必修2_第三章_万有引力定律
- 格式:ppt
- 大小:1.07 MB
- 文档页数:68
高中物理必修二思维导图:万有引力定律
牛顿在推导出太阳与行星间引力公式,通
过类比,认为地球对物体的引力和天体间的引
力是性质相同的力,同样适用太阳与行星间引
力公式,并通过月-地检验,验证了猜想。
之
后,把引力公式扩展到自然界的任何物体间,
最终,发现了万有引力定律。
划重点:
一、月-地检验
1、思考:a、太阳的吸引使行星不能飞离太阳,物体与地球的引力也使物体不能飞离地球。
b、猜想:日地间引力、月地间引力、物体与地球间引力是同一种力,其大小都可用太阳行星间的引力公式来计算。
2、月地检验过程:参看微课视频。
二、万有引力定律:
1、内容:自然界中任何两个物体都相互吸引,引力方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的二次方成反比。
2、适用条件:(1)两质点间的引力;(2)两个质量分布均匀的球体间的引力;(3)当物体不能看成质点时,可用委员切割思想把物体分割成无数质点,分别求出万用引力,再求合力。
3、说明:(1)公式中各物理量只能采用国际单位。
(2)一般物体间万有引力很小,可忽略不计。
(3)天体运动、卫星运动必须考虑万有引力。
(4)当r趋向于0时,F不是无穷大,因为rr趋向于0,物体便不能看作质点。
万有引力定律精品课件完整版精品课件一、教学内容本节课我们将学习普通高中物理必修2第三章《万有引力定律》的相关内容。
具体涉及教材第三章第1节至第3节,详细内容包括万有引力定律的发现历程、定律表述及公式推导、万有引力常量的测定以及万有引力定律在天文学上的应用等。
二、教学目标1. 让学生了解万有引力定律的发现过程,理解万有引力定律的基本原理。
2. 掌握万有引力定律的数学表达式,能运用其解决实际问题。
3. 了解万有引力常量的测定方法,理解其物理意义。
三、教学难点与重点重点:万有引力定律的发现过程、数学表达式、应用。
难点:万有引力定律的公式推导,万有引力常量的测定。
四、教具与学具准备1. 教具:地球仪、天平、计算器、PPT课件。
2. 学具:笔记本、教材、计算器。
五、教学过程1. 引入新课:通过展示地球与月球相互吸引的动画,让学生初步认识万有引力现象,激发学习兴趣。
2. 讲解万有引力定律的发现历程:以牛顿的苹果故事为切入点,介绍万有引力定律的发现过程。
3. 讲解万有引力定律的数学表达式:通过PPT展示公式推导过程,引导学生理解万有引力定律的基本原理。
4. 实践情景引入:设置地球与月球之间的万有引力问题,让学生运用公式计算。
5. 例题讲解:讲解地球与月球之间的万有引力计算方法,引导学生掌握如何运用公式解决实际问题。
6. 随堂练习:布置相关练习题,让学生巩固所学知识。
7. 讲解万有引力常量的测定:介绍卡文迪许实验,解释万有引力常量的物理意义。
六、板书设计1. 万有引力定律的发现历程2. 万有引力定律的数学表达式3. 万有引力常量的测定方法4. 应用举例七、作业设计1. 作业题目:(1)根据万有引力定律,计算地球与月球之间的引力。
(2)已知地球半径、地球质量,计算地球表面的重力加速度。
2. 答案:(1)F = G Mm Me / r^2(2)g = G Me / R^2八、课后反思及拓展延伸1. 反思:本节课通过生动的实例引入,激发了学生的学习兴趣,讲解了万有引力定律的基本原理和数学表达式,使学生对万有引力定律有了较为深刻的认识。
《第三章 万有引力定律及其应用》知识要点一、关于天体运动的两种学说二、开普勒行星三大运动定律1、第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上。
2、第二定律(面积定律):行星和太阳之间的连线,在相等的时间内扫过相同的面积。
设行星轨道上任意两点的位置M 、N 到恒星的距离分别为M R 和N R ,对应的速度分别为M V 和N V N ,则有:M V M R =N R N V 。
3、第三定律(周期定律):行星绕太阳公转的周期的平方和轨道半长轴的立方成正比。
设行星轨道的半长轴为R ,公转周期为T ,则有:k=23TR ,K 为比例常数,且K 只与恒星质量有关,与行星无关。
三、万有引力定律1、内容:宇宙间任意两个有质量的物体间都存在相互吸引力,其大小与两个物体的质量的乘积成正比,与它们间距离的平方成反比。
2、表达式:F=2r Mm G 其中:G 称为万有引力常数,r 为两个物体的重心(或质心)之间的距离,且G=6.67×10-11N.m 2/kg 23、特性⑴普遍性:任何客观存在的物体间都存在着相互作用的吸引力,即“万有引力”。
⑵相互性:两物体间相互作用的引力是一对作用力与反作用力,它们的大小相等,方向相反,作用在同一条直线上,分别作用在两个不同的物体上。
⑶宏观性:在通常情况下,万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际的物理意义。
