最新棠湖中学数学周末试题(含答案)
- 格式:docx
- 大小:90.07 KB
- 文档页数:5
四川省棠湖中学2025届高考全国统考预测密卷数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数2log (1),1()3,1x x x f x x -->⎧=⎨≤⎩,则[](2)f f -=( )A .1B .2C .3D .42.若集合{}(2)0A x x x =->,{}10B x x =->,则A B =A .{}10x x x ><或B .{}12x x << C .{|2}x x >D .{}1x x >3.已知,,,m n l αβαβαβ⊥⊂⊂=,则“m ⊥n”是“m ⊥l ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知等差数列{a n },则“a 2>a 1”是“数列{a n }为单调递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 5.已知,都是偶函数,且在上单调递增,设函数,若,则( )A .且B .且C .且D .且6.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A .1,0a b <-< B .1,0a b <-> C .1,0a b >-<D .1,0a b >->7.已知向量()1,2a =-,(),1b x x =-,若()2//b a a -,则x =( )A .13B .23C .1D .38.已知点P 不在直线l 、m 上,则“过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行”是“直线l 、m 互相平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件9.已知函数2()e (2)e xx f x t t x =+--(0t ≥),若函数()f x 在x ∈R 上有唯一零点,则t 的值为( )A .1B .12或0 C .1或0 D .2或010.一袋中装有5个红球和3个黑球(除颜色外无区别),任取3球,记其中黑球数为X ,则()E X 为( )A .98B .78C .12D .625611.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中CD )有15cm ,跨接了6个坐位的宽度(AB ),每个座位宽度为43cm ,估计弯管的长度,下面的结果中最接近真实值的是( )A .250cmB .260cmC .295cmD .305cm12.函数52sin ()([,0)(0,])33x xx xf x x -+=∈-ππ-的大致图象为A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
初三数学周测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.14B. √2C. 0.1010010001…(每两个1之间0的个数逐次增加)D. -52. 一次函数y=2x+1的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 一个正数的倒数是1/2,那么这个数是:A. 1/2B. 2C. 1/3D. 34. 一个三角形的两边长分别是3和4,第三边长x满足的不等式是:A. 1 < x < 7B. 4 < x < 7C. 1 < x < 5D. 0 < x < 75. 计算(-2)^3的结果是:B. 8C. -2D. 26. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对7. 一个圆的直径是10cm,那么这个圆的周长是:A. 31.4cmB. 15.7cmC. 10cmD. 5cm8. 一个等腰三角形的顶角是90度,那么它的底角是:A. 45度B. 60度C. 30度D. 90度9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对10. 计算(-3)^2的结果是:A. -9C. -3D. 3二、填空题(每题3分,共30分)1. 一个数的绝对值是它本身,这个数是_________。
2. 一个数的相反数是-2,那么这个数是_________。
3. 一个数的平方是36,那么这个数是_________。
4. 一个三角形的两边长分别是5和12,第三边长x满足的不等式是_________。
5. 一个圆的半径是7cm,那么这个圆的面积是_________。
6. 一个等腰三角形的顶角是30度,那么它的底角是_________。
7. 一个数的立方是-27,那么这个数是_________。
8. 一个数的绝对值是它相反数的2倍,那么这个数是_________。
