4x﹣x≥﹣8﹣1,﹣5x≥﹣9,x≤,则该不等式的非负整数解为1和0,故答案为:1、0.13.【解答】解:解不等式x+8>4x﹣1,得:x<3,∵不等式组的解集为x<3,∴m≥3,故答案为:m≥3.14.【解答】解:设原来每天生产汽车x辆,则改进工艺后每天生产汽车(x+6)辆,根据题意,得:15(x+6)>20x,故答案为:15(x+6)>20x.15.【解答】解:∵解不等式①得:x>1﹣m,解不等式②得:x≤3,∴不等式组的解集是1﹣m<x≤3,∵关于x的不等式组有2019个整数解,∴﹣2016≤1﹣m<﹣2015,解得:2016<m≤2017,故答案为:2016<m≤2017.16.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.三.解答题(共7小题)17.【解答】解:(1)19﹣3(x+7)≤0,19﹣3x﹣21≤0,﹣3x≤21﹣19,﹣3x≤2,x≥﹣;(2)∵解不等式①得:x<2,解不等式②得:x>﹣4,∴不等式组的解集是﹣4<x<2.18.【解答】解:不等式组整理得:,解得:2<x≤4,表示在数轴上,如图所示:19.【解答】解:(1)解不等式①得:x<2,解不等式②得:x≥﹣4,则不等式组的解集为﹣4≤x<2.(2)∵符合不等式组的所有整数为﹣4,﹣3,﹣2,﹣1,0,1,∴﹣4﹣3﹣2﹣1+0+1=﹣9,故答案为﹣9.20.【解答】解:设买电脑x台,则在甲店花费:3000x×80%=2400x(元),在乙店花费:3000(x﹣1)×90%=2700x﹣2700(元)如果在甲店买合算,则2400x<2700x﹣2700,解得:x>9;如果在乙店买合算,则2400x>2700x﹣2700,解得:x<9;如果花费一样:2400x=2700x﹣2700,解得:x=9.答:这个学校买电脑9台时,两个店花费一样,多于9台时,在甲店买合算.21.【解答】解:(1)根据题中的新定义得:min{﹣,﹣}=﹣;故答案为:﹣;(2)由2>﹣1,得到=﹣1,解得:x=﹣1;(3)若2x﹣5=﹣2,解得:x=1.5,此时x+3=4.5>﹣2,满足题意;若x+3=﹣2,解得:x=﹣5,此时2x﹣5=﹣15<﹣2,不符合题意,综上,x=1.5.22.【解答】解:(1)∵直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3),,解得:k=,b=3,∵关于x的不等式kx+b>1﹣mx的解集是x>﹣,∴点D的横坐标为﹣,将x=﹣代入y=x+3,得:y=,将x=﹣,y=代入y=1﹣mx,解得:m=1;(2)对于y=1﹣x,令y=0,得:x=1,∴点C的坐标为(1,0),∴S△ACD=×[1﹣(﹣2)]×=.23.【解答】解:(1)设甲种纪念品购买了x件,乙种纪念品购买了(100﹣x)件,根据题意得120x+80(100﹣x)=9600,解得x=40,则100﹣x=60,答:设甲种纪念品购买了40件,乙种纪念品购买了60件;(2)设购买甲种纪念品m件,乙种奖品购买了(100﹣m)件,根据题意,得,解得≤m≤35,∵m为整数,∴m=34或m=35,当m=34时,100﹣m=66;当m=35时,100﹣m=65;答:组委会有2种不同的购买方案:甲种纪念品34件,乙种奖品购买了66件或甲种纪念品35件,乙种奖品购买了65件.。
2022-2023学年人教版八年级下学期数学期末复习综合测试题一、选择题(每小题3分,共30分)1.若二次根式√x−1有意义,则x的取值范围是()A.x≥1B.x≤1C.x>1D.x≠12.以下列长度的线段为边,能组成直角三角形的是()A.1,2,3B.32,42,52C.√3,√4,√5D.5,12,13 3.下列说法中正确的个数为()①对角线互相平分且垂直的四边形是菱形;②对角线相等且垂直的四边形是正方形;③对角线相等的菱形是正方形;④经过平行四边形对角线交点的直线平分该平行四边形的面积.A.0个B.1个C.2个D.3个4.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.150B.200m2C.250m2D.300m25.在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A .60B .50C .40D .156.下列计算正确的是( )A .√2+√3=√5B .√9=±3C .2√2−√2=√2D .√18=2√37.若一次函数y =kx +b 的图象经过第一、二、三象限,则k 、b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b <0D .k <0,b >08.