在分析地球表面的物体受力分析时, 不考虑地面物体间的万有引力,只考虑地球对地面物体的引力。
4、说明:⑴万有引力提供天体运动的向心力,应用表达式一般有:2r GMm =r V m 2 =2ϖmr =mV ω=224Tmr π=ma ⑵物体在行星表面时的重力约等于行星对物体的万有引力:mg =2RMm G即有:2gR GM =——称为黄金代换式 ⑶离天体某高度处的重力加速度g 的求法: 由mg h R Mm G =+2)( 得:2)(h R GM g += 5、应用:⑴计算天体的质量:★——测量带卫星的天体的质量:若已知卫星的运行周期T 和轨道半径r ,设天体质量为M ,卫星质量为m ,则有2224T mr r Mm G π= 得:2324GTr M π= ★——测量不带卫星的天体的质量,关键要测出天体表面的重力加速度g ——测量天体表面的重力加速度g 的常见方法① 利用竖直上抛运动规律在天体表面附近以初速度0V 竖直上抛,测出物体落回原抛出点的时间t ,则由:mg RMm G =2 g V t 02= 求得:Gt R V M 202= (R 为已知) ② 利用平抛运动规律在天体表面附近一定高度y 处以初速度0V 水平抛出,测出物体落地的水平距离x 和高度y ,则由:t V x 0= 221gt y = mg R Mm G =2 得:22202Gx R yV M = ③ 利用弹簧秤在天体表面附近用弹簧秤测出质量为m 的物体的重力0G ,则由:mg RMm G =2 mg G =0 得:mG R G M 20=★——测量天体的半径R设宇宙飞船沿天体表面运行一周的时间为T ,天体表面的重力加速度为g (g 的测量见上所述),则由:mg RMm G =2 2224T mR R Mm G π= 得:224πgT R = ⑵估测天体的平均密度:2224T mR R Mm G π= M=334R ρπ 得:ρ=23GTπ ⑶预测未知的天体——海王星的发现四、宇宙速度1、第一宇宙速度(环绕速度):gR R GM V == =7.9km/s注意7.9km/s <V <11.2km/s 时,卫星将绕地球做椭圆轨道运动。
章末总结一、赤道上物体的向心加速度和卫星的向心加速度的区别图1放于赤道地面上的物体随地球自转所需的向心力是地球对物体的引力和地面对物体的支持力的合力提供的;而环绕地球运行的卫星所需的向心力完全由地球对卫星的引力提供(如图1).两个向心力的数值相差很大(如质量为1 kg 的物体在赤道上随地球自转所需的向心力只有0.034 N ,而它所受地球引力约为9.8 N ;近地卫星上每千克的物体所需的向心力是9.8 N),对应的两个向心加速度的计算方法也不同,赤道上的物体随地球自转的向心加速度a 1=ω2R =⎝⎛⎭⎫2πT 2R ,式中T 为地球自转周期,R 为地球半径;卫星环绕地球运行的向心加速度a 2=GM/r 2,式中M 为地球质量,r 为卫星与地心的距离.例1 地球赤道上的物体,由于地球自转产生的向心加速度a =3.37×10-2 m/s 2,赤道上的重力加速度g 取9.77 m/s 2,试问:(1)质量为m 的物体在地球赤道上所受地球的万有引力为多大? (2)要使在赤道上的物体由于地球的自转完全失去重力(完全失重),地球自转的角速度应加快到实际角速度的多少倍?例2 地球赤道上有一物体随地球的自转而做圆周运动,所受的向心力为F 1,向心加速度为a 1,线速度为v 1,角速度为ω1.绕地球表面附近做圆周运动的人造卫星(高度忽略),所受的向心力为F 2,向心加速度为a 2,线速度为v 2,角速度为ω2.地球的同步卫星所受的向心力为F 3,向心加速度为a 3,线速度为v 3,角速度为ω3.地球表面的重力加速度为g ,第一宇宙速度为v ,假设三者质量相等,则( )A .F 1=F 2>F 3B .a 1=a 2=g>a 3C .v 1=v 2=v>v 3D .ω1=ω3<ω2 二、万有引力定律的理解及应用1.利用天体表面物体的引力加速度计算天体质量mg =G Mm r 2,M =gr 2G2.利用行星(卫星)周期计算天体质量 G Mm r 2=mr ⎝⎛⎭⎫2πT 2,M =4π2r 3GT2 3.求解天体圆周运动问题时,利用万有引力提供天体做圆周运动的向心力,则F 引= F 向,即G Mm r 2=m v 2r=mrω2=mr ⎝⎛⎭⎫2πT 2 例3 太阳光经500 s 到达地球,地球的半径是6.4×106 m ,试估算太阳质量与地球质量的比值为________.(取1位有效数字)例4 假设火星和地球都是球体,火星的质量M 火与地球的质量M 地之比M 火/M 地=p ,火星的半径R 火和地球的半径R 地之比R 火/R 地=q ,求它们表面处的重力加速度之比.三、人造地球卫星1.发射速度:是指卫星直接从地面发射后离开地面时的速度.2.