【物理试卷】河北省唐山市2019届高三物理上学期期末考试试卷及答案.doc
- 格式:doc
- 大小:780.56 KB
- 文档页数:17
2019学年度高三1月份理科综合能力物理试题二、选择题:本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,第14-17题只有一项符合题目要求,第18-21题有多项符合题目要求。
全部选对的得6分,选对但不全对的得3分,有选错的得0分。
1. 如图所示为氢原子的能级图,一群氢原子处于n=4的激发态,在向较低能级跃迁的过程中向外发出光子,用这些光照射逸出功为1.90 eV的金属铯,下列说法正确的是( )A. 这群氢原子能发出6种频率不同的光,其中从n=4跃迁到n=3所发出的光波长最短B. 这群氢原子能发出3种频率不同的光,其中从n=4跃迁到n=1所发出的光频率最高C. 金属铯表面所发出的光电子的初动能最大值为12.75eVD. 金属铯表面所发出的光电子的初动能最大值为10.85 eV【答案】D【解析】根据,知这群氢原子能发出6种频率不同的光子,从n=4跃迁到n=3能级辐射的光子频率最小,波长最长,从n=4跃迁到n=1能级辐射的光子频率最高。
故A、B错误。
光子能量最大为12.75eV,根据光电效应方程知,最大初动能为10.85eV。
故D正确,C错误。
故选D。
2. 如图所示,置于地面的矩形框架中用两细绳拴住质量为m的小球,绳B水平.设绳A、B对球的拉力大小分别为F1、F2,它们的合力大小为F.现将框架在竖直平面内绕左下端缓慢旋转90°,在此过程中()A. F1先增大后减小B. F2先增大后减小C. F先增大后减小D. F先减小后增大【答案】B【解析】对小球受力分析如图所示:小球处于静止状态,受力平衡,两绳的拉力的合力与重力大小相等方向相反,则F不变,根据平行四边形定则可知,将框架在竖直平面内绕左下端缓慢旋转90°的过程中,F1逐渐减小,F2先增大后减小,当绳A处于水平方向时,F2最大,故B正确.点晴:小球受重力、两绳的拉力而处于平衡状态,对小球进行受力分析,根据平行四边形定则作图分析即可.3. 如图所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。
2024届河北省高三上学期大数据应用调研联合测评物理高频考点试题(一)(基础必刷)学校:_______ 班级:__________姓名:_______ 考号:__________(满分:100分时间:75分钟)总分栏题号一二三四五六七总分得分评卷人得分一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题一枚质量为m的烟花弹获得动能后,从地面竖直升空,当烟花弹上升到最大高度时,弹中火药爆炸将烟花弹炸成质量分别为m1和m2的A、B两部分,m1:m2=2:1,此时两部分获得的动能之和为烟花弹初动能的两倍,且初始均沿水平方向运动。
设爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量,A、B两部分落地的水平位移大小分别为x1和x2,则( )A.A、B两部分落地时的速度大小之比为2:1B.A、B两部分落地时的动能之比为4:5C.x1:x2=2:1D.A、B两部分落地点的间距为烟花弹上升的最大高度的4倍第(2)题中国目前在轨运行的人造地球卫星数量已超400颗,居世界第二位。
假设这些卫星均可视为绕地球做匀速圆周运动,仅知道它们的轨道半径。
关于这些卫星,下列哪个物理量的大小关系不能进行比较( )A.加速度B.线速度C.周期D.动能第(3)题在第十一届全运会男子举重56公斤级比赛中,龙清泉以302公斤的总成绩获得冠军,并以169公斤超该级别挺举世界纪录。
如图所示,设龙清泉所举杠铃的总质量为,杠铃平衡时每只手臂与竖直线所成的夹角为,则他每只手臂施加的作用力为( )A.B.C.D.第(4)题在海洋中是不能应用电磁波进行水下通讯的,在大海中航行的潜艇都装有声呐,声呐利用声波来进行水下通讯,帮助船只导航、测距、定位等,在海洋中不能应用电磁波进行水下通讯的主要原因是()A.电磁波不能在海水中传播B.在海水中电磁波的频率不稳定,会随海水起伏而变化C.电磁波在海水中传播速度比在空气中传播速度小D.海水是导体,电磁波在海水中的衰减导致传播距离较短第(5)题2018年11月16日,第26届国际计量大会决定,千克由普朗克常数及米和秒定义,即,该决定已于2019年5月20日起生效。
一、带电粒子在复合场中的运动专项训练1.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32lm t qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =①211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T v π= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.2.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