两张全等的矩形纸片ABCD 、AECF 按如图方式交叉叠放在一起.若AB =AF =2,AE =BC =6,则图中重叠(阴影)部分的面积为( )A .163B .203C .4√3D .89.如图,在四边形ABCD 中,E ,F 分别是AD ,BC 的中点,G ,H 分别是BD ,AC 的中点,AB =CD ,∠ABD =20°,∠BDC =70°,则∠GEF 的大小是( )A .25°B .30°C .45°D .35°10.如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y =12x +b和x 轴上,四边形OB 1A 1C 1、B 1B 2A 2C 2、B 2B 3A 3C 3、…都是正方形.如果点A 1(1,1),那么点A 2022的纵坐标是( )A.无法确定B.22021C.22022D.22023二、填空题(每小题3分,共18分)11.化简(√3)2=;√(−5)2=;√27=.12.本学期小伟同学报名参加了学校书法社团用活动班,他的7次考评成绩分别为90,85,85,95,85,100,90,那么小伟同学考评成绩的众数为.13.已知一次函数的图象经过(1,0)且与直线y=﹣4x+3平行,则该一次函数解析式是.14.(3分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,E为AD边中点,菱形ABCD 的面积为4√5,则OE的长为.15.如图,已知直线y=mx+n交x轴于点A(4,0),直线y=ax+b交x轴于点B(﹣3,0),且两直线交于点C(﹣2,3),则不等式0<mx+n<ax+b的解集为.16.如图,在矩形ABCD中点E为AD上一点,将△CDE沿CE翻折至△CFE,EF交AB 于G点,且GA=GF,若CD=10,BC=6,则AE的值是.三、解答题(共8小题,共72分)17.(8分)(1)计算:√18+√12−2√6×√34÷5√2;(2)已知一次函数的图象经过点(2,6)和(﹣4,﹣9),求这个函数的解析式.18.(8分)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.19.(8分)如图,已知四边形ABCD的对角线AC、BD交于点O,AO=OC,OB=OD且∠1=∠2.(1)求证:四边形ABCD是菱形;(2)E为AO上一点,连接BE,若AE=4,AB=6,EB=2√3,求AO的长.20.(8分)为落实“双减”政策,加强“五项管理”,某校建立了作业时长调控制度,以及时采取措施调控作业量,保证初中生每天作业时长控制在90分钟之内.该校就“每天完成作业时长”的情况随机调查了本校部分初中学生,并根据调查结果制成了如下不完整的统计图,其中分组情况是:A组:t≤0.5h,B组:0.5h<t≤1h,C组:1h<t≤1.5h,D 组:t>1.5h.请根据以上信息解答下列问题:(1)这次共抽取了名学生进行调查统计;(2)请补全条形统计图;(3)扇形统计图中C组所在扇形的圆心角的大小是;(4)若该约有2000名初中学生,请估计每天完成作业时长在90分钟之内的初中生人数.21.(10分)如图,是由边长为1的小正方形构成6×6的网格,每个小正方形的顶点叫格点,A、B、D是格点,E是AD与网格线的交点,仅用无刻度直尺在给定的网格中画图,画图过程用虚线,画图结果用实线表示.(1)直接写出图中AE的长=;(2)在图①中画出等腰Rt△EBG,使∠EBG=90°;(3)在图②中先平移线段AB至DC(A对应D,B对应C),再在线段DC上画一点H;使得EH=AE+CH.22.(10分)如图,直线y=x+9与直线y=﹣2x﹣3交于点C,它们与y轴分别交于A、B 两点.(1)求A、B、C三点的坐标;(2)点F在x轴上,使S△BFC=10,求点F的坐标;(3)点P在x轴上,使∠PBO+∠P AO=90°,直接写出点P的坐标.23.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.24.(10分)正方形ABCD的边长为4.(1)如图1,点E在AB上,连接DE,作AF⊥DE于点F,CG⊥DE于点G.①求证:DF=CG;②如图2,对角线AC,BD交于点O,连接OF,若AE=3,求OF的长;(2)如图3,点K在CB的延长线上,BK=2,点N在BC的延长线上,CN=4,点P在BC上,连接AP,在AP的右侧作PQ⊥AP,PQ=AP,连接KQ.点P从点B沿BN方向运动,当点P运动到BC中点时,设KQ的中点为M1,当点P运动到N点时,设KQ的中点为M2,直接写出M1M2的长为.。