轨道速度:卫星在高空沿着圆轨道运行,此时F 万=F 向,即G Mm r 2=m v 2r ,所以v =GMr, 此式也适用于在绕地球圆轨道上运行的行星.由于v ∝1r,所以v 随r 的增大而减小,即卫星离地球越远,其轨道速率就越小.例5 已知一颗近地卫星的周期为5 100 s ,今要发射一颗地球同步卫星,它离地面的高度为地球半径的多少倍?例6 土星外层上有一个环,为了判断它是土星的一部分还是土星的卫星群,可以测量环中的各层的线速度v 与该层到土星中心的距离R 之间的关系来判断( )A .若v ∝R ,则该层是土星的一部分B .若v 2∝R ,则该层是土星的卫星群C .若v ∝1R ,则该层是土星的一部分D .若v 2∝1R,则该层是土星的卫星群图2例7 如图2所示,人造卫星的轨道为椭圆,地球位于椭圆的一个焦点上,A 为近地点,B 为远地点,则下列说法正确的是( )A .卫星在近地点A 的向心加速度大小等于在远地点B 的向心加速度大小 B .卫星在从近地点A 向远地点B 的运动过程中,向心加速度逐渐变小C .卫星在从远地点B 向近地点A 的运动过程中,速度逐渐变大,在B 点时速度小于在A 点时速度D .从近地点A 向远地点B 的运动过程中,万有引力没有做功 [即学即用]1.万有引力定律首次揭示了自然界中物体间一种基本相互作用规律,以下说法正确的是( )A .物体的重力不是地球对物体的万有引力引起的B .人造地球卫星离地球越远,受到地球的万有引力越大C .人造地球卫星绕地球运动的向心力由地球对它的万有引力提供D .宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用 2.已知引力常量为G ,根据下列所给条件能计算出地球质量的是( ) A .月球绕地球的运行周期T 和月球中心到地球中心间距离R B .人造地球卫星在地面附近运行的速度v 和运行周期TC .地球绕太阳运行的周期T 和地球中心到太阳中心的距离RD .地球半径R 和地球表面重力加速度g3.据报道,“嫦娥一号”和“嫦娥二号”绕月飞行器的圆形轨道距月球表面分别约为200 km 和100 km ,运动速率分别为v 1和v 2,那么v 1和v 2的比值为(月球半径取1 700 km)( )A.1918B.1918C.1819D.18194.2008年9月25日至28日,我国成功实施了“神舟”七号载人航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟.下列判断正确的是( )A .飞船变轨过程也处于完全失重状态B .飞船在圆轨道上时航天员出舱前后都处于失重状态C .飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D .飞航变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度 5.我国“嫦娥一号”月球探测器在绕月球成功运行之后,为进一步探测月球的详细情况,又发射了一颗绕月球表面飞行的科学试验卫星.假设卫星绕月球做圆周运动,月球绕地球也做圆周运动,且轨道都在同一平面内.已知卫星绕月球运动周期T 0,地球表面处的重力加速度g ,地球半径R 0,月心与地心间的距离r ,引力常量G ,试求:(1)月球的平均密度ρ;(2)月球绕地球运动的周期T.章末总结知识体系区轨道 面积 周期 质点 4π2R 3GT 2 3πr 3GT 2R 3 3πGT 27.9 11.2 16.7 课堂活动区例1 (1)9.803 7m (2)17倍解析 (1)在赤道上:F 万=mg +F 向=mg +ma =9.803 7m.(2)要使赤道上的物体由于地球自转而完全失去重力,即“飘”起来,则有万有引力完全提供向心力,即F 万=F 向′=m ω20·R ω0=F 万mR= 9.803 7R . ω0为“飘”起时地球自转的角速度,R 为地球半径,实际的角速度为ω,则 mω2R =ma ,ω= a R= 3.37×10-2R所以ω0ω=9.803 73.37×10-2=290.9≈17即自转角速度应加快到实际角速度的17倍.例2 D [比较F 1、F 3,由公式F =mω2r 分析,ω相同,F ∝r ,得F 1<F 3;F 2与F 3比较,由F =G Mmr 2得知F 2>F 3,故A 错误.由此也知B 错误.比较v 1与v 3,依据v =ωr ;v 2、v 3与v ,依据v =GMr,知C 错,D 正确.] 