北航自动化学院计算机控制系统实验报告
- 格式:doc
- 大小:624.00 KB
- 文档页数:13
自动控制原理实验报告实验七非线性环节对系统动态过程的响应2012/5/23实验七非线性环节对系统动态过程的响应一、实验目的:(1)了解非线性环节特性;(2)了解非线性环节对系统动态过程的响应;(3)学会应用描述函数法研究非线性系统的稳定性。
二、实验原理:(1)非线性系统和线性系统存在本质差别:A)线性系统可采用传递函数、频率特性、脉冲过渡函数等概念,同时由于线性系统的运动形式和输入幅值、初始状态无关,通常是在典型输入函数和零初始条件下进行研究。
B)非线性系统由于叠加原理不成立,线性系统的上述方法不适用,所以常采用相平面方法和描述函数方法进行研究。
(2)实验从两方面观察非线性:相轨迹和动态响应A)相轨迹:相平面上的点随时间变化描绘出来的曲线叫相轨迹。
相平面的相坐标为和,实验软件当中给出的就是在此坐标下自动描绘的相轨迹。
初始条件不同,系统的运动趋势不同,所描绘的相轨迹也会有所不同。
B)动态响应:对比有无非线性环节时系统动态响应过程。
三、实验结果:由计算机产生非线性环节,结果如下:(1)摩擦特性:M=1Figure 1摩擦特性相轨迹*利用采集到的数据作图获得。
Figure 2摩擦特性动态响应(2)饱和特性:K=1,S=0.5;Figure 4饱和特性S=0.5动态响应(3)饱和特性:K=1,S=2;Figure 6饱和特性S=2动态响应(4)继电特性:M=1,h=0.5;Figure 7继电特性相轨迹Figure 8继电特性动态响应四、数据处理及分析:(1) 负倒相对描述函数及()G jw 曲线图:系统线性部分传递函数为:10()(1)G s s s =+,对于不同的非线性环节,其非线性特性描述函数各不相同,结果如下:摩擦特性,非线性描述函数为:4()MN s Xπ=将其负倒相对描述函数及()G jw 曲线画于一幅图中,结果如下图所示:由图可见,负倒相对描述函数没有被()G jw 曲线包围,系统是稳定的,随着t 增长,系统将逐步趋于稳态值。
北航计算机控制系统实验报告一、实验目的通过本实验,旨在加深对计算机控制系统的理解,熟悉计算机控制系统的基本组成和原理,并能够运用所学知识进行实际的控制系统设计与调试。
二、实验原理计算机控制系统是一种通过计算机对实际物体或过程进行控制的系统。
其基本组成包括传感器、执行机构、人机界面、控制算法和控制器等。
传感器负责将物理量转换成电信号,输入给计算机;执行机构根据计算机的控制信号完成相应的动作;人机界面提供了与计算机进行交互的方式;控制算法基于传感器采集到的信息和用户的输入,计算出执行机构所需的控制信号;控制器根据控制算法输出的控制信号与执行机构进行交互。
三、实验内容本实验的主要内容为设计一个自动化温控系统。
系统包括一个温度传感器、一个加热器和一个温度控制器。
温度传感器负责采集环境温度,并将其转换成模拟电信号输入给温度控制器;加热器根据温度控制器输出的控制信号控制加热功率,从而调节环境温度;温度控制器根据温度传感器采集到的温度信号和用户设定的目标温度,计算出加热功率控制信号。
四、实验步骤1.连接硬件设备将温度传感器的输出接口与温度控制器的输入接口相连;将温度控制器的输出接口与加热器的输入接口相连。
2.设计控制算法根据用户设定的目标温度和实际温度,设计一个控制算法,计算出加热功率控制信号。
常见的控制算法包括PID控制算法、模糊控制算法等。
3.编写控制程序使用编程语言编写一个控制程序,根据控制算法计算出的控制信号,通过温度控制器的输出接口发送给加热器。
4.调试控制系统运行控制程序,观察温度控制系统的运行情况。
根据实际温度与目标温度的偏差调整控制算法的参数,使系统达到较好的控制效果。
五、实验结果分析运行实验过程中,通过观察实际温度与目标温度的偏差,可以评估系统的控制效果。