四川省成都市双流县棠湖中学2020-2021学年高三数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 抛物线y2=-12x的准线与双曲线的两条渐近线所围成的三角形面积等于()A.B.2C.2 D.3参考答案:D2. 定义域为R的函数f(x)满足f(x+2)=2f(x)﹣2,当x∈(0,2]时,f(x)=,若x∈(0,4]时,t2﹣≤f(x)恒成立,则实数t的取值范围是( )A.[1,2] B.[2,] C.[1,] D.[2,+∞)[来源:学|科|网Z|X|X|K]参考答案:C【考点】分段函数的应用;函数恒成立问题.【专题】函数的性质及应用;不等式的解法及应用.【分析】由f(x+2)=2f(x)﹣2,求出x∈(2,3),以及x∈[3,4],的函数的解析式,分别求出(0,4]内的四段的最小值,注意运用二次函数的最值和函数的单调性,再由t2﹣≤f(x)恒成立即为由t2﹣≤f(x)min,解不等式即可得到所求范围.【解答】解:当x∈(2,3),则x﹣2∈(0,1),则f(x)=2f(x﹣2)﹣2=2(x﹣2)2﹣2(x﹣2)﹣2,即为f(x)=2x2﹣10x+10,当x∈[3,4],则x﹣2∈[1,2],则f(x)=2f(x﹣2)﹣2=﹣2.当x∈(0,1)时,当x=时,f(x)取得最小值,且为﹣;当x∈[1,2]时,当x=2时,f(x)取得最小值,且为;当x∈(2,3)时,当x=时,f(x)取得最小值,且为﹣;当x∈[3,4]时,当x=4时,f(x)取得最小值,且为﹣1.综上可得,f(x)在(0,4]的最小值为﹣.若x∈(0,4]时,t2﹣≤f(x)恒成立,则有t2﹣≤﹣.解得1≤t≤.故选:C.【点评】本题考查分段函数的运用,主要考查分段函数的最小值,运用不等式的恒成立思想转化为求函数的最值是解题的关键.3. 定义在R上的函数f(x)是奇函数,且在(0,+∞)内是增函数,又,则的解集是()A.(-3,0)∪(3,+∞) B.(-∞,-3)∪(0,3)C. (-∞,-3)∪(3,+∞) D.(-3,0)∪(0,3)参考答案:B∵是奇函数,且在内是增函数∴在内是增函数∵∴∴对应的函数图象如图(草图)所示:∴当或时,;当或时,.∴的解集是故选B.4. 已知函数f(x)满足f(x+1)[f(x)+1]=1。
一、选择题(每题3分,共30分)1. 下列数中,是整数的是()A. 2.5B. -3C. 0.3D. 1.21答案:B2. 如果a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 0答案:A3. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 梯形D. 圆答案:C4. 下列各数中,能被3整除的是()A. 18B. 19C. 20答案:A5. 下列各数中,是负数的是()A. -5B. 5C. 0D. 3答案:A6. 下列各数中,是分数的是()A. 0.5B. 1/2C. 1.5D. 2答案:B7. 如果一个数的倒数是它的两倍,那么这个数是()A. 1/2B. 2C. 1D. 4答案:A8. 下列各数中,是质数的是()A. 4B. 6D. 11答案:D9. 下列各数中,是偶数的是()A. 3B. 5C. 7D. 8答案:D10. 下列各数中,是奇数的是()A. 2B. 4C. 6D. 8答案:A二、填空题(每题5分,共25分)11. 0.5 + 0.25 = ()答案:0.7512. 8 - 5 × 2 = ()答案:-213. 3 × 4 ÷ 2 = ()答案:614. 2^3 = ()答案:815. 7 ÷ 0.7 = ()答案:10三、解答题(每题10分,共40分)16. 简化下列各数:(1)3.6 ÷ 0.6(2)4.8 × 1.2(3)7.2 ÷ 0.36答案:(1)6(2)5.76(3)2017. 解下列方程:(1)2x + 3 = 11(2)5 - 3x = 2答案:(1)x = 4(2)x = 118. 某班有男生25人,女生30人,求男生和女生人数的比例。
答案:男生和女生人数的比例为5:6。
2019年春四川省棠湖中学高二年级周练考试19.3.10数学(理)试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一.选择题:(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知()3,1A 、()33,1-B ,则直线AB 的倾斜角是( ) A .060B .030C .0120D .01502.已知直线l 的方向向量为()2,0,1=a ,平面α的法向量()2,0,1--=n ,则( )A .α⊂lB .α⊥lC .α//lD .l 与α斜交3.方程12sin 3sin 222=-++θθy x 所表示的曲线为( ) A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C .焦点在x 轴上的双曲线D .焦点在y 轴上的双曲线4.双曲线32-422-=y x 的渐近线方程为( ) A.y = B .2y x =±C.2y x =±D .12y x =±5.已知命题p :x∈R,sinx≤1,则:( )A .﹁p :x∈R,sinx≥1B .﹁p :x∈R,sinx>1C .﹁p : x 0∈R,sinx≥1D .﹁p : x 0∈R,sinx 0>16.实数x ,y 满足不等式组⎪⎩⎪⎨⎧-≥≤+≥-200y y x y x ,则目标函数z =x +3y 的最小值是:( )A .0B .-2C .-4D .-87.不等式220ax bx ++>的解集是11|23x x ⎧⎫-<<⎨⎬⎩⎭,则a b -等于( ) A.-4 B.14 C.-10 D.108.已知}{n a 是等差数列,.28,48721=+=+a a a a 则该数列的前10项之和为( ) A. 64 B.100 C.110 D.1209.已知圆C 与直线2x —y +5=0及2x -y -5=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=5 B.x 2+y 2=5 C.(x -1)2+(y x 2+y 210. 中国古代第一部数学名著《九章算术》中,将一般多面体分为阳马、鳖臑、堑堵三种基本立体图形,其中将四个面都为直角三角形的三棱锥称之为鳖,若三棱锥Q-ABC 为鳖臑,QA⊥平面ABC ,AB⊥BC,QA=BC=3,AC=5,则三棱锥Q-ABC 外接球的表面积为( ) A. 16π B. 20π C. 30π D. 34π11.