例3 3×105解析 地球到太阳的距离为r =ct =3.0×108×500 m =1.5×1011 m 地球绕太阳的运动可看作匀速圆周运动,向心力为太阳对地球的引力,地球绕太阳公转的周期为T =365天= 3.2×107s ,则G Mm r 2=m 4π2T2r太阳的质量为M =4π2r 3GT2地球表面的重力加速度g =9.8 m/s 2,在忽略地球自转的情况下,物体在地球表面所受的重力等于地球对物体的引力,即m ′g =G mm ′R2则地球的质量为m =gR 2G太阳质量和地球质量的比值为M m =4π2r 3gR 2T 2=4×3.142×1.53×10339.8×6.42×1012×3.22×1014=3×105例4pq 2解析 物体在火星和地球表面所受重力等于火星和地球对物体的万有引力,即mg =G Mm R 2,得g =GM R2 则火星和地球表面的重力加速度之比为 g 火g 地=M 火M 地·(R 地R 火)2=pq 2.例5 5.6解析 对于已知的近地卫星,万有引力提供向心力,有G MmR 2=mR ⎝⎛⎭⎫2πT 12 对于地球同步卫星,其周期等于地球自转周期, 有G Mm ′(R +h )2=m ′(R +h)⎝⎛⎭⎫2πT 22 两式相除得(R +h )3R 3=T 22T 21 即h R= 3⎝⎛⎭⎫T 2T 12-1 代入数值T 1=5 100 s ,T 2=24×3 600 s 得 hR≈5.6 即地球同步卫星距地面的高度约是地球半径的5.6倍.例6 AD [若为土星的一部分,环上各部分的角速度ω相同,则满足v =Rω,即v ∝R ,故A 正确;若为土星的卫星群,则由公式G Mm R 2=m v 2R 得v 2∝1R,故D 正确.]例7 BC [在近地点A 和远地点B 时,万有引力提供向心力,则有G Mmr 2=ma ,由于r A <r B ,故a B <a A ,A 错误,B 正确;同理,由G Mm r 2=mv 2r得v =GMr,有v A >v B .在由B 向A 运动过程中万有引力做正功,动能增加,速度变大,C 正确,D 错误.][即学即用]1.C [物体的重力是地球对物体的万有引力引起的,A 选项错误;人造地球卫星离地球越远,受到地球的万有引力越小,B 选项错误;宇宙飞船内的宇航员处于失重状态是由于受到的万有引力提供了圆周运动的向心力,D 选项错误,只有C 选项正确.]2.ABD [由万有引力提供向心力,月球绕地球运行时有GMm R 2=m 4π2T 2R ,所以地球质量M =4π2R 3GT 2,A 正确;由GMm r 2=m v 2r 可得M =v 2r G ,又因为v =ωr =2πT r ,所以可得M =v 3T2πG ,可求B 正确.根据C 中已知条件求出的是太阳的质量而不是地球的质量,C 错误;由重力和万有引力相等有mg =G Mm R 2,所以M =gR 2G可求D 正确.]3.C [“嫦娥一号”和“嫦娥二号”绕月做圆周运动,由万有引力提供向心力有GMmR 2=mv 2R 可得v =GMR(M 为月球质量),它们的轨道半径分别为R 1=1 900 km ,R 2=1 800 km ,则v 1v 2= R 2R 1= 1819.故选C.] 4.BC5.(1)3πGT 20 (2)2πr R 0r g解析 (1)设月球质量为m ,卫星质量为m ′,月球的半径为R m ,对于绕月球表面飞行的卫星,由万有引力提供向心力Gmm ′R 2m =m ′4π2T 20R m 得m =4π2R 3mGT 20 又据ρ=m 43πR 3m 得ρ=3πGT 20(2)设地球的质量为M ,对于在地球表面的物体m 表有GMm 表R 20=m 表g ,即GM =R 20g 月球绕地球做圆周运动的向心力来自地球引力 即GMm r 2=m 4π2T 2r ,得T =2πr R 0rg。
第三节 万有引力定律一、万有引力定律1、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2、公式:F =G m 1m 2r2 3、方向:两物体连线指向受力物体。
4、理解:①普适性即大到天体小到原子分子都会受到万有引力作用。
②宏观性即地面上的一般物体或更小分子原子之间的万有引力比较小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用③相互性即m1吸引m2同时m2也在吸引m1。
④客观性即万有引力是客观存在的。
⑤独立性即周围环境不会影响两物体间的万有引力,两个物体之间的万有引力只与它们本身的质量和它们间的距离有关。
5、说明:①此公式适用于质点之间的相互作用。
②质量分布均匀的球体r 为两球体球心之间的距离。
③质量分布均匀的球体与质点的引力r 为质点到球心之间的距离。
④特别注意:r 趋向于无穷小,F 趋向于无限大,此说法是错误的,因为r 无限性公式不在成立。
6、万有引力的两个推论:①在均匀质量的球层空腔内的任意位置,质点受到的该球层的万有引力为零。
②在均匀质量的球体内部距离球心r 处质点受到的万有引力等于半径为r 的球体对其的引力。