北师大版八年级数学下册第二章综合素质评价一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列式子:①3>0;②4x +6>0;③x <2;④x 2+x ;⑤x ≠-5;⑥x +2>x +1,其中不等式有( )A .3个B .4个C .5个D .6个2.若x <y ,且(a -3)x >(a -3)y ,则a 的取值范围是( )A .a <3B .a >3C .a ≥3D .a ≤33.下列说法中,错误的是( )A .不等式x <2的正整数解只有一个B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个4.已知点P (x -2,6-2x )是平面直角坐标系第二象限上一点,则x 的取值范围在数轴上表示正确的是( )5.【2021·娄底】如图,直线y =x +b 和y =kx +4与x 轴分别相交于点A (-4,0),点B (2,0),则⎩⎨⎧x +b >0,kx +4>0的解集为( )A .-4<x <2B .x <-4C .x >2D .x <-4或x >2 6.【2022·佛山南海区校级月考】某种商品的进价为400元,出售时标价为500元,由于换季,商店准备打折销售该种商品,但要保证利润率不低于10%,那么至多打( )A .8折B .8.5折C .8.8折D .9折7.已知不等式组⎩⎨⎧x +a >1,2x +b <2的解集为-2<x <3,则(a +b )2 023的值为( ) A .1 B .2 023 C .-1 D .-2 0238.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x ,则可以列不等式组为( )A.⎩⎨⎧(4x +19)-6(x -1)≥1(4x +19)-6(x -1)≤6B.⎩⎨⎧(4x +19)-6(x -1)≤1(4x +19)-6(x -1)≥6 C.⎩⎨⎧(4x +19)-6(x -1)≤1(4x +19)-6(x -1)≥5 D.⎩⎨⎧(4x +19)-6(x -1)≥1(4x +19)-6(x -1)≤59.若关于x ,y 的方程组⎩⎨⎧2x +y =4,x +2y =-3m +2的解满足x -y >-32,则m 的最小整数解为( )A .-3B .-2C .-1D .010.对于任意实数m 、n ,定义一种新运算:m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <4※x <7,且解集中有两个整数解,则a 的取值范围是( )A .-1<a ≤4B .-1≤a <2C .-4≤a <-1D .-4<a ≤-1二、填空题:本大题共5小题,每小题3分,共15分.11.语句“x 的18与x 的和不超过5”可以表示为____________.12.若不等式(m -3)x |m -2|+2>0是关于x 的一元一次不等式,则m 的值为____________.13.不等式组⎩⎨⎧x -2<3a ,-2x >-2a +8的解集是x <a -4,则a 的取值范围是_____________. 14.对一个实数x ,按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190”为一次操作,如果操作恰好进行两次停止,那么x 的取值范围是____________.15.定义:对于实数a ,b ,符号max{a ,b }表示:当a ≥b 时,max{a ,b }=a ,当a <b 时,max{a ,b }=b .例如max{-3,5}=5,max{2,1}=2.若关于x 的函数y =max{x -2,-2x +1},则该函数的最小值为______________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.【2022·宜昌】解不等式x -13≥x -32+1,并在如图所示的数轴上表示解集.17.【2022·毕节】解不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,12x -1<3-32x ,并把解集在数轴上表示出来.18.(1)解不等式5x +2≥3(x -1),并把它的解集在如下数轴上表示出来;(2)写出一个实数k ,使得不等式x <k 和(1)中的不等式组成的不等式组恰有3个整数解.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知关于x ,y 的方程组⎩⎨⎧2x +2y =4m ,x -y =3m -4,且x >0,y >0. (1)试用含m 的式子表示方程组的解;(2)求实数m 的取值范围.20.