根据实际情况,调整控制算法的参数,使系统的响应速度更快、稳定性更好。
六、实验总结通过本实验,我对计算机控制系统的基本原理和组成有了更深入的理解,掌握了控制系统的设计与调试方法,并在实践中提高了解决实际问题的能力。
计算机控制系统实验报告《计算机控制系统实验报告》一、实验目的本次实验旨在通过搭建计算机控制系统,探究计算机在控制系统中的应用和作用。
通过实际操作,加深对计算机控制系统的理解,提高实践能力。
二、实验内容1. 搭建计算机控制系统的硬件平台,包括计算机、传感器、执行器等设备的连接和配置;2. 编写控制程序,实现对执行器的控制;3. 进行实际控制实验,观察计算机在控制系统中的作用和效果。
三、实验步骤1. 硬件搭建:按照实验指导书上的要求,连接计算机、传感器和执行器,确保硬件平台的正常运行;2. 软件编写:根据实验要求,编写控制程序,包括传感器数据采集、数据处理和执行器控制等部分;3. 实际控制:运行编写好的控制程序,观察执行器的运行情况,记录数据并进行分析。
四、实验结果与分析经过实验操作,我们成功搭建了计算机控制系统,并编写了相应的控制程序。
在实际控制过程中,计算机能够准确、快速地对传感器采集的数据进行处理,并通过执行器实现对系统的控制。
实验结果表明,计算机在控制系统中发挥着重要作用,能够提高系统的稳定性和精度。
五、实验总结通过本次实验,我们深入了解了计算机在控制系统中的应用和作用,提高了对计算机控制系统的理解。
实践中,我们也发现了一些问题和不足,需要进一步学习和改进。
总的来说,本次实验对我们的学习和实践能力都有很大的提升。
六、实验感想本次实验让我们深刻感受到了计算机在控制系统中的重要性,也让我们更加坚定了学习和掌握计算机控制技术的决心。
希望通过不断的学习和实践,能够成为优秀的控制工程师,为社会发展做出贡献。
以上就是本次计算机控制系统实验的报告,谢谢阅读。
北航_自控实验报告_非线性环节对系统动态过程的响应实验目的:通过非线性环节对系统动态过程的响应实验,了解非线性环节对于系统动态过程的影响,掌握非线性环节对系统稳定性和动态响应的影响机制。
实验原理:在控制系统中,非线性环节是指系统主要由非线性元件组成的一种环节,如饱和环节、死区环节等。
非线性环节通常会引入系统的不稳定性和不良动态响应,使系统产生震荡、振荡或失去稳定等现象。
因此,对于非线性环节对系统动态过程的响应进行研究,可以帮助我们了解非线性环节对系统的影响及其调节方法。
实验装置:实验中使用的实验装置包括非线性环节调节台和数据采集系统。
非线性环节调节台中包含了饱和环节和死区环节两种非线性元件,可以通过改变其参数来调节非线性环节的作用程度。
数据采集系统用于实时采集和记录实验数据。
实验步骤:1.将非线性环节调节台连接至数据采集系统,保证信号传输的稳定性和准确性。
2.打开数据采集系统,并设置相应的实验参数,如采样频率和采样时间等。
3.首先进行饱和环节的实验。
调节饱和环节的幅值参数,并记录系统的响应曲线。
可以观察到,在饱和环节的作用下,系统响应出现了明显的振荡和周期变化。
4.然后进行死区环节的实验。
调节死区环节的参数,并记录系统的响应曲线。
可以观察到,在死区环节的作用下,系统响应出现了滞后和不连续等现象。
5.对比分析两种非线性环节的实验结果,总结非线性环节对系统动态过程的影响机制。
实验结果:通过实验得到的系统响应曲线可以明显观察到非线性环节对系统动态过程的影响。
在饱和环节的作用下,系统响应出现了周期性的振荡,而在死区环节的作用下,系统响应出现了滞后和不连续的现象。
实验总结:通过以上实验,我们可以得出以下结论:1.非线性环节对系统动态过程有显著的影响,会导致系统的稳定性下降和动态响应不理想。
2.饱和环节的作用会引起系统的振荡和周期变化,而死区环节的作用会引起系统的滞后和不连续。