已知抛物线24(0)x py p =>的焦点为F ,直线2y x =+与该抛物线交于,A B 两点,M 是线段AB 中点,过M 作x 轴的垂线,垂足为N ,若2()15A FB F A F B F F B p ⋅++⋅=--,则p 的值为 ( ) A .14 B .12C .1D .2 12. 设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,离心率为e ,过2F 的直线与双曲线的右支交于,A B 两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A. 3+B. 4-1+5-二、填空题(每小题5分,共20分)13.某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,___运动员的发挥更稳定.(填“甲”或“乙”) 14.已知双曲线12=-my x 2的虚轴长是实轴长的两倍,则实数m 的值是 .15.已知在平面直角坐标系xOy 中,抛物线y x 22=的焦点为F ,)5,3(M ,点Q 在抛物线上,则QF Q M +的最小值为 .16.已知椭圆()2222:10x y C a b a b+=>>,点A,F 分别是椭圆C 的左顶点和左焦点,点P 是222:O x y b +=上的动点,若AP FP是常数,则椭圆C 的离心率为 .三、解答题:本大题共6小题,共70分。
九年级上册数学周末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 4x 13. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,则第10项是()A. 21B. 19C. 17D. 155. 若一个等边三角形的周长为18cm,则其边长为()A. 6cmB. 9cmC. 12cmD. 18cm二、判断题(每题1分,共5分)6. 任何两个等边三角形都是相似的。
()7. 两条平行线的斜率一定相等。
()8. 一元二次方程的解一定是实数。
()9. 对角线互相垂直的四边形一定是菱形。
()10. 在同一平面内,垂直于同一直线的两条直线一定平行。
()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则其直径是______。
12. 若一个数的平方是64,则这个数是______。
13. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式是______。
14. 若等差数列{an}的前n项和为Sn,则第n项an = ______。
15. 在直角坐标系中,点(3, -2)到x轴的距离是______。
四、简答题(每题2分,共10分)16. 简述等边三角形的性质。
17. 什么是直角坐标系?如何表示平面上的点?18. 解释一元二次方程的解的意义。
19. 什么是等差数列?给出一个等差数列的例子。
20. 什么是圆的标准方程?如何表示?五、应用题(每题2分,共10分)21. 已知一个正方形的对角线长为10cm,求其面积。
22. 若一元二次方程x² 5x + 6 = 0,求其解。
一、选择题1. 答案:D解析:因为a² - b² = (a + b)(a - b),所以a² - b² = 25,可得a + b = 5,a - b = 5,解得a = 5,b = 0。
2. 答案:A解析:因为x² + 2x + 1 = (x + 1)²,所以x + 1 = 0,解得x = -1。
3. 答案:C解析:因为a² + b² = c²,所以a² = c² - b²,代入a = 3,b = 4,c = 5,得a² = 9。
4. 答案:B解析:因为sin²θ + cos²θ = 1,所以sin²θ = 1 - cos²θ,代入sinθ =1/2,得cos²θ = 3/4。
5. 答案:D解析:因为|a| = a,当a ≥ 0时;|a| = -a,当a < 0时。
所以当a = -3时,|a| = 3。
二、填空题6. 答案:2x + 3y = 7解析:由方程组2x + 3y = 7和x - y = 2,解得x = 3,y = 1。
7. 答案:9解析:因为3² + 4² = 5²,所以斜边长为5。
8. 答案:π解析:圆的周长公式为C = 2πr,所以C = 2π × 1= 2π。
9. 答案:1/2解析:因为sin²θ + cos²θ = 1,所以sin²θ = 1 - cos²θ,代入sinθ =1/2,得cos²θ = 3/4,所以cosθ = ±√(3/4)。
10. 答案:4解析:因为a² + b² = c²,所以a² = c² - b²,代入a = 3,b = 4,c = 5,得a² = 9。
一、选择题(每题5分,共30分)1. 已知等差数列{an}的前n项和为Sn,若a1=3,d=2,则S10的值为()A. 100B. 105C. 110D. 1152. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=5,b=6,c=7,则cosB的值为()A. 1/2B. 1/3C. 2/3D. 1/53. 已知函数f(x)=ax^2+bx+c(a≠0),若f(-1)=0,f(1)=2,则f(0)的值为()A. 0B. 1C. 2D. -14. 在平面直角坐标系中,点A(2,3),点B(-3,4),则线段AB的中点坐标为()A. (-1,1)B. (-1,2)C. (1,1)D. (1,2)5. 已知函数f(x)=2x+1,若函数g(x)的图像是f(x)的图像向右平移2个单位,则g(x)的解析式为()A. g(x)=2x-1B. g(x)=2x+1C. g(x)=2x-3D. g(x)=2x+3二、填空题(每题5分,共25分)6. 若等差数列{an}的首项为a1,公差为d,则第n项an=______。