第四次月考物理试题【陕西版】考生注意:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试时间100分钟。
2.请将各题答案填写在答题卷上。
第I卷(选择题共40分)一、选择题:(本题共10个小题,每题4分,共40分。
在每小题给出的四个选项中,第1—7题只有一个选项正确,第8~10题有多项符合题目要求,全选对的得4分,选对但不全的得2分,有选错的得0分)1.图像法可以形象直观地描述物体的运动情况。
对于下面两质点运动的位移一时间图像和速度一时间图像,分析结果正确的是A.由图(1)可知,质点做曲线运动,且速度逐渐增大B.由图(1)可知,质点在前10s内的平均的速度大小为4m/sC.由图(2)可知,质点在第4s内加速度的方向与物体运动的方向相反D.由图(2)可知,质点在运动过程中,加速度的最大值为l5m/s22.北京时间12月17日,2014-2015赛季CBA第20轮赛事全面展开。
在易建联带领下,广东队坐阵主场战胜挑战的北京队。
比赛中易建联多次完成精彩跳投。
在腾空跃起到落回地面的跳投过程中,若忽略空气阻力,则下列说法正确的是A.易建联在下降过程中处于失重状态B.易建联起跳以后在上升过程中处于超重状态C.易建联起跳时地面对他的支持力小于他的重力D.易建联起跳时地面对他的支持力等于他的重力3.如图所示,在光滑水平桌面上有一质量为1Kg的木块A,A的左右两侧通过轻绳与轻弹簧测力计相连,弹簧测力计另一端都通过定滑轮,挂着两个质量均为0.3Kg钩码,滑轮摩擦不计,两钩码间用轻绳相连,系统处于静止状态。
用剪刀将右侧钩码间绳子剪断,在剪断的瞬间,下列说法正确的是(g=10m/s2)A.左侧两钩码的加速度大小为5m/s2,方向竖直向下B.右侧上方钩码的加速度大小为5m/s2,方向竖直向上C.物块A的加速度为零D.物块A的加速度大小为3m/s2,方向水平向右4.如图所示,横截面为直角三角形的斜劈A,底面靠在粗糙的竖直墙面上,力F通过球心水平作用在光滑球B上,系统处于静止状态。
2019届高三二轮复习专题—基础综合—力与平衡核心知识考点一受力分析、物体的平衡明确六种常见力规律方法1.受力分析的顺序一般按照“一重、二弹、三摩擦、四其他”的程序,结合整体法与隔离法分析物体的受力情况.2.处理平衡问题的基本思路典例分析1 . 如图所示,一根弹性杆的一端固定在倾角为30°的斜面上,杆的另一端固定一个质量为1kg的小球,小球处于静止状态。
取g=10m/s2。
则弹性杆对小球的作用力A.大小为10N,方向竖直向上B.大小为10N,方向垂直于斜面向上C.大小为5N,方向垂直于斜面向上D.大小为5N,方向垂直于斜面向上【答案】A【解析】【详解】小球受到竖直向下的重力G=10N,杆对小球的作用力F,小球静止,处于平衡状态,由平衡条件得:F与重力G是一对平衡力,则F=G=10N,方向竖直向上;故A正确,BCD错误。
故选:A.考点二整体与隔离在静态平衡中的应用核心知识1.整体法在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法.采用整体法可以避免对系统内部进行繁琐的分析,常常使问题解答更简便明了.2.隔离法把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法.采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理.3.隔离法与整体法的关系隔离法与整体法,在一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,研究系统外力时往往用整体法而研究单个物体受力,则用隔离法.规律方法整体法、隔离法处理静态平衡问题的思路典例分析2 . 如图,一质量为M="10" kg的正方形小物块置于固定在水平地面上的斜面体上,物块M与斜面间动摩擦因数μ="0.5" ,一平行于斜面的轻质细绳一端系于物块M上,另一端绕过定滑轮与人相连(不计定滑轮处的一切摩擦),定滑轮质量m0="2" kg.当人以T="100" N的力斜向下拉绳子时(人不移动位置,只是手中收绳子),为保证物块M 沿斜面向上做匀速直线运动,需同时施加一垂直物块M上表面向下作用力F. 人的质=" 50" kg,斜面倾角和绳子与水平面的夹角都是量m人θ=30∘,sin30∘=1/2,cos30∘=/2,重力加速度取g="10" m/s2求:(1)人对地面的压力N多大;(2)人与地面的摩擦力f的大小和方向;地大小;(3)定滑轮上方竖直悬杆OA对定滑轮的拉力F杆(4)作用力F的大小。
呂黎汇文:r物理考试时间90分钟意事项考生在答题前谓认真阅读本注意事霁各题答:驚填写的题卷及答题卡上。
2•作再选择題必须用2B 铅笔把答m •对应題目的淞杯于打 儿宀爲心屁再选涂芥它答案。
作答非选择题必须写在答题卷上的指运位置’在具匕0置作「L 倬无眾卷I (选择题)一、单项选择题:本題其12小題,每小题3分,共计36分。