二、万有引力与重力的关系1.万有引力的作用效果:万有引力F =G Mm R2的效果有两个: ①一个是重力mg ,②另一个是物体随地球自转需要的向心力F n =mrω2.2.重力与纬度的关系:地面上物体的重力随纬度的升高而变大.①赤道上:重力和向心力在一条直线上F =F n +mg ,即G Mm R 2=mr ω2+mg ,所以mg =G Mm R 2-mr ω2. ②地球两极处:向心力为零,所以mg =F =G Mm R 2.③其他位置:重力是万有引力的一个分力,重力的大小mg <G Mm R 2,重力的方向偏离地心.3.在粗略计算式,万有引力等于重力,即mg =G Mm R 2,GM=gR 2,此式子又被成为“黄金代换”。
第2节 万有引力定律1.牛顿通过研究行星和太阳间的作用力,提出了万有引力定律:任何两个物体之间都存在________________,引力的大小与这两个物体的________________成正比,与这两个 物体之间的______________成反比.用公式表示即________.其中G 叫____________, 数值为________________,它是英国物理学家____________在实验室利用扭秤实验测得 的.2.万有引力定律适用于________的相互作用.近似地,用于两个物体间的距离远远大于物体本身的大小时;特殊地,用于两个质量分布均匀的球体时,r 指的是两个________ 之间的距离.3.对万有引力和万有引力定律的理解正确的是( ) A .不能看做质点的两物体间不存在相互作用的引力B .只有能看做质点的两物体间的引力才能用F =Gm 1m 2r2计算C .由F =Gm 1m 2r2知,两物体间距离r 减小时,它们之间的引力增大D .万有引力常量的大小首先是由牛顿测出来的,且等于6.67×10-11 N·m 2/kg 24.对于公式F =G m 1m 2r2理解正确的是( )A .m 1与m 2之间的相互作用力,总是大小相等、方向相反,是一对平衡力B .m 1与m 2之间的相互作用力,总是大小相等、方向相反,是一对作用力与反作用力C .当r 趋近于零时,F 趋向无穷大D .当r 趋近于零时,公式不适用5.要使两物体间的万有引力减小到原来的14,下列办法不可采用的是( )A .使物体的质量各减小一半,距离不变B .使其中一个物体的质量减小到原来的14,距离不变C .使两物体间的距离增为原来的2倍,质量不变D .使两物体间的距离和质量都减为原来的14【概念规律练】知识点一 对万有引力定律的理解1.关于万有引力定律的适用范围,下列说法中正确的是( ) A .只适用于天体,不适用于地面上的物体B .只适用于球形物体,不适用于其他形状的物体C .只适用于质点,不适用于实际物体D .适用于自然界中任何两个物体之间2.两个大小相同的实心小铁球紧靠在一起,它们之间的万有引力为F ,若两个半径是小铁球2倍的实心大铁球紧靠在一起,则它们之间的万有引力为( ) A.14F B .4F C.116F D .16F 3.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是它在地球上所受万有 引力的( ) A .0.25倍 B .0.5倍 C .2.0倍 D .4.0倍知识点二 用万有引力公式计算重力加速度4.设地球表面重力加速度为g 0,物体在距离地心4R (R 是地球的半径)处,由于地球的作用而产生的加速度为g ,则g /g 0为( ) A .1 B .1/9 C .1/4 D .1/165.假设火星和地球都是球体,火星质量m 火和地球质量m 地之比为m 火m 地=p ,火星半径R火和地球半径R 地之比R 火R 地=q ,那么离火星表面R 火高处的重力加速度g 火h 和离地球表面R地高处的重力加速度g 地h 之比g 火hg 地h=________. 【方法技巧练】一、用割补法求解万有引力的技巧6.有一质量为M 、图1半径为R 的密度均匀球体,在距离球心O 为2R 的地方有一质量为m 的质点,现在从M中挖去一半径为R2的球体,如图1所示,求剩下部分对m 的万有引力F 为多大?二、万有引力定律与抛体运动知识的综合7.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球 表面重力加速度g =10 m/s 2,空气阻力不计) (1)求该星球表面附近的重力加速度g ′.(2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地.1.下列关于万有引力定律的说法中,正确的是( ) A .万有引力定律是牛顿发现的B .F =G m 1m 2r2中的G 是一个比例常数,是没有单位的C .万有引力定律适用于任意质点间的相互作用D .两个质量分布均匀的分离的球体之间的相互作用力也可以用F =Gm 1m 2r 2来计算,r 是两球体球心间的距离2.下列关于万有引力的说法中正确的是( )A .万有引力是普遍存在于宇宙空间中所有具有质量的物体之间的相互作用力B .重力和引力是两种不同性质的力C .当两物体间有另一质量不可忽略的物体存在时,则这两个物体间的万有引力将增大D .当两物体间距离为零时,万有引力将无穷大3.