7. 在△ABC中,若a=4,b=5,c=3,则a^2+b^2-c^2=______。
8. 函数f(x)=x^2-2x+1的顶点坐标为______。
9. 在平面直角坐标系中,点P(3,4),点Q(-2,1),则线段PQ的长度为______。
10. 已知函数f(x)=ax^2+bx+c(a≠0),若f(1)=2,f(2)=5,则f(3)=______。
三、解答题(共50分)11. (15分)已知等差数列{an}的前n项和为Sn,若a1=3,d=2,求Sn的表达式。
12. (15分)在△ABC中,角A、B、C的对边分别为a、b、c,若a=5,b=6,c=7,求cosA的值。
13. (20分)已知函数f(x)=2x+1,若函数g(x)的图像是f(x)的图像向右平移2个单位,求g(x)的解析式。
14. (10分)在平面直角坐标系中,点P(2,3),点Q(-3,4),求线段PQ的中点坐标。
四川省成都市双流区双流棠湖中学2021-2022高二数学上学期(xu éqī)10月月考试题(含解析)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每个小题所给出的四个选项中,只有一项是符合题目(tímù)要求的,把正确选项的代号填在答题卡的指定位置. ) 1.已知,则下列不等式一定(yīdìng)成立的是A.B.C.D.【答案(dá àn)】D 【解析(jiě xī)】 【分析】由22log log a b >可得,故,据此逐一考查所给的选项是否正确即可.【详解】由22log log a b >可得0a b >>,故0a b ->,逐一考查所给的选项:A .;B .0a b ->,的符号不能确定;C .;D ..本题选择D 选项.【点睛】本题主要考查对数函数的性质,不等式的性质及其应用等知识,意在考查学生的转化能力和计算求解能力. 2.不等式的解集为A. B. C.D.或【答案(dá àn)】C【解析(j iě xī)】【分析(fēnxī)】将分式不等式转化为一元二次不等式,进行(jìnxíng)求解即可.【详解(xiánɡ jiě)】不等式等价为,得,即,即不等式的解集为,故选:C.【点睛】本题主要考查分式不等式的求解,将其转化为一元二次不等式是解决本题的关键.3.若变量满足约束条件则的最小值等于()A. B. C. D. 2【答案】A【解析】【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【详解】解:由变量x,y满足约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(﹣1,).∴z=2x﹣y的最小值为2×(﹣1).故选:A.【点睛(diǎn jīnɡ)】本题考查(kǎochá)了简单的线性规划,考查了数形结合的解题思想方法,是中档题.4.过点(-1,3)且平行(píngxíng)于直线x-2y+3=0的直线方程为( )A. 2x+y-1=0B. x-2y+7=0C. x-2y-5=0D. 2x+y-5=0【答案(dá àn)】B【解析(jiě xī)】【分析】利用平行直线系方程的知识,设所求直线方程是:x-2y+c=0,直线又过点(-1,3),将点坐标代入方程求出c,即可得到所求直线方程.【详解】设直线方程式是:x-2y+c=0因为直线过点(-1,3)所以-1-6+c=0,解得c=7故所求直线方程是:x-2y+7=0故选B【点睛】本题考察平行直线的求法,当直线方程式是一般式时,可以利用两直线平行的条件:设出直线方程求解.注:已知直线,求与其平行或垂直的直线时,记住以下结论,可避免讨论:(1)与平行的直线可设为:;(2)与l垂直的直线(zhíxiàn)方程可设为:5.已知、、,若A、B、C三点(sān diǎn)共线,则)A. B. 3 C. D. 4【答案(dá àn)】C【解析(jiě xī)】【分析(fēnxī)】A、B、C三点共线,可得,利用斜率计算公式即可得出.详解】解:、B、C三点共线,,,解得.故选:C.【点睛】本题考查了三点共线与斜率之间的关系,考查了推理能力与计算能力,属于基础题.6.下列说法正确的是()A. 若两个平面和第三个平面都垂直,则这两个平面平行B. 若两条直线和一个平面所成的角相等,则这两条直线平行C. 若一个平面内的所有直线都和另一个平面平行,则这两个平面平行D. 若两条平行直线中的一条和一个平面平行,则另一条也和这个平面平行【答案】C【解析】【分析】举出特例,即可说明错误选项。
一、选择题1.已知A (1,0,0),B (0,﹣1,1),OA OB λ+与OB (O 为坐标原点)的夹角为30°,则λ的值为( )A B .±C D .±2.将函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭的图象向左平移(0)ϕϕ>个单位长度后得到函数()cos2g x x =的图象,则ϕ的最小值为( )A .3πB .6π C .12πD .24π3.已知函数()()x cos x 0f x ωωω=+>最小正周期为π,则函数()f x 的图象( ) A .关于直线12x π=对称B .关于直线512x π=对称 C .关于点,012π⎛⎫⎪⎝⎭对称 D .关于点5,012π⎛⎫⎪⎝⎭对称 4.将函数sin()cos()22y x x ϕϕ=++的图象沿x 轴向右平移8π个单位后,得到一个偶函数的图象,则ϕ的取值不可能是( )A .54π-B .4π-C .4πD .34π 5.