L2016年8月5日至21 口第引届夏季奧林匹克运动会在巴西的里约热内卢举行,中国体育健儿 们奋力拼搏.在里约再次为祖WO 荣誉.下列说法1E 确的是()I••A. 远方看台的观众观看推球运动员的发球动作时,可将込动员视为质点B. 在跳水比赛中,如果以运动员为参考系,该运动员下方的水血不一定是卜•升的C ・4:男了 200米白由泳决赛中,我国选F 孙杨以1分44秒65的成绩获得冠军,根据这个信息 我们可以求出他在农次比赛中的平均速度D.在男了 2()公里竞走决赛中,我国选手王镇以1小时]9分14秒获得冠军,这里提到的“I 水 时19分14秒”指的是时刻 *2. -个做变速直线运动的物体,加速度逐渐减小到零.那么该物体的运动情况不可能的敏)A. 速度不斯噌大,到加速度为零时,速度达到最大.而后做匀速点线运动B. 速度不斯减小,到加速度为零时,物体做匀减速直线运动,而后物体运动停止C.速度不断减小到零,然后向相反方向做加速运动,而后物体做匀速直线运动第I 页共10臾卩帚年级換底考试満分1㈱分D.速度不断减小・到加速度为零対速度减小到最小・而后物体做匀速应线运动3.质点做匀加速氏线运动,运动5皿的过f?中速度增加了 5m/s ・再运动15m 的过弄丰速度同 样憎加了 5 m/s ・则该质点的加速度为()B. 2.5 m/s 2 D ・ 5 m/s~4•甲、乙两车某时刻由同一地点,’沿同“方向开始做育线运动,若以该时刻作为计时起点.得到 两乍的位移 时间图象如图所示,图線中的。
「段与?18平行,C 段与04平行,则下列说法中 正确的是()A. h 到上时刻两车的距离越来越远B. 0~厶时间内甲车的平均速度犬于乙车的平均速度C. 甲车的初速度等于乙车在心时刻的速度 D ・厲时刻甲车在乙车的前方5. 有个斜紅 其底边固定H 水平,斜曲倾角0在0〜90°内变化,••质量为1 kg 的物体以一定 的初速度門斜面底端沿斜面上滑,滑到最远点的位移随斜面倾角&变化的规律如图3所尻.则在*30°时,物体上滑的位移是(A. 5 mB. 5爲 m CIO mD 」0>^ m 6.石块彳自塔顶自由落下高度为加时;石块〃自离塔顶n 处(在塔的下方)自由卜•落.两石块同 时落地,则塔髙为();,A. m inA ・ 1 m/L C. 10m/s :B.第2页共1()页一一粉阳移2他7・-物体做匀加速斤线运动,通过-段位移&所用的时闻为仏 臓皿i 灯''用的时间为加则物体远动的加速度为()2^t-hl B^jTTn辿也 世兰 C 益=D 曲f )8•-个物体沿-条直线运动,其位移戒时间/变化规律图线为如图所乐抛物纯c 和"如, 由此可知()A.物体的初速度为0C. 物体在c 时刻的速度为詈D. 物体经过1.5c 时的速度为?V9,如图,质量伽〉加的两物体A.放在一起,靠着竖頁墙面.让它们由静止释放,在沿粗糙A B C Da10•如图所示,两轻禅竇a 、b 悬挂-小铁球处于平衡状态r 弹簧与竖直方向成45。
河北省衡水中学2019届高三(上)第一次调研物理试题一、选择题1. 物理学的发展极大地丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了人类文明的进步,关于物理学中运动与力的发展过程和研究方法的认识,下列说法中正确的是()A. 亚里士多德首先提出了惯性的概念B. 伽利略对自由落体运动研究方法的核心是:把实验和逻辑推理(包括数学演算)结合起来,从而发展了人类的科学思维方式和科学研究方法C. 牛顿三条运动定律是研究动力学问题的基石,牛顿的三条运动定律都能通过现代的实验手段直接验证D. 力的单位“N“是基本单位,加速度的单位“m/s2”是导出单位2. 一质点位于x=﹣1m处,t=0时刻沿x轴正方向做直线运动,其运动的v﹣t图象如图所示.下列说法正确的是()学¥科¥网...学¥科¥网...A. 0~2s内和0~4s内,质点的平均速度相同B. t=4s时,质点在x=2m处C. 第3s内和第4s内,质点位移相同D. 第3s内和第4s内,质点加速度的方向相反3. 如图所示,小球A、B通过一条细绳跨过定滑轮连接,它们都穿在一根竖直杆上.当两球平衡时,连接两球的细绳与水平方向的分别为θ和2θ.假设装置中的各处摩擦均不计,则A、B球的质量之比为()A. 2cosθ:1B. 1:2cosθC. tanθ:1D. 1:2sinθ4. 如图所示,一个半径为R的圆球,其重心不在球心O上,将它置于水平地面上,则平衡时球与地面的接触点为A;若将它置于倾角为30°的粗糙斜面上,则平衡时(静摩擦力足够大)球与斜面的接触点为B.已知AB段弧所对应的圆心角度数为60°,对圆球重心离球心O的距离以下判断正确的是()A. B. C. D.5. 如图所示,光滑的大圆环固定在竖直平面上,圆心为O点,P为环上最高点,轻弹簧的一端固定在P点,另一端栓连一个套在大环上的小球,小球静止在图示位置平衡,则()A. 弹簧可能处于压缩状态B. 大圆环对小球的弹力方向可能指向O点C. 小球受到弹簧的弹力与重力的合力一定指向O点D. 大圆环对小球的弹力大小可能小于球的重力,也可能大于球的重力6. 如图所示,a、b、c三根轻细绳悬挂两个质量相同的小球A、B保持静止,细绳a是水平的,现对B球施加一个水平向有的力F,将B缓缓拉到图中虚线位置,A球保持不动,这时三根细绳张力F a、F b、F c的变化情况是()A. 都变大B. 都不变C. F b不变,F a、F c变大D. F a、F b不变,F c变大7. 半圆柱体P放在粗糙的水平面上,有一挡板MN,其延长线总是过半圆柱体的轴心O,但挡板与半圆柱体不接触,在P和MN之间放有一个光滑均匀的小圆柱体Q(P的截面半径远大于Q的截面半径),整个装置处于静止状态,如图是这个装置的截面图,若用外力使MN绕O点缓慢地逆时针转动,在Q到达最高位置前,发现P始终保持静止,在此过程中,下列说法正确的是()A. MN对Q的弹力大小逐渐减小B. P、Q间的弹力先增大后减小C. 