下列关于万有引力定律的说法中,正确的是( )①万有引力定律是卡文迪许在实验室中发现的 ②对于相距很远、可以看成质点的两个物体,万有引力定律F =G Mmr2中的r 是两质点间的距离 ③对于质量分布均匀的球体,公式中的r 是两球心间的距离 ④质量大的物体对质量小的物体的引力大于质量小的物体对质量大的物体的引力 A .①③ B .②④ C .②③ D .①④4.苹果自由落向地面时加速度的大小为g ,在离地面高度等于地球半径处做匀速圆周运动的人造卫星的向心加速度为( )A .g B.12gC.14g D .无法确定 5.在某次测定引力常量的实验中,两金属球的质量分别为m 1和m 2,球心间的距离为r , 若测得两金属球间的万有引力大小为F ,则此次实验得到的引力常量为( )A.Fr m 1m 2B.Fr 2m 1m 2C.m 1m 2FrD.m 1m 2Fr2 6.设想把质量为m 1的物体放到地球的中心,地球质量为m 2,半径为r ,则物体与地球 间的万有引力是( ) A .零 B .无穷大C .G m 1m 2r2 D .无法确定7.月球表面的重力加速度为地球表面重力加速度的16,一个质量为600 kg 的飞行器到达月球后( )A .在月球上的质量仍为600 kgB .在月球表面上的重力为980 NC .在月球表面上方的高空中重力小于980 ND .在月球上的质量将小于600 kg8.如图2所示,两个半径分别为r 1=0.40 m ,r 2=0.60 m ,质量分布均匀的实心球质量 分别为m 1=4.0 kg 、m 2=1.0 kg ,两球间距离r 0=2.0 m ,则两球间的相互引力的大小为(G=6.67×10-11N·m 2/kg 2)( )图2A .6.67×10-11NB .大于6.67×10-11 NC .小于6.67×10-11 N D .不能确定9.据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍, 一个在地球表面重力为600 N 的人在这个行星表面的重力将变为960 N .由此可推知, 该行星的半径与地球半径之比约为( ) A .0.5 B .210.火星半径为地球半径的一半,火星质量约为地球质量的19.一位宇航员连同宇航服在地球上的质量为100 kg ,则在火星上其质量为________kg ,重力为________ N .(g 取9.8 m/s 2)11.如图3所示,图3火箭内平台上放有测试仪,火箭从地面启动后,以加速度g2竖直向上匀加速运动,升到某一高度时,测试仪对平台的压力为启动前压力的1718.已知地球半径为R ,求火箭此时离地面的高度.(g 为地面附近的重力加速度)12.某人造地球卫星质量为m ,绕地球运动的轨迹为椭圆.已知它在近地点距地面高度 为h 1,速度为v 1,加速度为a 1;在远地点距地面高度为h 2,速度为v 2.已知地球半径为R ,求该卫星在远地点的加速度a 2.第2节 万有引力定律课前预习练1.相互作用的引力 质量的乘积 距离的平方 F =G m 1m 2r2 引力常量 6.67×10-11 N·m 2/kg 2 卡文迪许2.质点 球心3.C [任何物体间都存在相互作用的引力,故称万有引力,A 错;两个质量均匀的球体间的万有引力也能用F =Gm 1m 2r 2来计算,B 错;物体间的万有引力与它们距离的r 的二次方成反比,故r 减小,它们间的引力增大,C 对;引力常量G 是由卡文迪许精确测出的,D 错.]4.BD [两物体间的万有引力是一对相互作用力,而非平衡力,故A 错,B 对;万有引力公式F =G m 1m 2r 2只适用于质点间的万有引力计算,当r →0时,物体便不能再视为质点,公式不再适用,故C 错,D 对.]5.D课堂探究练 1.D2.D [小铁球间的万有引力F =G m 2(2r )2=Gm 24r 2大铁球半径是小铁球半径的2倍,其质量为小铁球m =ρV =ρ·43πr 3大铁球M =ρV ′=ρ·43π(2r )3=8·ρ·43πr 3=8m所以两个大铁球之间的万有引力F ′=G 8m ·8m (4r )2=16·Gm 24r 2=16F .]点评 运用万有引力定律时,要准确理解万有引力定律公式中各量的意义并能灵活运用.本题通常容易出现的错误是只考虑两球球心距离的变化而忽略球体半径变化而引起的质量变化,从而导致错解.3.C [由万有引力定律公式,在地球上所受引力F =G MmR2,在星球上所受引力F ′=G M ′m R ′2=G M 2m (R 2)2=2G MmR 2=2F ,故C 正确.] 点拨 利用万有引力定律分别计算宇航员在地球表面和星球表面所受到的万有引力,然后比较即可得到结果.4.D [地球表面:G m 地m R 2=mg 0.离地心4R 处:G m 地m (4R )2=mg 由以上两式得:g g 0=(R 4R )2=116.] 点评 (1)切记在地球表面的物体与地心的距离为R .