已知π(,π)2α∈,π1tan()47α+=,则sin cos αα+= ( )A .17-B .25-C .15- D .156.将函数sin y x =图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图象上所有的点向左平移π4个单位长度,则所得图象对应的函数解析式为( ) A .sin(2)4y x π=+B .sin()24x y π=+C .cos 2x y =D .cos 2y x =7.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若3,44ππα⎛⎫∈ ⎪⎝⎭,且3sin 45πα⎛⎫+= ⎪⎝⎭,则0x 的值为( )A .310B .210C .210-D .310-8.将函数()()()()sin 23cos 20f x x x ϕϕϕπ=+++<<的图象向左平移4π个单位后,得到函数的图象关于点,02π⎛⎫⎪⎝⎭对称,则ϕ等于( ) A .6π-B .6π C .4π D .3π 9.在锐角ABC 中,4sin 3cos 5,4cos 3sin 23A B A B +=+=,则角C 等于( )A .150B .120C .60D .3010.设奇函数()()()()sin 3cos 0f x x x ωφωφω=+-+>在[]1,1x ∈-内有9个零点,则ω的取值范围为( ) A .[)4,5ππB .[]4,5ππC .11,54ππ⎡⎤⎢⎥⎣⎦D .11,54ππ⎛⎤ ⎥⎝⎦11.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3,2BM MC DN NC ==,则AM NM ⋅=( )A .20B .15C .9D .612.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .cos 22y x π⎛⎫=+⎪⎝⎭B .sin 22y x π⎛⎫=+⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+13.在平面直角坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O x 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A .AB B .CDC .EFD .GH14.已知函数2()3cos cos f x x x x =+,则( ) A .()f x 的图象关于直线6x π=对称B .()f x 的最大值为2C .()f x 的最小值为1-D .()f x 的图象关于点(,0)12π-对称15.若向量a ,b 满足2a b ==,a 与b 的夹角为60,则a b +等于( )A .B .C .4D .12二、填空题16.函数()1sin cos 533f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值为________________.17.已知sin76m ︒=,则cos7︒=________.(用含m 的式子表示)18.向量,a b 的夹角为60︒,且2,1a b ==则(2)a a b ⋅+=__________. 19.已知向量,a b 满足:43a b +=,232a b -=,当7a b -取最大值时,a b=______.20.把单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB ,点C 在线段AB 上,若12AC CB =,则OC BA ⋅的值为__________.21.已知角α的终边上一点)1A -,则()sin tan 2παπα⎛⎫-++= ⎪⎝⎭__________.22.将函数()2sin(2)6f x x π=-的图象向左平移(0)φφ>个单位,若所得到图象关于原点对称,则φ的最小值为__________.23.函数()211sinsin (0)222x f x x ωωω=+->,若函数()f x 在区间x ∈(),2ππ内没有零点,则实数ω的取值范围是_____24.已知A ,B ,C 是圆O 上的三点(点O 为圆的圆心),若1()2AO AB AC =+,则AB 与AC 的夹角为______.25.若将函数sin y x x =的图象向右平移()0ϕϕ>个单位长度得到函数sin y x x =-的图象,则ϕ的最小值为________________.三、解答题26.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域27.已知函数π()sin()(0,0,)2f x A x B A ωϕωϕ=++>><的部分图象如图所示:(I )求()f x 的解析式及对称中心坐标; (Ⅱ)将()f x 的图象向右平移6π个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数()g x 的图象,求函数()y g x =在7π0,6x ⎡⎤∈⎢⎥⎣⎦上的单调区间及最值.28.已知向量(1,2),(,1)a b x →→==(1)当(2)(2)a b a b +⊥-时,求x 的值;(2)若,a b <>为锐角,求x 的范围. 29.在顺次连接的平行四边形ABCD 中,已知点()1,1A --,()2,0B ,()0,1D .()1求点C 的坐标;()2设线段BD 的中点为E ,直线l 过E 且垂直于CD ,求l 的方程.30.