3.针对非线性环节对系统的影响,可以采取相应的控制策略和调节方法,以提高系统的稳定性和动态响应。
一、实验目的1. 理解计算机控制系统的基本原理和组成;2. 掌握计算机控制系统的基本操作和调试方法;3. 通过实验,加深对计算机控制理论的理解和应用。
二、实验仪器1. PC计算机一台;2. 计算机控制系统实验箱一台;3. 传感器、执行器等实验设备。
三、实验内容1. 计算机控制系统组成与原理;2. 传感器信号采集与处理;3. 执行器控制与调节;4. 计算机控制系统调试与优化。
四、实验步骤1. 熟悉实验设备,了解计算机控制系统实验箱的组成及功能;2. 连接实验设备,检查无误后启动实验软件;3. 根据实验要求,进行传感器信号采集与处理;4. 根据实验要求,进行执行器控制与调节;5. 对计算机控制系统进行调试与优化,观察系统响应和性能;6. 记录实验数据,分析实验结果。
五、实验结果与分析1. 计算机控制系统组成与原理实验过程中,我们了解了计算机控制系统的基本组成,包括传感器、控制器、执行器等。
传感器用于采集被控对象的物理量,控制器根据采集到的信号进行计算、处理,然后输出控制信号给执行器,执行器对被控对象进行调节。
2. 传感器信号采集与处理在实验中,我们使用了温度传感器采集环境温度信号。
通过实验,我们掌握了如何将模拟信号转换为数字信号,以及如何对采集到的信号进行滤波处理。
3. 执行器控制与调节实验中,我们使用了继电器作为执行器,根据控制器输出的控制信号进行开关控制。
通过实验,我们学会了如何设置执行器的参数,以及如何对执行器进行调节。
4. 计算机控制系统调试与优化在实验过程中,我们对计算机控制系统进行了调试与优化。
通过调整控制器参数,使得系统在满足控制要求的同时,具有良好的动态性能和稳态性能。
六、实验总结本次实验使我们对计算机控制系统有了更深入的了解,掌握了计算机控制系统的基本原理和操作方法。
通过实验,我们提高了动手能力和实际操作能力,为今后从事相关领域工作奠定了基础。
七、实验报告1. 实验名称:计算机控制系统实验2. 实验日期:XXXX年XX月XX日3. 实验人员:XXX、XXX4. 实验指导教师:XXX5. 实验内容:计算机控制系统组成与原理、传感器信号采集与处理、执行器控制与调节、计算机控制系统调试与优化6. 实验结果与分析:详细描述实验过程中遇到的问题、解决方法及实验结果7. 实验心得体会:总结实验过程中的收获和体会(注:以上实验报告仅供参考,具体实验内容和结果可能因实际情况而有所不同。
自动控制原理实验报告一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系2、学习在电子模拟机上建立典型环节系统模型的方法3、学习阶跃响应的测试方法三、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T 时的响应曲线,测定过渡过程时间T s2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s四、实验原理及实验数据 一阶系统系统传递函数:由电路图可得,取则K=1, T 分别取:0.25, 0.5, 1T 0.25 0.501.00 R 2 0.25M Ω 0.5M Ω 1M Ω C1μ1μ1μT S 实测 0.7930 1.5160 3.1050 TS 理论 0.7473 1.4962 2.9927 阶跃响应曲线图1.1图1.2图1.3误差计算与分析(1)当T=0.25时,误差==6.12%;(2)当T=0.5时,误差==1.32%;(3)当T=1时,误差==3.58%误差分析:由于T 决定响应参数,而,在实验中R 、C 的取值上可能存在一定误差,另外,导线的连接上图1.1图1.2图1.3也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。