(2)物体在离地面h 高度处,所受的万有引力和重力相等,有mg =Gm 地m(R +h )2.所以g 随高度的增加而减小,不再等于地面附近的重力加速度.(3)通常情况下,处在地面上的物体,不管这些物体是处于何种状态,都可以认为万有引力和重力相等,但有两种情况必须对两者加以区别:一是从细微之处分析重力与万有引力大小的关系时,二是物体离地面的高度与地球半径相比不能忽略时的情况.5.p q2 解析 距某一星球表面h 高处的物体的重力,可认为等于星球对该物体的万有引力,即mg h =G m 星m (R +h )2,解得距星球表面h 高处的重力加速度为g h =G m 星(R +h )2.故距火星表面R 火高处的重力加速度为g 火h=G m 火(2R 火)2,距地球表面R 地高处的重力加速度为g 地h=G m 地(2R 地)2,以上两式相除得g 火hg 地h =m 火m 地·R 2地R 2火=p q 2.点评 对于星球表面上空某处的重力加速度g h =G m 星(R +h )2,可理解为g h 与星球质量成正比,与该处到星球球心距离的二次方成反比.6.7GMm 36R 2解析 一个质量均匀分布的球体与球外的一个质点间的万有引力可以用万有引力公式F =G m 1m 2r 2直接进行计算,但当球体被挖去一部分后,由于质量分布不均匀,万有引力定律就不再适用.此时我们可以用“割补法”进行求解.设想将被挖部分重新补回,则完整球体对质点m 的万有引力为F 1,可以看做是剩余部分对质点的万有引力F 与被挖小球对质点的万有引力F 2的合力,即F 1=F +F 2.设被挖小球的质量为M ′,其球心到质点间的距离为r ′.由题意知M ′=M 8,r ′=3R2;由万有引力定律得F 1=G Mm (2R )2=GMm 4R 2F 2=G M ′m r ′2=G M 8m (32R )2=GMm18R 2故F =F 1-F 2=7GMm36R 2.方法总结 本题易错之处为求F 时将球体与质点之间的距离r 当做两物体间的距离,直接用公式求解.求解时要注意,挖去球形空穴后的剩余部分已不是一个均匀球体,不能直接运用万有引力定律公式进行计算,只能用割补法. 7.(1)2 m/s 2 (2)1∶80解析 (1)依据竖直上抛运动规律可知,在地面上竖直上抛的物体落回原地经历的时间为:t =2v 0g在该星球表面上竖直上抛的物体落回原地所用时间为:5t =2v 0g ′所以g ′=15g =2 m/s 2(2)星球表面物体所受重力等于其所受星体的万有引力,则有mg =G MmR2所以M =gR 2G可解得:M 星∶M 地=1∶80. 课后巩固练1.ACD [万有引力定律是牛顿在前人研究的基础上发现的,据F =G m 1m 2r 2知G 的国际单位是N·m 2/kg 2,适用于任何两个物体之间的相互引力作用.]2.A [两物体间万有引力的大小只与两物体质量的乘积及两物体间的距离有关,与存不存在另一物体无关,所以C 错.若间距为零时,公式不再适用,所以D 错.]3.C4.C [地面处:mg =G Mm R 2,则g =GMR2离地面高为R 处:mg ′=G Mm (2R )2,则g ′=GM4R 2所以g ′g =14,即g ′=14g ,C 正确.]5.B [由万有引力定律F =G m 1m 2r 2得G =Fr 2m 1m 2,所以B 项正确.]6.A [设想把物体放到地球中心,此时F =G m 1m 2r 2已不再适用,地球的各部分对物体的吸引力是对称的,故物体与地球间的万有引力是零,答案为A.]7.ABC [物体的质量与物体所处的位置及运动状态无关,故A 对,D 错;由题意可知,物体在月球表面上受到的重力为地球表面上重力的16,即G ′=16mg =16×600×9.8 N =980 N ,故B 对;由F =Gm 1m 2r 2知,r 增大时,引力F 减小.在星球表面,物体的重力可近似认为等于物体所受的万有引力,故C 对.]8.C [此题中为两质量分布均匀的球体,r 是指两球心间的距离,由万有引力定律公式得F =Gm 1m 2r 2=6.67×10-11×4.0×1.0(2.0+0.40+0.60)2N =2.96×10-11 N<6.67×10-11 N ,故选C.对公式F =G m 1m 2r2中各物理量的含义要弄清楚.两物体之间的距离r :当两物体可以看成质点时,r 是指两质点间距离;对质量分布均匀的球体,r 是指两球心间的距离.]9.B [设地球质量为m ,“宜居”行星质量为M ,则M =6.4m .