已知(1,2)a =,(2,1)b =-,(2)m a t b =++,n ka tb =+(k ∈R ). (1)若1t =,且m ∥n ,求k 的值; (2)若t ∈R ,且||5m n -≤,求k 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.C3.D4.C5.C6.D7.C8.B9.D10.A11.C12.A13.C14.A15.B二、填空题16.【解析】【分析】先利用两角和与差的正弦余弦公式将函数的解析式展开合并同类项后利用辅助角公式进行化简即可得出函数的最大值【详解】其中因此函数的最大值为故答案为【点睛】本题考查三角函数的最值解题的关键就17.【解析】【分析】通过寻找与特殊角的关系利用诱导公式及二倍角公式变形即可【详解】因为即所以所以所以又【点睛】本题主要考查诱导公式和二倍角公式的应用意在考查学生分析解决问题的能力18.6【解析】【分析】由题意利用向量的数量积的运算可得即可求解【详解】由题意可知向量的夹角为且则【点睛】本题主要考查了平面向量的数量积的运算其中解答中熟记平面向量的数量积的运算公式准确计算是解答的关键着19.【解析】【分析】根据向量模的性质可知当与反向时取最大值根据模长的比例关系可得整理可求得结果【详解】当且仅当与反向时取等号又整理得:本题正确结果:【点睛】本题考查向量模长的运算性质关键是能够确定模长取20.【解析】【分析】由题意可得与夹角为先求得则再利用平面向量数量积的运算法则求解即可【详解】单位向量绕起点逆时针旋转再把模扩大为原来的3倍得到向量所以与夹角为因为所以所以故答案为【点睛】本题主要考查平面21.【解析】分析:先根据三角函数定义得再根据诱导公式化简求值详解:因为角的终边上一点所以因此点睛:本题考查三角函数定义以及诱导公式考查基本求解能力22.【解析】分析:先根据图像平移得解析式再根据图像性质求关系式解得最小值详解:因为函数的图象向左平移个单位得所以因为所以点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟23.【解析】分析:先化简函数f(x)再求得再根据函数在区间内没有零点得到不等式组最后解不等式组即得w的范围详解:由题得f(x)=因为所以当或时f(x)在内无零点由前一式得即由k =0得K取其它整数时无解同24.【解析】在圆中若=(+)即=+即+的和向量是过AO的直径则以ABAC为邻边的四边形是矩形则⊥即与的夹角为90°故答案为:90°25.【解析】将函数的图象向右平移个单位长度后得到的图象而所以可得故答案为三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】运用向量的坐标运算及夹角公式直接求解即可. 【详解】解:(1,0,0)(0,,)(1,,)OA OB λλλλλ+=+-=-,∴2||12,||2OA OB OB λλ+=+=,()2OA OB OB λλ+=,∴cos302λ︒=, ∴4λ=,则0λ>,∴λ=. 故选:C . 【点睛】本题考查空间向量的坐标运算,考查运算求解能力,属于基础题.2.C解析:C 【解析】 【分析】根据题意得到变换后的函数解析式,利用诱导公式求得结果 【详解】由题,向左平移(0)ϕϕ>不改变周期,故2ω=,∴平移得到()sin 2sin 22cos 233x x x ππϕϕ⎡⎤⎡⎤⎛⎫++=++= ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦ 2+=+232k ππϕπ∴,12k πϕπ∴=+0ϕ>,∴当0k =时,min 12πϕ=,故选C【点睛】本题考查函数()sin y A x ωϕ=+的图象变换规律,利用诱导公式完成正、余弦型函数的转化3.D解析:D 【解析】分析:先化简函数f(x)=2sin()6wx π+,再根据周期求出w ,再讨论每一个选项的真假.详解:由题得f(x)=2sin()6wx π+,因为2,2,()2sin(2).6w f x x w πππ=∴=∴=+对于选项A,把12x π=代入函数得(=2sin()21266f πππ+=≠±),所以选项A 是错误的;对于选项B, 把512x π=代入函数得55(=2sin()021266f πππ+=≠±),所以选项B 是错误的;对于选项C,令2,,.6212k x k k z x ππππ+=∈∴=-无论k 取何整数,x 都取不到12π,所以选项C 是错误的.对于选项D, 令2,,.6212k x k k z x ππππ+=∈∴=-当k=1时,512x π=,所以函数的图像关于点5,012π⎛⎫⎪⎝⎭对称. 故答案为:D.点睛:(1)本题主要考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)对于三角函数图像和性质的判断,要灵活,不要死记硬背.4.C解析:C 【解析】试题分析:()1sin()cos()sin 2222y x x x ϕϕϕ=++=+将其向右平移8π个单位后得到:11sin 2sin 22824y x x ππϕϕ⎛⎫⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若为偶函数必有:()42k k Z ππϕπ-=+∈,解得:()34k k Z πϕπ=+∈,当0k =时,D 正确,1k =-时,B 正确,当2k =-时,A 正确,综上,C 错误. 考点:1.函数的图像变换;2.函数的奇偶性.5.C解析:C 【解析】 【分析】由两角和的正切公式得出3sin cos 4αα=-,结合平方关系求出43cos ,sin 55αα=-=,即可得出sin cos αα+的值. 