但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。
实验结果说明由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T 确定,T 越小,过度过程进行得越快,系统的快速性越好。
二阶系统系统传递函数:令二阶系统模拟线路0.25 0.50 1.00 R 4210.5C 2111实测 45.8% 16.9% 0.6% 理论 44.5% 16.3% 0% T S 实测13.98605.48954.8480T S 理论 14.0065 5.3066 4.8243 阶跃响应曲线图2.1图2.2图2.3注:T s 理论根据matlab 命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。
自动控制原理实验报告2013年12月7日班级:学号:姓名:目录实验一一、二阶系统的电子模拟及时域响应的动态测试 (3)一、实验目的 (3)二、实验内容 (3)三、实验原理 (3)四、实验设备 (5)五、实验步骤 (5)六、实验结果 (5)七、实验结论 (10)实验二频率响应测试 (11)一、实验目的 (11)二、实验内容 (11)三、实验原理 (12)四、实验设备 (12)五、实验步骤 (12)六、数据记录 (13)七、数据处理 (16)八、误差分析和实验结论 (17)九、实验结论 (17)实验三控制系统串联校正 (18)一、实验目的 (18)二、实验内容 (18)三、实验设备 (18)四、实验步骤 (18)五、设计过程 (19)六、数据记录 (20)七、数据分析 (24)实验一一、二阶系统的电子模拟及时域响应的动态测试一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2.学习在电子模拟机上建立典型环节系统模型的方法。
3.学习阶跃响应的测试方法。
二、实验内容1.立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。
2.立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。
三、实验原理1.一阶系统:系统传递函数为:模拟运算电路如图1-1所示:图1-1由图得:在实验当中始终取, 则,取不同的时间常数T分别为:0.25、0.5、1。
记录不同时间常数下阶跃响应曲线,测量纪录其过渡过程时ts。
(取 误差带)2.二阶系统:其传递函数为:=令,则系统结构如图1-2所示:图1-2根据结构图,建立的二阶系统模拟线路如图1-3所示:图1-3取,,则及取不同的值, , ,观察并记录阶跃响应曲线,测量超调量σ%(取 误差带),计算过渡过程时间Ts。
四、实验设备1.HHMN-1型电子模拟机一台。
2.PC 机一台。
3.数字式万用表一块。
北航自控实验报告北航自控实验报告自控实验是北航自动化专业学生的重要课程之一,通过实验,学生能够巩固和应用所学的自动控制理论知识,提高实践能力。
本文将从实验目的、实验内容、实验结果和实验总结等方面,对北航自控实验进行详细介绍。
实验目的自控实验的目的是通过实际的控制系统,让学生了解自动控制的基本原理和方法,培养学生的实际操作能力和问题解决能力。
通过实验,学生能够掌握控制系统的建模、仿真和实际控制过程中的参数调整方法,提高自己的工程实践能力。
实验内容北航自控实验包括多个实验项目,其中包括PID控制器的设计与调整、系统建模与仿真、状态空间控制等。
在PID控制器的设计与调整实验中,学生需要根据给定的控制要求,设计出合适的PID控制器,并通过调整PID参数来实现系统的稳定性和性能要求。
在系统建模与仿真实验中,学生需要根据给定的系统动力学方程,建立系统的数学模型,并通过仿真软件进行系统的动态仿真。