每年11月份脐橙和蜜桔进入销售旺季.某商家购进脐橙和蜜桔共1 000箱.设购进蜜桔x 箱,这两种水果的售价与进价如下表所示:(1)请用含x 的代数式表示该商家售完这1 000箱水果所获得的利润;(2)为了迎接“双11”活动,商家决定进行组合促销活动:两种水果各一箱打包成一组,售价为55元/组,其组数为购进蜜桔箱数的15,未打包的按原价出售.若这两种水果全部卖出,利润不少于6 500元,则该商家至少要购进蜜桔多少箱?21.对x ,y 定义一种新运算T ,规定:T (x ,y )=(mx +ny )(x +2y )(其中m ,n 均为非零常数).例如:T (1,1)=3m +3n .已知T (1,-1)=0,T (0,2)=8.(1)求m ,n 的值;(2)若关于p 的不等式组⎩⎨⎧T (2p ,2-p )>4,T (4p ,3-2p )≤a恰好有3个整数解,求a 的取值范围.五、解答题(三):本大题共2小题,每小题12分,共24分.22.某学校需要采购一批演出服装,A ,B 两家制衣公司都愿意成为这批服装的供应商.经了解,两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商,A 公司给出的优惠条件是全部服装按单价打七折,但校方需承担2 200元的运费;B 公司给出的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应比男生人数的2倍少100人,设参加演出的男生有x 人.(1)设学校购买A ,B 两家公司服装所付的总费用分别是y 1元,y 2元,用含x 的代数式分别表示y 1和y 2;(2)该学校购买哪家制衣公司的服装比较合算?23.先阅读下面的例题,再按要求解决问题.例题:解一元二次不等式x 2-9>0.解:∵x 2-9=(x +3)(x -3),∴(x +3)(x -3)>0.由有理数的乘法法则“两数相乘,同号得正”,有①⎩⎨⎧x +3>0,x -3>0,解不等式组①,得x >3, ②⎩⎨⎧x +3<0,x -3<0,解不等式组②,得x <-3, 故原不等式的解集为x >3或x <-3.问题:(1)求关于x 的不等式(x +1)(x -2)>0的解集;(2)求关于x 的两个多项式的商组成的不等式3x -72x -9<0的解集;(3)若a是(2)中不等式的整数解,b=4,a,b,c为△ABC的三条边长,c是△ABC中的最长的边长(△ABC非等边三角形).①求c的取值范围;②若c为整数,求这个等腰三角形ABC的周长.答案一、1.C 2.A 3.C 4.C 5.A 6.C 7.C 8.D9.C 提示:⎩⎨⎧2x +y =4,①x +2y =-3m +2,②①-②得x -y =3m +2,∵关于x ,y 的方程组⎩⎨⎧2x +y =4,x +2y =-3m +2的解满足x -y >-32,∴3m +2>-32,解得m >-76, ∴m 的最小整数解为-1.10.B 提示:根据题意,得4※x =4x -4-x +3=3x -1.∴a <3x -1<7,解得a +13<x <83.∵解集中有两个整数解,∴0≤a +13<1,解得-1≤a <2.二、11.18x +x ≤5 12.113.a ≥-3 14.22<x ≤6415.-1 提示:当x -2≥-2x +1时,解得x ≥1,此时y =x -2,且y 随x 的增大而增大,∴当x ≥1时,y ≥-1;当x -2<-2x +1时,解得x <1,此时y =-2x +1,且y 随x 的减少而增大,∴x <1时,y >-1.综上可知,函数的最小值为-1.三、16.解:x -13≥x -32+1,去分母,得2(x -1)≥3(x -3)+6,去括号,得2x -2≥3x -9+6,移项,得2x -3x ≥-9+6+2,合并同类项,得-x ≥-1,系数化为1,得x ≤1.这个不等式的解集在数轴上表示如下:17.解:⎩⎪⎨⎪⎧x -3(x -2)≤8,①12x -1<3-32x ,② 解不等式①得x ≥-1,解不等式②得x <2,∴原不等式组的解集为-1≤x <2.该不等式组的解集在数轴上表示如下:18.解:(1)5x +2≥3(x -1),去括号,得5x +2≥3x -3,移项,得5x -3x ≥-3-2,合并同类项,得2x ≥-5,两边都除以2,得x ≥-2.5,这个不等式的解集在数轴上表示为:(2)∵存在一个实数k ,使得不等式x <k 和(1)中的不等式组成的不等式组恰有3个整数解,∴0<k ≤1,∴k =1满足条件(答案不唯一).四、19.