【详解】1tan 1tan 41tan 7πααα+⎛⎫+== ⎪-⎝⎭3tan 4α∴=-,即3sin cos 4αα=-由平方关系得出223cos cos 14αα⎛⎫-+= ⎪⎝⎭,解得:43cos ,sin 55αα=-=341sin cos 555αα+=-=- 故选:C 【点睛】本题主要考查了两角和的正切公式,平方关系,属于中档题.6.D解析:D 【解析】 【分析】由正弦函数的周期变换以及平移变换即可得出正确答案. 【详解】函数sin y x =图象上所有点的横坐标缩短到原来的12倍(纵坐标不变)得到sin 2y x =,再将所得图象上所有的点向左平移π4个单位长度,得到sin 2sin 2cos 242y x x x ππ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭故选:D 【点睛】本题主要考查了正弦函数的周期变换以及平移变换,属于中档题.7.C解析:C 【解析】 【分析】利用两角和差的余弦公式以及三角函数的定义进行求解即可. 【详解】3,44ππα⎛⎫∈⎪⎝⎭, ,42ππαπ⎛⎫∴+∈ ⎪⎝⎭, 3sin 45πα⎛⎫+= ⎪⎝⎭,4cos 45πα⎛⎫∴+=- ⎪⎝⎭,则0cos cos cos cos sin sin 444444x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦43525210=-⨯+⨯=-, 故选C . 【点睛】本题主要考查两角和差的三角公式的应用,结合三角函数的定义是解决本题的关键.8.B解析:B 【解析】 【分析】先利用辅助角公式将函数()y f x =的解析式化简,并求出平移变换后的函数解析式,由变换后的函数图象关于点,02π⎛⎫⎪⎝⎭对称,可得出ϕ的表达式,结合ϕ的范围可求出ϕ的值. 【详解】()()()sin 222sin 23f x x x x πϕϕϕ⎛⎫=+++=++ ⎪⎝⎭,将函数()y f x =的图象向左平移4π个单位后, 所得图象的函数解析式为()52sin 22sin 2436g x x x πππϕϕ⎡⎤⎛⎫⎛⎫=+++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由于函数()y g x =的图象关于点,02π⎛⎫⎪⎝⎭对称,则()5226k k Z ππϕπ⨯++=∈,得()116k k Z ϕπ⎛⎫=-∈ ⎪⎝⎭,0ϕπ<<,2k ∴=,6π=ϕ. 故选:B. 【点睛】本题考查利用三角函数的对称性求参数值,同时也考查了三角函数图象的平移变换,根据对称性得出参数的表达式是解题的关键,考查推理能力与计算能力,属于中等题.9.D解析:D 【解析】 【分析】由题:()()224sin 3cos 25,4cos 3sin 12A B A B +=+=,两式相加即可求出sin()A B +,进而求出A B +,角C 得解.【详解】由题:()()224sin 3cos 25,4cos 3sin 12A B A B +=+=,2216sin 24sin cos 9cos 25A A B B ++=,2216cos 24cos sin 9sin 12A A B B ++=,两式相加得:()1624sin cos cos sin 937A B A B +++=,1sin()2A B +=,所以1sin sin(())2C A B π=-+=,且C 为锐角, 所以30C =. 故选:D 【点睛】此题考查同角三角函数基本关系与三角恒等变换综合应用,考查对基本公式的掌握和常见问题的处理方法.10.A解析:A 【解析】f (x )=sin (ωx+φ(ωx+φ)=2[12sin (ωx+φ)﹣2cos (ωx+φ)] =2[cos3πsin (ωx+φ)﹣sin 3πcos (ωx+φ)]=2sin (ωx+φ﹣3π) ∵函数f (x )为奇函数,∴f (0)=2sin (φ﹣3π)=0,∴φ=3π+kπ,k ∈Z ∴f (x )=2sin (ωx+kπ),f (x )=0即sin (ωx+kπ)=0,ωx+kπ=mπ,m ∈Z ,解得,x=()m k πω-,设n=m ﹣k ,则n ∈Z ,∵A ∈[﹣1,1],∴﹣1≤x≤1,[]1,1n πω∈-,∴n ωωππ-≤≤, ∵A ∈[﹣1,1]中有9个元素,4545.ωπωππ∴≤<⇒≤< 故答案为A.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e 为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题.研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用.11.C解析:C 【解析】 【分析】 根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,AM NM ⋅ 2()AM AM AN AM AM AN =⋅-=-⋅,结合向量的数量积求解即可.【详解】因为四边形ABCD 为平行四边形,点M 、N 满足3,2BM MC DN NC ==,∴根据图形可得:3344AM AB BC AB AD =+=+, 2233AN AD DC AD AB =+=+, NM AM AN ∴=-,2()AM NM AM AM AN AM AM AN ⋅=⋅-=-⋅,22239216AM AB AB AD AD =+⋅+, 22233342AM AN AB AD AD AB ⋅=++⋅, 6,4AB AD ==, 22131239316AM NM AB AD ∴⋅=-=-=, 故选C.本题考查了平面向量的运算,数量积的运用,考查了数形结合的思想,关键是向量的分解,表示.考点:向量运算.12.A解析:A 【解析】 【分析】求出函数的周期,函数的奇偶性,判断求解即可. 