在状态空间控制实验中,学生需要学习和应用状态空间法进行系统的控制设计。
实验结果通过实验,学生能够得到实验结果,并进行分析和总结。
实验结果包括系统的响应曲线、参数调整结果等。
学生需要根据实验结果,评估系统的控制性能,并对控制器的参数进行调整。
通过实验结果的分析,学生能够深入理解自动控制的原理和方法,并提高自己的问题解决能力。
实验总结自控实验是北航自动化专业学生的重要课程之一,通过实验,学生能够将理论知识应用到实践中,并提高自己的实际操作能力和问题解决能力。
在实验过程中,学生需要仔细操作实验设备,准确记录实验数据,并进行数据分析和总结。
通过实验总结,学生能够发现实验中存在的问题,并提出改进措施,提高自己的实验技巧和创新能力。
总之,北航自控实验是自动化专业学生不可或缺的一部分,通过实验,学生能够巩固和应用所学的自动控制理论知识,提高实践能力。
通过实验目的、实验内容、实验结果和实验总结等方面的介绍,相信读者对北航自控实验有了更加深入的了解。
北航os实验报告北航OS实验报告一、引言操作系统(Operating System,简称OS)是计算机系统中最基础的软件之一,它负责管理和控制计算机硬件资源,为用户和应用程序提供一个可靠、高效的工作环境。
本文将对北航OS实验进行详细的报告和分析。
二、实验目的本次北航OS实验的目的是让学生深入理解和掌握操作系统的基本原理和实现方式。
通过实践,学生将学会设计和实现一个简单的操作系统,了解操作系统的核心功能和运行机制。
三、实验内容1. 系统引导实验开始时,我们需要编写引导程序,将操作系统加载到计算机的内存中,并跳转到操作系统的入口地址开始执行。
这一步骤是整个实验的起点,也是操作系统正常运行的基础。
2. 中断处理操作系统需要能够处理各种中断事件,如时钟中断、键盘中断等。
学生需要实现中断处理程序,使操作系统能够响应和处理这些中断事件,并根据具体情况进行相应的操作。
3. 进程管理操作系统需要能够管理多个进程的创建、调度和终止。
学生需要设计并实现进程管理模块,包括进程控制块(PCB)的数据结构和进程调度算法。
通过合理的调度策略,提高系统的并发性和响应速度。
4. 内存管理操作系统需要管理计算机的内存资源,包括内存的分配和释放。
学生需要设计并实现内存管理模块,使用合适的算法来管理内存的分配和回收,避免内存泄漏和碎片化问题。
5. 文件系统操作系统需要提供文件系统来管理计算机中的文件和数据。
学生需要设计并实现一个简单的文件系统,包括文件的创建、读写和删除等操作。
通过文件系统,用户可以方便地存储和管理自己的数据。
四、实验过程在实验过程中,我们遇到了许多挑战和问题,但通过不断的尝试和调试,我们最终成功实现了一个简单的操作系统。
以下是我们在实验过程中遇到的一些关键问题和解决方案:1. 内存管理在实验过程中,我们发现内存管理是一个非常关键的问题。
如果内存管理不当,容易导致内存泄漏或者内存碎片化,从而影响系统的性能和稳定性。
我们通过设计一个位图来管理内存的分配和释放,使用首次适应算法来分配内存,并通过合理地回收内存来避免内存泄漏问题。
成绩《计算机测控系统》实验报告院(系)名称自动化科学与电气工程学院专业名称自动化学生学号学生姓名指导教师董韶鹏2018年06月同组同学实验编号03组一、实验目的1.了解计算机控制系统的基本构成和具体实现方法。
2.学会使用IAR软件的基本功能,掌握K60单片机的开发和应用过程。
3.学会智能小车实验系统上各个模块的使用,掌握其工作原理。
二、实验内容1、了解各模块工作原理,通过在IAR环境编程,实现和演示各个模块的功能。
2、编写程序组合各个模块的功能,让小车能够沿着赛道自行行使。
三、实验原理小车的主板如下图所示:主板上包括Freescale MK60DN512ZVLQ10核心板,J-Link下载调试接口,编码器接口,电机驱动接口,舵机接口,CCD结构等主要功能模块接口,无线模块接口,蓝牙模块接口,OLED接口等主要功能模块和相应的辅助按键和电路。