桌面对P的摩擦力先增大后减小D. P所受桌面的支持力保持不变8. 如图所示,n个质量为m的相同木块并列放在水平面上,木块跟水平面间的动摩擦因数为μ,当对1木块施加一个水平向右的推力F时,木块加速运动,木块5对木块4的压力大小为()A. FB.C.D.9. 如图所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A小球,同时水平细线一端连着A球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A、B两小球分别连在另一根竖直弹簧两端.开始时AB两球都静止不动,A、B两小球的质量相等,重力加速度为g,若不计弹簧质量,在水平细线被剪断瞬间,A、B两球的加速度分别为()A. a A=a B=gB. a A=2g,a B=0C. a A=g,a B=0D. a A=2g,a B=010. 如图所示,质量为M足够长的斜面体始终静止在水平地面上,有一个质量为m的小物块在受到沿斜面向下的力F的作用下,沿斜面匀加速下滑,此过程中斜面体与地面的摩擦力为0.已知重力加速度为g,则下列说法正确的是()A. 斜面体给小物块的作用力大小等于mgB. 斜面体对地面的压力小于(m+M)gC. 若将力F的方向突然改为竖直向下,小物块仍做加速运动D. 若将力F撤掉,小物块将匀速下滑11. 如图所示,A、B两物体的质量分别为2m和m,静止叠放在水平地面上.A、B间的动摩擦因数为μ,B 与地面间的动摩擦因数为μ.最大静摩擦力等于滑动摩擦力,重力加速度为g.现对A施加一水平拉力F,则()A. 当F<2μmg时,A、B都相对地面静止B. 当F=μmg时,A的加速度为μgC. 当F>3μmg时,A相对B滑动D. 无论F为何值,B的加速度不会超过μg12. 如图所示,M为定滑轮,一根细绳跨过M,一端系着物体C,另一端系着一动滑轮N,动滑轮N两侧分别悬挂着A、B两物体,已知B物体的质量为3kg,不计滑轮和绳的质量以及一切摩擦,若C物体的质量为9kg,则关于C物体的状态下列说法正确的是()A. 当A的质量取值合适,C物体有可能处于平衡状态B. 无论A物体的质量是多大,C物体不可能平衡C. 当A的质量足够大时,C物体不可能向上加速运动D. 当A的质量取值合适,C物体可以向上加速也可以向下加速运动13. 如图所示,一劲度系数为k的轻质弹簧,上端固定,下端连一质量为m的物块A,A放在质量也为m的托盘B上,初始时,在竖直向上的力F作用下系统静止,且弹簧处于原长状态.以N表示B对A的作用力,x表示弹簧的伸长量,现改变力F的大小,使B以的加速度匀加速向下运动(g为重力加速度,空气阻力不计),此过程中N或F的大小随x变化的图象正确的是()A. B.C. D.14. 如图甲所示,用粘性材料粘在一起的A、B两物块静止于光滑水平面上,两物块的质量分别为m A=lkg、m B=2kg,当A、B之间产生拉力且大于0.3N时A、B将会分离.t=0时刻开始对物块A施加一水平推力F1,同时对物块B施加同一方向的拉力F2,使A、B从静止开始运动,运动过程中F1、F2方向保持不变,F1、F2的大小随时间变化的规律如图乙所示.则下列关于A、B两物块受力及运动情况的分析,正确的是()A. t=2.0s时刻A、B之间作用力大小为0.6NB. t=2.0s时刻A、B之间作用力为零C. t=2.5s时刻A对B的作用力方向向左D. 从t=0时刻到A、B分离,它们运动的位移为5.4m15. 如图,穿在水平直杆上质量为m的小球开始时静止.现对小球沿杆方向施加恒力F0,垂直于杆方向施加竖直向上的力F,且F的大小始终与小球的速度成正比,即F=kv(图中未标出).已知小球与杆间的动摩擦因数为μ,小球运动过程中未从杆上脱落,且F0>μmg.下列关于运动中的速度﹣时间图象正确的是()A. B. C. D.二、非选择题.16. 现要测量滑块与木板之间的动摩擦因数,实验装置如图1所示.表面粗糙的木板一端固定在水平桌面上,另一端抬起一定高度构成斜面;木板上有一滑块,其后端与穿过打点计时器的纸带相连,打点计时器固定在木板上,连接频率为50Hz的交流电源.接通电源后,从静止释放滑块,滑块带动纸带上打出一系列点迹.(1)图2给出的是实验中获取的一条纸带的一部分:0、1、2、3、4、5、6是实验中选取的计数点,每相邻两计数点间还有4个打点(图中未标出),2、3和5、6计数点间的距离如图2所示.由图中数据求出滑块的加速度a=__m/s2(结果保留三位有效数字).(2)已知木板的长度为l,为了求出滑块与木板间的动摩擦因数,还应测量的物理量是________.A.滑块到达斜面底端的速度v B.滑块的质量mC.滑块的运动时间t D.斜面高度h和底边长度x(3)设重力加速度为g,滑块与木板间的动摩擦因数的表达式μ=__(用所需测量物理量的字母表示)17. 如图所示,放在粗糙的固定斜面上的物块A和悬挂的物体B均处于静止状态.