设人的质量为m ′,地球的半径为R 地,“宜居”行星的半径为R ,由万有引力定律得,地球上G 地=G mm ′R 2地“宜居”行星上G ′=G Mm ′R 2=G 6.4mm ′R 2两式相比得RR 地=6.4G 地G ′= 6.4×600960=21.]10.100 436解析 地球表面的重力加速度g 地=GM 地R 2地①火星表面的重力加速度g 火=GM 火R 2火② 由①②得g 火=R 2地M 火R 2火M 地·g 地=22×19×9.8 m/s 2≈4.36 m/s 2,物体在火星上的重力mg 火=100×4.36 N=436 N.11.R 2解析 在地面附近的物体,所受重力近似等于物体受到的万有引力,即mg ≈G MmR 2,物体距地面一定高度时,万有引力定律中的距离为物体到地心的距离,重力和万有引力近似相等,故此时的重力加速度小于地面上的重力加速度.取测试仪为研究对象,其先后受力如图甲、乙所示.据物体的平衡条件有N 1=mg 1,g 1=g 所以N 1=mg据牛顿第二定律有N 2-mg 2=ma =m ·g2所以N 2=mg2+mg 2由题意知N 2=1718N 1,所以mg 2+mg 2=1718mg所以g 2=49g ,由于mg ≈G Mm R 2,设火箭距地面高度为H ,所以mg 2=G Mm(R +H )2又mg =G MmR 2所以49g =gR 2(R +H )2,解得H =R 2.12.(R +h 1)2(R +h 2)2a 1解析 设地球的质量为M ,则由牛顿第二定律得近地点GMm (R +h 1)2=ma 1 远地点GMm (R +h 2)2=ma 2 解得a 2=(R +h 1)2·a 1(R +h 2)2。
高二物理公式必修二高二物理知死活都是分章节的,高三复习的时候也是分模块的,每个章节(模块)之间既有联系,也有区别。
今天小编在这给大家整理了高二物理公式,接下来随着小编一起来看看吧!高二物理公式(一)第一章力1. 重力:G = mg2. 摩擦力:(1) 滑动摩擦力:f = μFN 即滑动摩擦力跟压力成正比。
(2) 静摩擦力:①对一般静摩擦力的计算应该利用牛顿第二定律,切记不要乱用f =μFN;②对最大静摩擦力的计算有公式:f = μFN (注意:这里的μ与滑动摩擦定律中的μ的区别,但一般情况下,我们认为是一样的)3. 力的合成与分解:(1) 力的合成与分解都应遵循平行四边形定则。
(2) 具体计算就是解三角形,并以直角三角形为主。
第二章直线运动1. 速度公式:vt = v0 + at ①2. 位移公式:s = v0t + at2 ②3. 速度位移关系式: - = 2as ③4. 平均速度公式:= ④= (v0 + vt) ⑤= ⑥5. 位移差公式:△s = aT2 ⑦公式说明:(1) 以上公式除④式之外,其它公式只适用于匀变速直线运动。
(2)公式⑥指的是在匀变速直线运动中,某一段时间的平均速度之值恰好等于这段时间中间时刻的速度,这样就在平均速度与速度之间建立了一个联系。
6. 对于初速度为零的匀加速直线运动有下列规律成立:(1). 1T秒末、2T秒末、3T秒末…nT秒末的速度之比为: 1 : 2 : 3 : … : n.(2). 1T秒内、2T秒内、3T秒内…nT秒内的位移之比为: 12 : 22 : 32 : … : n2.(3). 第1T秒内、第2T秒内、第3T秒内…第nT秒内的位移之比为: 1 : 3 : 5 : … : (2 n-1).(4). 第1T秒内、第2T秒内、第3T秒内…第nT秒内的平均速度之比为: 1 : 3 : 5 : … : (2 n-1).第三章牛顿运动定律1. 牛顿第二定律: F合= ma注意: (1)同一性: 公式中的三个量必须是同一个物体的.(2)同时性: F合与a必须是同一时刻的.(3)瞬时性: 上一公式反映的是F合与a的瞬时关系.(4)局限性: 只成立于惯性系中, 受制于宏观低速.2. 整体法与隔离法:整体法不须考虑整体(系统)内的内力作用, 用此法解题较为简单, 用于加速度和外力的计算. 隔离法要考虑内力作用, 一般比较繁琐, 但在求内力时必须用此法, 在选哪一个物体进行隔离时有讲究, 应选取受力较少的进行隔离研究.3. 超重与失重:当物体在竖直方向存在加速度时, 便会产生超重与失重现象. 超重与失重的本质是重力的实际大小与表现出的大小不相符所致, 并不是实际重力发生了什么变化,只是表现出的重力发生了变化.第四章物体平衡1. 物体平衡条件: F合 = 02. 处理物体平衡问题常用方法有:(1). 在物体只受三个力时, 用合成及分解的方法是比较好的. 合成的方法就是将物体所受三个力通过合成转化成两个平衡力来处理; 分解的方法就是将物体所受三个力通过分解转化成两对平衡力来处理.(2). 在物体受四个力(含四个力)以上时, 就应该用正交分解的方法了. 正交分解的方法就是先分解而后再合成以转化成两对平衡力来处理的思想.第五章匀速圆周运动1.对匀速圆周运动的描述:①. 线速度的定义式: v = (s指弧长或路程,不是位移②. 角速度的定义式: =③. 线速度与周期的关系:v =④. 角速度与周期的关系:⑤. 线速度与角速度的关系:v = r⑥. 向心加速度:a = 或 a =2. (1)向心力公式:F = ma = m = m(2) 向心力就是物体做匀速圆周运动的合外力,在计算向心力时一定要取指向圆心的方向做为正方向。