在本次实验中我们主要使用的接口为编码器接口,CCD接口,舵机接口,电机驱动接口,OLED接口来控制小车运行,采用7.2V电池为系统供电。
我们采用512线mini 编码器来构成速度闭环控制,采用OV7725来进行赛道扫描,将得到的图像二值化,提取赛道信息,并以此控制舵机来进行转向。
四、实验步骤4.1车架及各模块安装4.1.1小车整体车架结构车模的整体结构如上图所示,包含地盘,电机等,为单电机驱动四轮车。
车模为但电机驱动,电机安装位置如下:4.1.2摄像头的固定和安装摄像头作为最重要的传感器,它的固定和安装对小车的影响是十分巨大的,摄像头的布局和安装取决于系统方案,反过来又会影响系统的稳定性与可靠性以及软件的编写。
我们的车模为四轮车,所以摄像头架在车子的中间部分,介于电池和舵机之间,这样节省空间而且也不会让重心偏移太大,而摄像头的角度也很有讲究,角度低的时候能看到很远的赛道信息,但是图像较为模糊,不适合图像处理的编写,角度较高是,能看到的图像信息较少,但是分辨率明显更好,在程序的编写中,我们发现摄像头视野的宽广往往直接影响赛道信息提取的精准度。
2011- 2012 学年 第二学期计算机控制实验报告班级 姓名392311 李 柏学院 学号高等工程3903· 24152012 年 6 月 12 日实验 1 模拟式小功率随动系统的实验调试一、实验目的1.熟悉反馈控制系统的结构和工作原理,进一步了解位置随动系统的特点。
2. 掌握判别闭环系统的反馈极性的方法。
3.了解开环放大倍数对稳定性的影响及对系统动态特性的影响,对静态误差的影响。
二、实验仪器XSJ-3 小功率直流随动系统学习机一台 DH1718 双路直流稳压电源一台 4 1/2 数字多用表一台三、 实验原理模拟式小功率随动系统结构如图 2-3 所示 调试步骤如下: 零位调整:为了保证精度,同时判断运放是否好用,在连接成闭环系统之前进行零位的调整。
首先,把三个运放负相端输入 电阻接地,并使其增益为 1(利用电阻调整) ,再利用运放上方的调零旋钮,使输出端输出为 0;然后将电位计两端接上±10V 电压后,用数字电压表测其电刷输出,旋转之,使其电刷输出为 0,并同时调整刻度盘零点于 0 点。
开环工作状态:断开反馈电为计,加入给定电压,使电压从小到大,当信号大时,电机转速高,信号反极性时,电机反转。
反馈极性判断。
首先判断测速机反馈极性。
在一级运放处加一电压(正或负) ,记住电机转向,然后断开输入,用手旋转电 机按同一转向转动,测量测速机输出电压,如与前电机所加电压极性相同,则可将该信号接入运放二的负端;否则应把测速 机输出极性倒置, 即把另一信号接入运放二的负相端。
其次判断位置反馈极性。
将回路接成开环状态, 给电机加入一正电压, 可使其转动,然后使电机回零,顺着电机刚才转动的方向转一小角度(不可转到非线性区) ,同时用数字电压表测电位计电 刷的输出电压,倘若其值为负,则表明此时是负反馈,否则,需把电位计两端±10V 接线头对调,以保证闭环系统是负反馈。
检验系统跟随情况:按图 2-2 连线,逐渐加大电压,察看输出角度是否也同时增加(绝对量值) ,如跟随则系统跟随情况良 好。
开环放大系数 K 与静态误差的关系:实际控制系统由于元件存在固有误差和非线性因素及安装误差,所以不可能没有误差。
该系统误差主要由电机死区引起。
实验方法:改变放大器的反馈电阻可使系统放大倍数 K 改变。
取三个 K 值,每取一个 K 值,给定电位计输入一定角度,系统 旋转一个角度,将输入、输出角度记录下来,计算出角度误差。