轻绳AO绕过光滑的定滑轮与轻弹簧的右端及轻绳BO的上端连接于O点,轻弹簧中轴线沿水平方向,轻绳的OC段与竖直方向的夹角θ=53°,斜面倾角α=37°,物块A和B的质量分别为m A=5kg,m B=1.5kg,弹簧的劲度系数k=500N/m,(sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2),求:(1)弹簧的伸长量x;(2)物块A受到的摩擦力.18. 如图所示,电动机带动滚轮做逆时针匀速转动,在滚轮的摩擦力作用下,将一金属板从斜面底端A送往上部,已知斜面光滑且足够长,倾角θ=30°,滚轮与金属板的切点B到斜面底端A距离L=6.5m,当金属板的下端运动到切点B处时,立即提起滚轮使它与板脱离接触.已知板的质量m=1kg,滚轮边缘线速度恒为v=4m/s,滚轮对板的正压力F N=20N,滚轮与金属板间的动摩擦因数为μ=0.35,取重力加速度g=10m/s2.求:(1)板加速上升时所受到的滑动摩擦力大小;(2)板加速至与滚轮边缘线速度相同时前进的距离;(3)板匀速上升的时间.19. 在铁路与公路交叉点上,由于司机粗心、判断失误或车况等原因常常造成交通事故.现有一辆长为5m 的汽车以v1=15m/s的速度行驶,在离铁路与公路交叉点175m处,汽车司机突然发现离交叉点200m处有一列长300m的列车以v2=20m/s的速度行驶过来,为了避免事故的发生,汽车司机如果立刻刹车作匀减车运动,则最小加速度为多少?汽车司机如果立刻作匀加速运动,则最小加速度应多大?20. 如图所示,质量M=10kg、上表面光滑的足够长的木板在F=50N的水平拉力作用下,以初速度v0=5m/s 沿水平地面向右匀速运动.现有足够多的小铁块,它们的质量均为m=1kg,将一铁块无初速地放在木板的最右端,当木板运动了L=1m时,又无初速度地在木板的最右端放上第2块铁块,只要木板运动了L就在木板的最右端无初速度放一铁块.(取g=10m/s2)试问:(1)木板与地面之间的滑动摩擦系数多大?(2)第1块铁块放上后,木板运动了L时,木板的速度多大?(3)最终木板上放有多少块铁块?河北省衡水中学2019届高三(上)第一次调研物理试题一、选择题1. 物理学的发展极大地丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了人类文明的进步,关于物理学中运动与力的发展过程和研究方法的认识,下列说法中正确的是()A. 亚里士多德首先提出了惯性的概念B. 伽利略对自由落体运动研究方法的核心是:把实验和逻辑推理(包括数学演算)结合起来,从而发展了人类的科学思维方式和科学研究方法C. 牛顿三条运动定律是研究动力学问题的基石,牛顿的三条运动定律都能通过现代的实验手段直接验证D. 力的单位“N“是基本单位,加速度的单位“m/s2”是导出单位【答案】B【解析】牛顿首先提出了惯性的概念,选项A错误;伽利略对自由落体运动研究方法的核心是:把实验和逻辑推理(包括数学演算)结合起来,从而发展了人类的科学思维方式和科学研究方法,选项B正确;牛顿三条运动定律是研究动力学问题的基石,牛顿第一定律步能通过现代的实验手段直接验证,选项C错误;力的单位“N”和加速度的单位“m/s2”都是导出单位,选项D正确;故选B.2. 一质点位于x=﹣1m处,t=0时刻沿x轴正方向做直线运动,其运动的v﹣t图象如图所示.下列说法正确的是()A. 0~2s内和0~4s内,质点的平均速度相同B. t=4s时,质点在x=2m处C. 第3s内和第4s内,质点位移相同D. 第3s内和第4s内,质点加速度的方向相反【答案】B【解析】根据图象与坐标轴围成的面积表示位移,在时间轴上方的位移为正,下方的面积表示位移为负,则知0~2s内和0~4s内,质点的位移相同,但所用时间不同,则平均速度不同,故A错误.0-2s内质点的位移为△x=×(1+2)×2m=3m,2-4s内位移为零,则t=4s时质点的位移是3m,t=0时质点位于x=-1m处,则t=2s时,质点在x′=x+△x=2m处,故B正确.第3s内和第4s内,质点位移大小相同,但方向不同,选项C错误;速度图线的斜率表示加速度,直线的斜率一定,加速度是一定的,则知第3s内和第4s 内,质点加速度的方向相同,故D错误.故选B.点睛:本题是速度图象问题,考查理解物理图象意义的能力,关键要抓住速度图象“斜率”表示加速度,“面积”表示位移.3. 如图所示,小球A、B通过一条细绳跨过定滑轮连接,它们都穿在一根竖直杆上.当两球平衡时,连接两球的细绳与水平方向的分别为θ和2θ.假设装置中的各处摩擦均不计,则A、B球的质量之比为()A. 2cosθ:1B. 1:2cosθC. tanθ:1D. 1:2sinθ【答案】B【解析】分别对AB两球分析,运用合成法,如图:由几何知识得:T sinθ=m A g,T sin2θ=m B g,故m A:m B=sinθ:sin2θ=1:2cosθ,故选B.【点睛】本题考查了隔离法对两个物体的受力分析,关键是抓住同一根绳子上的拉力处处相等结合几何关系将两个小球的重力联系起来.4. 如图所示,一个半径为R的圆球,其重心不在球心O上,将它置于水平地面上,则平衡时球与地面的接触点为A;若将它置于倾角为30°的粗糙斜面上,则平衡时(静摩擦力足够大)球与斜面的接触点为B.已知AB段弧所对应的圆心角度数为60°,对圆球重心离球心O的距离以下判断正确的是()A. B. C. D.【答案】D【解析】将球置于水平地面上,球受重力和支持力,二力平衡,故重力的作用点在OA连线上,将球放在斜面上,以B为支点,根据力矩平衡条件,合力矩为零,故重力的力矩一定为零,故重心也在过B的竖直线上,一定是该线与OA的交点,如图所示:,故选项D正确。