解:(1)方程组整理,得⎩⎨⎧x +y =2m , ①x -y =3m -4,② ①+②,得2x =5m -4,∴x =5m -42,①-②,得2y =-m +4,∴y =-m +42,∴原方程组的解为⎩⎪⎨⎪⎧x =5m -42,y =4-m 2;(2)∵x >0,y >0,∴⎩⎪⎨⎪⎧5m -42>0,③4-m 2>0,④解不等式③,得m >45,解不等式④,得m <4,∴不等式组的解集为45<m <4,即实数m 的取值范围为45<m <4.20.解:(1)由题意可得,售完1 000箱水果所获得的利润为(28-20)x +(31-25)×(1 000-x )=2x +6 000,即该商家售完这1 000箱水果所获得的利润为(2x +6 000)元;(2)由题意可知,购进蜜桔x 箱,则购进脐橙(1 000-x )箱,(28-20)×45x +(31-25)×(1 000-x -15x )+(55-20-25)×15x ≥6 500,解得x ≥41623,∵x 为整数,且为5的倍数,∴该商家至少要购进蜜桔420箱.21.解:(1)由题意,得⎩⎨⎧-(m -n )=0,8n =8,∴⎩⎨⎧m =1,n =1; (2)由题意,得⎩⎨⎧(2p +2-p )(2p +4-2p )>4,①(4p +3-2p )(4p +6-4p )≤a ,②解不等式①,得p >-1.解不等式②,得p ≤a -1812.∴-1<p ≤a -1812.∵恰好有3个整数解,∴2≤a -1812<3.∴42≤a <54.五、22.解:(1)由题意得y 1=0.7[120x +100(2x -100)]+2 200=224x -4 800(x ≥50),即y 1=224x -4 800(x ≥50),y 2=0.8[100(3x -100)]=240x -8 000(x ≥50),即y 2=240x -8 000(x ≥50);(2)当y 1>y 2时,即224x -4 800>240x -8 000,解得x <200,由(1)得x ≥50,∴50≤x <200;当y 1=y 2时,即224x -4 800=240x -8 000,解得x =200;当y 1<y 2时,即224x -4 800<240x -8 000,解得x >200;综上,当参加演出的男生少于200人且大于等于50人时,购买B 公司的服装比较合算;当参加演出的男生等于200人时,购买两家公司的服装总费用相同,可任选一家公司购买;当参加演出的男生多于200人时,购买A 公司的服装比较合算.23.解:(1)由有理数的乘法法则“两数相乘,同号得正”,有①⎩⎨⎧x +1>0,x -2>0,解不等式组①,得x >2, ②⎩⎨⎧x +1<0,x -2<0,解不等式组②,得x <-1, 故原不等式的解集为x >2或 x <-1;(2)∵3x -72x -9<0, ∴由“两数相除,异号得负”,有①⎩⎨⎧3x -7>0,2x -9<0,解不等式组①,得73<x <92, ②⎩⎨⎧3x -7<0,2x -9>0,解不等式组②,无解, ∴原不等式的解集为73<x <92;(3)①∵a 是(2)中不等式的整数解,∴a =3或a =4,∵c是△ABC的最大边,且△ABC非等边三角形,∴当a=3,b=4时,4≤c<7;当a=4,b=4时,4<c<8;②∵△ABC为等腰三角形,c为整数,∴当a=3,b=4时,4≤c<7,∴c=4,∴C△ABC=11;∴当a=4,b=4时,4<c<8,∴c=5或6或7,∴C△ABC=13或14或15.综上所述,这个等腰三角形ABC的周长为11或13或14或15.。
北师版八年级数学下册第六章综合素质评价一、选择题(每题3分,共30分)1.如图,在平行四边形ABCD中,AB=3,AD=2,则CD=() A.3 B.2 C.1 D.52.【教材P151图6-20改编】【2022·常州】如图,在△ABC中,D,E分别是AB,AC的中点,若DE=2,则BC的长是()A.3 B.4 C.5 D.63.已知一个正多边形的每个外角等于60°,则这个正多边形是() A.正五边形B.正六边形C.正七边形D.正八边形4.【2022·越秀区期末】如图,在▱ABCD中,CE⊥AB于点E,CF⊥AD于点F,若∠ECF=53°,则∠B=()A.53°B.45°C.37°D.70°5.如图,▱ABCD的对角线AC,BD相交于点O,则下列结论不一定正确的是() A.AD=BC B.OA=OCC.AC⊥BD D.▱ABCD是中心对称图形6.如图是跷跷板的示意图,横板AB绕中点O转动,支柱OD与地面垂直,垂足为D,OD=60 cm,当它的一端B着地时,另一端A离地面的高度AC为() A.30 cm B.60 cm C.90 cm D.120 cm7.如图,a,b是两条平行线,则甲、乙两平行四边形的面积关系是() A.S甲>S乙B.S甲<S乙C.S甲=S乙D.无法确定8.