同时记录放大器 1 的输出.表 2-1 模拟式小功率随动系统实验记录表 运放Ⅱ比例系数 给定角度(度) 输出角度(度) 静差角度(读) 静态误差(mV) 过度过程曲线 K1 270 266 0 19.3 K2 90 96 2 -24.6 K3 90 94.5 0.5 32.6 K4fig.1fig.2fig.3fig.4从 fig. 1 中可以看出有较大的静态误差,从 fig. 2 中可以看出此时的静态误差较小。
fig. 3 此时出现较大的超 调量。
从 fig. 4 中可以看出系统阶跃响应已经呈现高频振荡。
四、 思考题的解答一、 如果速度反馈极性不对应如何处理?如果位置反馈极性不对应如何处理? 答:给定 1v 的输入电压,用万用表测反馈的电压值,如果不为负值,说明速度环的反馈极性不对应,这 时候应该要把测速机的输出极性倒置。
同速度环反馈极性的测量方法,如果反馈极性不对应,就将电位计端±10V 的接线对调。
二、系统是几阶无静差系统?产生静差的原因。
答:系统为二阶无静差系统,当比例因子 K 是以偏差调节电机转角的,所以会产生静差。
积分环节用于消 除静差 产生静差的其它原因有: 1.实验条件的限制,无法满足严格的理论值。
2.时间上存在延迟。
3. 运算放大器的开环放大系数数值有限 三、说出开环放大系数与静差及稳定性的关系. 适当的开环放大系数有利于减小静态误差。
但是当开环系数过大的时候会减小稳定性,增大静态误差。
实验 2 A/D 接口的使用和数据采集一、 实验目的了解 A/D 接口的基本原理,硬件结构及编程方法等; 掌握机器内部的数据转换和储存方式; 学会定时器的原理及使用方法. 测量 A/D 的输入/输出特性,分析误差产生原因.二、 实验内容及仪器用 C 语言编制带定时器的 A/D 程序; 输入电压进行测试; 分析误差产生原因 IBM PC 系列微机一台(586) HD1219 12 位 A/D D/A 接口板一块 DH1718 双路直流稳压电源一台 4 1/2 数字多用表一台三、 实验原理1. 在 C 环境下编写 A/D 程序,并编译连接; (程序流程图如下)2. 输入模拟电压,运行程序,输出 16 进制数码; 输入电压与偏移二进制码对应关系如下:表 3-2 A/D 输入电压与数码对应表 电压(V) 偏移码 补码 浮点数 -10 0 ffff -0.100 -7.5 20a fdf5 -0.744 -5 3f4 fc0b -0.505 -2.5 5f8 fa07 -0.253 0 7fa f805 -0.0005 2.5 9ff f600 0.295 5 c00 f3ff 0.5 7.5 eoc f1f3 0.756 10 fa5 f05a 0.9563. 将 16 进制数码转换成电压,与输入电压进行比较;Co 大小 V(理论值) V(实测值) 转换码0000 -5 -4.97 02000 -3.75 -3.73 1ffe4000 -2.5 -2.48 3ffc6000 -1.25 -1.24 5ffa8000 0 0 7ff8A000 1.25 1.24 9ff6C000 2.5 2.48 bff4E000 3.75 3.73 dff2FFFF 5 4.97 fff0实验 3 采样系统的构成及中断的使用一、 实验目的了解 D/A 接口基本原理,芯片结构; D/A 与 CPU 的连接,地址设置及编程方法等; 学习中断的原理及编程方法; 掌握采样周期的实现方法。
二、 实验内容及仪器编制并调试带定时器的 D/A 程序; A/D、D/A 串联组成采样系统; 用模拟机实现一个二阶系统并观察输出特性; 接入 A/D,CPU 及 D/A 程序,观察采样周期变化对系统的影响。
IBM PC 系列微机一台(586) HD1219 12 位 A/D D/A 接口板一块 DH1718 双路直流稳压电源一台 4 1/2 数字多用表一台三、 实验原理四、 实验步骤与数据处理表 4-1 D/A 变换表: Code 0000 2000 4000 6000 8000A000C000E000FFFF -3.75-2.5 -1.250 1.25 2.5 3.75 5 1.24 2.48 3.73 4.97V(理论值)-5V(实测值)-4.97-3.73-2.48-1.2403. 输出结果与实验环境所带程序运行结果进行比较。