2019届高三物理《平抛运动》复习过关测试题一、选择题(每小题7分,共63分)1.(2019·衡水调研)以初速度v 0水平抛出一物体,当物体的水平分位移与竖直分位移大小相等时,下列说法错误的是A .即时速度的大小是5v 0B .运动时间是2v 0gC .竖直分速度大小等于水平分速度大小D .运动的位移是22v 20g解析 当物体的水平分位移与竖直分位移大小相等时,v 0t =12gt 2,可得运动时间t =2v 0g ,水平分速度v x =v 0,竖直分速度v y =gt =2v 0,合速度v =v 2x +v 2y =5v 0,合位移s =x 2+y 2=22v 20g ,故选项C 错误。
答案 C2.如图4-2-18所示,水平抛出的物体,抵达斜面上端P 处时其速度方向恰好沿斜面方向,然后沿斜面无摩擦滑下,下列选项中的图象描述的是物体沿x 方向和y 方向运动的速度-时间图象,其中正确的是图4-2-18解析 0~t p 段,水平方向:v x =v 0恒定不变;竖直方向:v y =gt ;t P ~t Q 段,水平方向:v x =v 0+a 水平t ,竖直方向:v y =vP y +a 竖直t (a 竖直<g ),因此选项A 、B 、D 均错误,C 正确。
答案 C3.水平抛出的小球,t 秒末的速度方向与水平方向的夹角为θ1,t +t 0秒末速度方向与水平方向的夹角为θ2,忽视空气阻力,重力加速度为g ,则小球初速度的大小为A .gt 0(cos θ1-cos θ2) B.gt 0cos θ1-cos θ2C .gt 0(tan θ1-tan θ2) D.gt 0tan θ2-tan θ1解析 将t 秒末和t + t 0秒末的速度分解如图所示,则tan θ1=v y 1v 0,tan θ2=v y 2v 0,又v y 2= v y 1+ gt 0,解得v 0=gt 0tan θ2-tan θ1,故D 正确。
一、带电粒子在复合场中的运动专项训练1.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at =从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m+=+ 【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.2.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:200qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+- M 点横坐标为:22000724M x R R R h h =+-3.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC 边足够长)中存在垂直于纸面的匀强磁场,A 处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA 边且垂直于磁场的方向射入磁场,运动到GA 边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m 1和m 2(m 1>m 2),电荷量均为q .加速电场的电势差为U ,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.(1)求质量为m 1的离子进入磁场时的速率v 1;(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场.为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度.【来源】2011年普通高等学校招生全国统一考试物理卷(北京)【答案】(112qU m 21228Um m qB (3)d m 12122m m m m --L【解析】(1)动能定理 Uq =12m 1v 12 得:v 1=12qUm …① (2)由牛顿第二定律和轨道半径有:qvB =2mv R,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):R 1=122mU qB ,R 2=222 m U qB …② 两种离子在GA 上落点的间距s =2(R 1−R 2)=1228()Um m qB- …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④ 利用②式,代入④式得:2R 1(1−21m m >d R 1的最大值满足:2R 1m =L-d 得:(L −d )(1−21m m >d 求得最大值:d m 12122m m m m --L4.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
唐山市2018-2019学年度高二年级期末考试卷(A)理科综合能力测试(物理部分)二、选择题:本题共8小题,每题6分。
在每小题给出的四个选项中,第14~18题只有项符合题目要求,19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有错选或不选的得0分。