【教材P158复习题T3拓展】如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH的交点P在BD上,则图中面积相等的平行四边形有()A.3对B.2对C.1对D.0对9.如图,过正六边形ABCDEF的顶点B作一条射线与其内角∠BAF的平分线相交于点P,且∠APB=40°,则∠CBP的度数为()A.80°B.60°C.40°D.30°10.如图,在▱ABCD中,BE垂直平分CD,且∠BAD=45°,AD=3,则AC的长为()A.5 3 B.3 5 C.5 2 D.2 5二、填空题(每题3分,共24分)11.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件:________,使四边形AECF是平行四边形(只填一个即可).12.【教材P152随堂练习T2变式】【2022·南充】数学实践活动中,为了测量校园内被花坛隔开的A,B两点间的距离,同学们在AB外选择一点C,测得AC,BC 两边中点的距离DE为10 m(如图),则A,B两点间的距离是________m.13.【教材P155习题T2改编】若一个多边形的内角和为900°,则这个多边形是________边形.14.如图,在▱OABC中,O为坐标原点,点A的坐标为(3,0),点B的坐标为(4,2),则点C的坐标为____________.15.如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是________°.16.如图,在▱ABCD中,对角线AC,BD相交于点O,BD⊥AB.若AB=3,BC=5,则AC的长是________.17.如图,在▱ABCD中,E在AC上,AE=2EC,F在AB上,BF=2AF.若S△BEF =4,则S▱ABCD=________.18.如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积是________.三、解答题(19,20题每题8分,21题10分,22题12分,其余每题14分,共66分)19.【教材P137习题T3变式】【2022·泸州】如图,E,F分别是▱ABCD的边AB,CD上的点,已知AE=CF.求证:DE=BF.20.【教材P157习题T2改编】一个正多边形的每一个内角比每一个外角的3倍还大20°,求这个正多边形的内角和.21.【2022·广西】如图,在▱ABCD中,BD是它的一条对角线.(1)求证:△ABD≌△CDB;(2)尺规作图:作BD的垂直平分线EF,分别交AD, BC于点E,F (不写作法,保留作图痕迹) ;(3)连接BE,若∠DBE=25°,求∠AEB的度数.22.【2022·松北区二模】已知,四边形ABCD,AB=CD=12BC,E是BC中点,连接AE,DE,∠AED=90°.(1)如图①,求证:四边形ABCD是平行四边形;(2)如图②,连接AC,AC与DE交于F,若∠B=60°,在不添加任何辅助线的情况下,请直接写出图②中的等腰三角形(不包括等边三角形).23.【探究题】学习了《平行四边形》一章以后,小明根据学习平行四边形的经验,对平行四边形的判定问题进行了再次探究.以下是小明的探究过程,请补充完整:(1)在四边形ABCD中,对角线AC与BD相交于点O,若AB∥CD,补充下列条件中的________,能判定四边形ABCD是平行四边形(写出一个你认为正确选项的序号).A.BC=AD B.AO=CO(2)将(1)中的命题用文字语言表述如下:①命题1:_________________________________________________________;②画出图形,并写出命题1的已知、求证和证明.(3)小明进一步探究发现:若一个四边形ABCD的三个顶点A,B,C的位置如图所示,且这个四边形满足CD=AB,∠D=∠B,但四边形ABCD不是平行四边形,画出符合题意的四边形ABCD,进而小明发现:命题2:“一组对边相等,一组对角相等的四边形是平行四边形”是一个假命题.24.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC =18 cm,点P从点A出发以2 cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1 cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t s.(1)从运动开始,当t取何值时,四边形PQCD是平行四边形?(2)在运动过程中,是否存在以CD为腰的等腰三角形DQC?若存在,求出时间t的值;若不存在,说明理由.