4.采样系统的构成: 1)从理论上讲,在一个闭环连续系统的综合点的误差信号处加上一个采样开关即可构成一个采样系统。
2)在本实验中直接在模拟式小功率随动系统的闭环回路的前向通道的误差处加入一路 A/D 作为采样开关 来采集信号, 然后直接送到 D/A 输出驱动连续系统, 同时用一路 A/D 采入输出信号,利用软件来绘制过渡过 程曲线。
见图 4-4 和 4-5。
表 4-2 实验结果记录表: 采样周期(T) 10ms 30ms 50ms 70ms 100ms 超调量(σ) 35% 45% 55% 62% 发散 上升时间(Tr) 0.1s 0.097s 0.098s 0.097s 发散 过渡过程时间(Ts) 2.8s 3.8s 4.7s 7.1s 发散五、 思考题目解答为什么 T 越小系统特性越好,T 可以无限小吗? 答:因为当 T 小的时候,采样的信号就越接近离散的信号,精度上升。
T 越小,在频域中,频谱混叠就越少。
但是 T 不能无限小,原因有两个:因为机器的性能不能达到。
T 变 小极限环和死区增大。
实验 4 计算机控制系统的实验调试一、 实验目的掌握数控伺服系统静态参数选取的一般方法; 掌握利用极点配置方法进行离散系统全状态反馈控制规律及降维观测器的设计; 掌握控制算法编排实现及比例因子配置方法; 学会数控伺服系统调试的方法与过程。
二、 实验仪器及内容IBM PC 系列微机一台(586) HD1219 12 位 A/D D/A 接口板一块 XSJ-3 小功率直流随动系统学习机一台 DH1718 双路直流稳压电源一台 412 数字多用表一台 选择合适的采样周期, 对小功率随动系统的模型进行离散化; 利用极点配置方法进行离散系统全状态反馈控制规律及降维观测器的设计; 编辑实时控制程序, 在计算机内实现控制律; 进行闭环动态系统调试; 讨论静态误差及其消除方法.三、 实验原理该数控伺服系统的结构图如图 6-1 所示。
该系统是一直流伺服系统,它由直流力矩电机、直流测速发电机、 角位置测量电位计及直流放大器、80X86 处理器计算机及 A/D、D/A 变换器组成。
加入系统的指令输入信 号通过 A/D、D/A 变换器进入计算机,经过计算机控制算法的处理产生控制指令,由 D/A 变换器输出,加 到运算放大器输入端,与测速机测得的角速度信号综合比较,经过功率放大后驱动直流力矩电机转动。
负 载 的 转 角 由 电 位 计 测 得 , 并 通 过 A/D 加 入 到 计 算 机 , 通 过 控 制 指 令 的 计 算 , 形 成 一 个 完 整 的 闭式中 Km = 2 rad/S/V, Tm =0.052 S (2) 测速机为 70CYD-1, 其输入输出传递函数为 (3) 角位置测量电位计为 WHJ-2 其两端电压为 ±10V,最大转角为 330°,Kθ = 0.060606 V/度 = 3.4725 V/rad 设计要求: (1) 速度回路设计:选择 K1 K2 满足以下要求(见图 6-1) : 当 D/A 输出≤ 120 mV 时,电机开始转动。
实际测试, 电机起动电压 1.7 V 当 D/A 输出±10 V 时,电机转速为 26 rad/S (2) 位置回路设计:在求得上述速度回路传递函数的前提下,利用极点配置方法求全状态反馈增益 KF1 KF2 。
假定系统的期望极点满足: ξ ≥ 0。
9 ω n≥ 20 rad/S 且要求输入信号小于 40 mV 时电机应能起动。
给定采样周期 T =0.025 S (3) 观测器设计:假定伺服系统的转角θ 是可测的,设计降维观测器,并假定降维观测器的观测误差衰减 速率是闭环系数衰减速率的 4 倍。