1.关于碳14的衰变方程C→X+e,下面说法正确的是A. A等于13,Z等于5B. A等于14,Z等于7C. A等于14,Z等于5D. A等于13,Z等于6【答案】B【解析】【分析】根据质量数和电荷数守恒可求解A和Z的值。
【详解】根据质量数和电荷数守恒可知:14=A;6=Z+(-1),解得Z=7,故选B.2.如图所示,长木板A与物体B叠放在水平地面上,物体与木板左端立柱间放置轻质弹簧,在水平外力F作用下,木板和物体都静止不动,弹簧处于压缩状态。
将外力F缓慢减小到零,物体始终不动,在此过程中A. 弹簧弹力逐渐减小B. 物体B所受摩擦力逐渐减小C. 物体B所受摩擦力始终向左D. 木板A受到地面的摩擦力逐渐减小【答案】D【解析】【分析】物体始终不动,则弹簧的长度不变,弹力不变;轨物体B受力分析,分析物体B所受摩擦力的大小和方向情况;对整体受力分析,可得木板A受到地面的摩擦力的变化.【详解】将外力F缓慢减小到零,物体始终不动,则弹簧的长度不变,弹力不变,选项A错误;对物体B,因开始时所受的静摩擦力的方向不确定,则由F弹=F±f,则随F的减小,物体B所受摩擦力大小和方向都不能确定,选项BC错误;对AB的整体,水平方向力F与地面对A的摩擦力平衡,则随F的减小,木板A受到地面的摩擦力逐渐减小,选项D正确,故选D.【点睛】此题关键是能正确选择研究对象,灵活运用整体法和隔离法;抓住物体始终不动进行分析;注意静摩擦力可能的不同的方向.3.空间存在平行于纸面方向的匀强电场,纸面内ABC三点形成一个边长为1cm 的等边三角形。
将电子由A移动到B点,电场力做功2eV,再将电子由B移动到C点,克服电场力做功1eV。
匀强电场的电场强度大小为A. 100V/mB. V/mC. 200V/mD. 200V/m【答案】C【解析】【分析】根据电场力功与电势差的关系求解AB和BC各点之间的电势差,然后找到等势面确定场强的方向,根据E=U/d求解场强。
【详解】将电子由A移动到B点,电场力做功2eV,则;同样:,若设C点的电势为0,则B点的电势为1V,A点的电势为-1V,则AB中点的电势与C点电势相同,可知场强方向沿BA方向斜向上,场强为,故选C.4.某颗星球的同步轨道半径为该星球半径的6倍。
物体A在该星球赤道上随星球一起自转,卫星B绕星球做匀速圆周运动,轨道半径等于星球半径的3倍。
物体A和卫星B的线速度大小之比为A. 1︰B. ︰1C. 1︰3D. 1︰6【答案】A【解析】【分析】物体A在该星球赤道上随星球一起自转的角速度与同步卫星的角速度周期相同,根据万有引力等于向心力列式即可求解.【详解】设星球的半径为R,则对同步卫星:;对物体A:;对卫星B: ;联立解得:,故选A.5.如图所示为两个底边和高都是L的等腰三角形,三角形内均分布方向如图所示的匀强磁场,磁感应强度大小为B。
一边长为L、电阻为R的正方形线框置于三角形所在平面内,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域。
取逆时针方向感应电流为正,则线框中电流i随bc边的位置坐标x变化的图象正确的是A. B.C. D.【答案】C【解析】【分析】分段确定线框有效的切割长度,分析线框中感应电动势的大小与位置坐标的关系.线框的电阻一定,感应电流与感应电动势成正比.【详解】bc边的位置坐标x在0-L过程,线框bc边有效切线长度从0到L再减到0,感应电流的方向为逆时针方向,感应电动势从0增加到BLv,再减到0,感应电流从0增加到,再减到0; bc边的位置坐标x在L-2L过程中,bc边进入右侧磁场切割磁感线产生顺时针方向的电流,ad边在左侧磁场切割磁感线产生顺时针方向的电流,两电流同向,则相加;随线向右运动,电流先增加后减小到0,最大值为;bc边的位置坐标x在2L-3L过程,bc边出离磁场,线框ad边有效切线长度从0到L再减到0,感应电流的方向为逆时针方向,感应电动势从0增加到BLv,再减到0,感应电流从0增加到,再减到0;则图像C正确,ABD错误;故选C.【点睛】本题关键确定线框有效切割长度与x的关系,再结合数学知识选择图象;注意感应电流的方向的判断.6.甲乙两车沿同一平直公路同向运动,运动的v-t图象如图所示。
t1时刻两车相遇,下说法正确的是A. t2时刻两车再次相遇B. t2时刻后,两车会再次相遇C. 0时刻,乙在前,甲在后D. 0~t1时间内甲的加速度先增大后减小【答案】BC【解析】【分析】v-t图像的斜率等于加速度,图像与坐标轴围成的面积等于位移,结合图像进行分析.【详解】t1时刻两车相遇,而t1到t2时间内乙车的位移大于甲车的位移,可知t2时刻乙车在甲车前面,选项A错误;t2时刻后,甲车的速度大于乙车,则两车会再次相遇,选项B正确;因0-t1时间内甲车的位移大于乙车的位移,t1时刻两车相遇,则0时刻,乙在前,甲在后,选项C正确;v-t线的斜率等于加速度,可知0~t1时间内甲的加速度一直减小,选项D错误;故选BC.【点睛】本题根据速度图象分析运动情况的能力,要注意两车的位置关系和距离随时间如何变化,当两车相遇时,位移之差等于原来之间的距离.7.如图所示,小车在水平面上做匀加速直线运动,车厢内两质量相同的小球通过轻绳系于车厢顶部,轻绳OA、OB与竖直方向夹角均为45°,其中一球用水平轻绳AC系于车厢侧壁,下列说法正确的是A. 小车运动方向向右B. 小车的加速度大小为gC. 轻绳OA、OB拉力大小相等D. 轻绳CA拉力大小是轻绳OA拉力的倍【答案】CD【解析】【分析】对小球B受力分析可求解小车运动的加速度和加速度的方向;OA和OB细绳拉力的竖直分量均等于mg,由此判断轻绳OA、OB拉力大小关系;对小球A受力分析,根据正交分解法以及牛顿第二定律求解两边绳子的拉力关系。