答案一、1.A 2.B 3.B 4.A 5.C 6.D 7.C 8.A 9.C 10.B 二、11.AF =EC (答案不唯一) 12.20 13.七 14.(1,2) 15.30 16.213 17.1818.8 点拨:如图,连接EC ,过点A 作AM ∥BC 交FE 的延长线于点M .∵四边形CDEF 是平行四边形, ∴DE ∥CF ,EF ∥CD . ∴AM ∥DE ∥CF , AC ∥FM .∴四边形ACFM 、四边形ADEM 是平行四边形.∵△BDE 的DE 边上的高和△CDE 的DE 边上的高相等, ∴△BDE 的面积和△CDE 的面积相等.又∵易知△ADE 的面积和△AME 的面积相等,△DCE 的面积和△FEC 的面积相等,∴阴影部分的面积等于平行四边形ACFM 的面积的一半,是12CF ·h CF (h CF 为平行四边形ACFM 的CF 边上的高).∵△ABC 的面积是24,BC =3CF ,h BC =h CF ,(h BC 为△ABC 的BC 边上的高) ∴12BC ·h BC =12×3CF ·h CF =24. ∴CF ·h CF =16.∴阴影部分的面积是12×16=8.三、19.证明:∵四边形ABCD 是平行四边形,∴∠A =∠C ,AD =CB . 在△ADE 和△CBF 中,⎩⎨⎧AD =CB ,∠A =∠C ,AE =CF ,∴△ADE ≌△CBF (SAS), ∴DE =BF .20.解:设其每一个外角的度数为x ,则每一个内角的度数为180°-x .依题意有180°-x =3x +20°, 解得x =40°.∴这个正多边形的边数为360°40° =9, 其内角和为(9-2)×180°=1 260°. 21.(1)证明:如图①,∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC . ∵BD =BD ,∴△ABD ≌△CDB (SSS). (2)解:如图②所示:(3)解:如图③,∵EF 垂直平分BD ,∠DBE =25°, ∴EB =ED ,∴∠DBE =∠BDE =25°. ∵∠AEB 是△BED 的外角,∴∠AEB =∠DBE +∠BDE =25°+25°=50°. 22.(1)证明:设∠AEB =α,∵E 是BC 中点,∴BE =CE =12BC .∵AB =CD =12BC ,∴BA =BE ,CE =CD , ∴∠BAE =∠AEB =α,∴∠B =180°-∠BAE -∠BEA =180°-2α. ∵∠AED =90°,∴∠CED =180°-∠AED -∠AEB =90°-α, ∴∠CDE =∠CED =90°-α, ∴∠C =180°-∠CDE -∠CED =2α, ∴∠B +∠C =180°-2α+2α=180°, ∴AB ∥CD ,∴四边形ABCD 是平行四边形.(2)解:△AEC 是等腰三角形,△ECD 是等腰三角形,△AFD 是等腰三角形,△EFC 是等腰三角形. 23.解:(1)B(2)①一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形 ②已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 与BD 交于点O ,AO =CO .求证:四边形ABCD是平行四边形.证明:∵AB∥CD,∴∠ABO=∠CDO,∠BAO=∠DCO.又∵AO=CO,∴△AOB≌△COD(AAS).∴AB=CD.又∵AB∥CD,∴四边形ABCD是平行四边形.(3)如图,四边形ABCD满足CD=AB,∠D=∠B,但四边形ABCD不是平行四边形.(作图:先作AD′=AB,交BC的延长线于点D′,再作△ACD≌△CAD′)24.解:(1)当PD=QC时,四边形PQCD是平行四边形,∴12-2t=t,解得t=4.∴当t=4时,四边形PQCD是平行四边形.(2)存在.过点D作DE⊥BC于点E.由题意得DE=AB=8 cm,EC=18-12=6(cm),由勾股定理得DC=10 cm.当CQ=CD时,t=10;当DQ=CD时,CQ=2CE=12 cm,∴t=12.∵当点P到达点C时,点Q也停止运动,∴t最大=12+102=11.∴t=12不合题意,舍去.∴t=10.。
一、填空:(每空3分,共33分) 1、“x 的2倍减去
2
1的相反数不是负数”列出不等式
是 。
2、写出下列不等式组的解集: ⑴⎩⎨
⎧>-≥2
3x x 的解集是 。
⑵⎩⎨
⎧≤->2
3x x 的解集
是 。
⑶⎩⎨
⎧≥-<2
3x x 的解集是 。
⑷⎩⎨
⎧<-≤2
3x x 的解集
是 。
3.把方程3
x
-2y=1变形:用含x 的代数式表示y ,得y=_______.
4.已知方程组3523x y y x =-⎧⎨=+⎩
,用代入法消去
x ,可得方程_________(不
要化简)
1.若方程组5
3x y x y +=⎧⎨-=⎩
的解也是方程
10x-my=7的解,则m=_______.
6、满足解集为-4≤x < 3的不等式组的非负整数解是 。
7、不等式组- 1
<
x
+
2
<
3
的解集
是 。
8、若x <-1,则化简=++-5.01x x。
二、选择:(每题3分,共24分)
①9、不等式ax >- 2 ( a < 0)的解集是
--------------------------------------------------------------( ) A .a
x 2> B.a
x 2-
>
C.a
x 2<
D.a
x 2-<
10、下列判
断错误的是
-------------------------------------------------------------------------------( )
A.不等式组⎩
⎨⎧-><16
x x 的解集是-1< x < 6
B.
不等式组⎪⎩
⎪⎨⎧
->≥
321x x 的
最小整数解是1 C. 若a > b ,则不等式组⎩⎨
⎧<>b
x a
x 无解 D. 若a > b ,则 ac 2 >
bc 2
11.用代入法解方程组52231
x y x y -=⎧⎨
-=⎩时,下列代入正确的是( )
A .2x-3x=1
B .2x-15x+3=1
C .2x-3(5x-2)=1
D .2x-15x-6=1 12.已知方程组23421
x y y x -=⎧⎨
=-⎩ ,把②代入①,正确的是( )
A .4y-2-3y=4
B .2x-6x+1=4
C .2x-6x-1=4
D .2x-6x+3=4 13.用代入法解方程组34225
x y x y +=⎧⎨-=⎩
)
()
(21 使得代入后化简比较容易
的变形是( ) A .由①得x=243y - B .由①得y=234
x -
C .由②得x=
52
y + D .由②得y=2x-5
14.方程组1
325
x y x y -=⎧⎨
-=⎩的解是( )
A .3510...2 1.8
215
x x x x B C D y y y y ====⎧⎧⎧⎧⎨
⎨
⎨
⎨
====⎩⎩⎩⎩
15.在一本书上写着方程组⎩⎨⎧=+=-1
0y x ay x 的解是⎩⎨
⎧==?
75.0y x 其中y 的值不
知道,你求出的
a 的值为 ( ) A. 4
3 B. 3
4 C. -3 D. 3
16.已知关于x 的不等式组⎪⎩
⎪
⎨⎧>-><a x x x 12
无解,则a 的取值范围是
( )
A. a ≤-1
B.a ≥2
C. -1<a <2
D.a <-1或a >2
三、解不等式组或方程组:(每小题4分,共16分)
17.⎩⎨
⎧<++>-x
x x x 423215 并把解集在数轴上表示 18.
()⎪
⎩⎪
⎨⎧->+≥--13
21423x x
x x
19.⎪⎩⎪
⎨⎧=--+=-++2)(5)4632
y x y x y x y x (
20. ⎩
⎨⎧=+=-8531
2y x y x
三、解答下列各题(每小题5分,共10分)
21.已知关于x,y 的方程组⎩
⎨⎧+=+=+12242k y x k
y x 的解满足-1<x-y<0,求
k 的
取值范围 22设
x 满足不等式组⎩⎨
⎧-<+>+x
x x
x 876335并使代数式(
3
2-x )²的值是整
数,求x 的值
四.应用题(23题8分,24题9分)
23。
河东中学初三(1)班学生到万绿湖春游,有一项活动是划船、游船有两种,甲种船每条船最多只能坐4个人,乙种船每条船最多只能坐6个人.已知初三(1)班学生的人数是5的倍数,若仅租甲种船,则不少于12条;若仅租乙种船,则不多于9条.
(1)求初三(1)班学生的人数;
(2)如果甲种船的租金是每条船10元,乙种船的租金是每条船12元.应怎样租船,才能使每条船都坐满,且租金最少?说明理由.
24.为了拉动内需,广东启动“家电下乡”活动。
某家电公司销售给农户的Ⅰ型冰
箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。
(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?
(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元,根据
“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元(结果保留2个有效数字)?。