【详解】对小球B受力分析可知,B所受的合外力向左,且mgtan450=ma,解得a=g,且加速度向左,即小车的加速度向左,小车向左加速或者向右减速运动,选项AB错误;分别对AB受力分析, OA和OB细绳拉力的竖直分量均等于mg,即TOB cos450=TOAcos450=mg,可知轻绳OA、OB拉力大小相等,选项C正确;对A受力分析可知,TCA -TOAsin450=ma=mg,解得TCA=2mg即TCA=TOA,选项D正确;故选CD.8.两个质子以不同速率在匀强磁场中做圆周运动,轨迹如图所示,两圆周相切于A点,过A点做一直线与两圆周交于B点和C点。
若两圆周半径r1:r2=1:2,下列说法正确的有A. 两质子速率v1:v2=1:2B. 两质子周期T1:T2=1:2C. 两质子由A点出发第一次到达B点和C点经历的时间t1:t2=1:2D. 两质子在B点和C点处速度方向相同【答案】AD【解析】【分析】根据半径关系根据可判断速度关系;同种粒子在相同磁场中运动的周期相同;结合几何关系可知两粒子在磁场中运动过程中转过的圆弧对应的圆心角相同,从而判断时间关系和速度方向关系。
【详解】根据解得,可知两质子速率v1:v2= r1:r2=1:2,选项A正确;根据可知两质子周期相同,选项B错误;由几何关系可知,两粒子在磁场中运动过程中转过的圆弧对应的圆心角相同,根据可知,两质子由A点出发第一次到达B点和C点经历的时间相同,选项C错误;因两粒子进入磁场时速度方向相同,在磁场中运动过程中转过的圆弧对应的圆心角相同,可知两质子在B点和C点处速度方向相同,选项D正确;故选AD.【点睛】带电粒子在磁场中做匀速圆周运动问题,关键是理解记忆两个基本公式,即半径公式和周期公式,充分利用几何关系找到圆心角和半径关系等等.三、非选择题包括必考题和选考题两部分。
第2题~第32题为必考题,每个试题考生都必须作答。
第33题~第38题为选考题,考生根据要求作答。
(一)必考题9.某同学利用如图所示装置进行“研究匀变速直线运动”的实验。
(1)下列说法正确的有__________A.实验开始前,需要垫高长木板右端到合适角度,平衡摩擦力B.钩码质量需要满足远远小于小车的质量C.小车释放的位置应尽量远离滑轮D.先接通电源,后释放小车(2)实验中获得一条纸带,设纸带上计数点的间距为S1和S2,如图为用米尺测量某一纸带上的S1、S2的情况,从图中可读出S1=3.10cm,S2=___________cm,已知打点计时器的频率为50Hz,由此求得加速度的大小a=___________m/s2。
【答案】 (1). CD (2). 5.48~5.52 (3). 2.38~2.42【解析】【分析】(1)根据实验原理以及实验过程判断各个选项;(2)刻度尺读数保留到mm的下一位;根据∆S=aT2解得加速度。
【详解】(1)此实验只要使小车加速运动即可,则实验开始前,不需要平衡摩擦力,钩码质量也不需要满足远远小于小车的质量,选项AB错误;小车释放的位置应尽量远离滑轮,且先接通电源,后释放小车,从而能充分利用纸带,选项CD正确;故选CD.(2)由刻度尺读出S1=3.10cm;S2=5.50cm;T=0.1s,∆S=2.40cm,根据∆S=aT2解得10.如图所示电路可以测量两块电压表的内阻,图中用到的实验器材如下:待测电压表V1,量程3V,内阻为3kΩ;待测电压表V2,量程15V,内阻约为15kΩ;定值电阻R,阻值大小为21kΩ;滑动变阻器R,变化范围0-10Ω;电源,E=15V,内阻不计;电键导线若千。
(1)实验器材已经部分连接,请你用实线代表导线,将电路连接完整_____;(2)连接好电路后,将滑动变阻器的滑片滑到最左端;(3)将两个电键都闭合,滑动变阻器滑片调节到某一位置,得到此时两块电压表的读数分别为U1=3.00V,U2=9.00V;(4)保持滑动变阻器滑片位置不变,断开电键S2,此时两电压表读数变为2.00V和10.00V,由两表读数可知,两电压表内阻之比R1:R2=___________;(5)由以上数据可计算出两电压表的内阻分别为R1=___________kΩ,R2=___________kΩ;(6)改变滑动变阻器滑片的位置,重复试验,多次测量,取平均值。
【答案】 (1). (2). 1:5 (3). 2.8(4). 14【解析】【详解】(1)电路连线如图;(2)两个电键都闭合时,则 ;保持滑动变阻器滑片位置不变,断开电键S 2,此时:;联立解得R 1=2.8k Ω;R 2=14k Ω.11.如图所示,光滑曲面与粗糙平面平滑连接,质量为m 2=3kg 的滑块B 静止在光滑曲面的底端,质量为m 1=2kg 的滑块A 由曲面上某一高度H 处无初速释放,滑到底端和滑块B 发生弹性正碰,碰后滑块B 在平面上滑行的距离为L=2m ,已知两滑块与平面间的动摩擦因数均为0.4,重力加速度g=10m/s 2。