【详解】 解:y =cos (2x 2π+)=﹣sin2x ,是奇函数,函数的周期为:π,满足题意,所以A 正确 y =sin (2x 2π+)=cos2x ,函数是偶函数,周期为:π,不满足题意,所以B 不正确;y =sin2x +cos2x 2=sin (2x 4π+),函数是非奇非偶函数,周期为π,所以C 不正确; y =sin x +cos x 2=sin (x 4π+),函数是非奇非偶函数,周期为2π,所以D 不正确; 故选A .考点:三角函数的性质.13.C解析:C 【解析】分析:逐个分析A 、B 、C 、D 四个选项,利用三角函数的三角函数线可得正确结论. 详解:由下图可得:有向线段OM 为余弦线,有向线段MP 为正弦线,有向线段AT 为正切线.A 选项:当点P 在AB 上时,cos ,sin x y αα==,cos sin αα∴>,故A 选项错误;B 选项:当点P 在CD 上时,cos ,sin x y αα==,tan y xα=, tan sin cos ααα∴>>,故B 选项错误;C 选项:当点P 在EF 上时,cos ,sin x y αα==,tan y xα=, sin cos tan ααα∴>>,故C 选项正确;D 选项:点P 在GH 上且GH 在第三象限,tan 0,sin 0,cos 0ααα><<,故D 选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到sin ,cos ,tan ααα所对应的三角函数线进行比较.14.A解析:A 【解析】 【分析】利用三角函数恒等变换的公式,化简求得函数的解析式,再根据三角函数的图象与性质,逐项判定,即可求解. 【详解】 由题意,函数2111()cos cos 2cos 2sin(2)22262f x x x x x x x π=+=++=++, 当6x π=时,113()sin(2)sin 6662222f ππππ=⨯++=+=,所以6x π=函数()f x 的对称轴,故A 正确;由sin(2)[1,1]6x π+∈-,所以函数()f x 的最大值为32,最小值为12-,所以B 、C 不正确;又由12x π=时,11()sin(2)6126222f πππ=⨯++=+,所以(,0)12π-不是函数()f x 的对称中心,故D 不正确, 故选A . 【点睛】本题主要考查了三角恒等变换的公式的应用,以及函数sin()y A wx b ϕ=++的图象与性质的应用,着重考查了推理与运算能力,属于基础题.15.B解析:B 【解析】 【分析】将a b +平方后再开方去计算模长,注意使用数量积公式. 【详解】因为2222cos 6044412a b a a b b +=+︒+=++=,所以23a b +=, 故选:B. 【点睛】本题考查向量的模长计算,难度一般.对于计算xa yb +这种形式的模长,可通过先平方再开方的方法去计算模长.二、填空题16.【解析】【分析】先利用两角和与差的正弦余弦公式将函数的解析式展开合并同类项后利用辅助角公式进行化简即可得出函数的最大值【详解】其中因此函数的最大值为故答案为【点睛】本题考查三角函数的最值解题的关键就.【解析】 【分析】先利用两角和与差的正弦、余弦公式将函数()y f x =的解析式展开,合并同类项后利用辅助角公式进行化简,即可得出函数()y f x =的最大值. 【详解】()1111sin cos sin cos 533522f x x x x x x x ππ⎛⎫⎛⎫⎛⎫⎛⎫=++-=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()15sin cos 1010x x x ϕ++=+=+,其中tan ϕ==,因此,函数()y f x =,.【点睛】本题考查三角函数的最值,解题的关键就是利用三角恒等变换思想将三角函数解析式进行化简,同时也考查了三角函数的基本性质,考查计算能力和转化思想,属于中等题.17.【解析】【分析】通过寻找与特殊角的关系利用诱导公式及二倍角公式变形即可【详解】因为即所以所以所以又【点睛】本题主要考查诱导公式和二倍角公式的应用意在考查学生分析解决问题的能力解析:2【解析】 【分析】通过寻找76︒,7︒与特殊角90︒的关系,利用诱导公式及二倍角公式变形即可. 【详解】因为sin76m ︒=,即()sin 9014m ︒-︒=,所以cos14m ︒=, 所以22cos 71m ︒-=,所以21cos141cos 722m+︒+︒==,又cos 72ο==. 【点睛】本题主要考查诱导公式和二倍角公式的应用,意在考查学生分析解决问题的能力.18.6【解析】【分析】由题意利用向量的数量积的运算可得即可求解【详解】由题意可知向量的夹角为且则【点睛】本题主要考查了平面向量的数量积的运算其中解答中熟记平面向量的数量积的运算公式准确计算是解答的关键着解析:6 【解析】 【分析】由题意,利用向量的数量积的运算,可得2(2)2a a b a a b ⋅+=+⋅,即可求解. 【详解】由题意,可知向量,a b 的夹角为060,且2,1a b ==则221(2)22cos60422162a ab a a b a a b ⋅+=+⋅=+⋅=+⨯⨯⨯=. 【点睛】本题主要考查了平面向量的数量积的运算,其中解答中熟记平面向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力.19.【解析】【分析】根据向量模的性质可知当与反向时取最大值根据模长的比例关系可得整理可求得结果【详解】当且仅当与反向时取等号又整理得:本题正确结果:【点睛】本题考查向量模长的运算性质关键是能够确定模长取解析:18【解析】 【分析】根据向量模的性质可知当23a b -与4a b +反向时,7a b -取最大值,根据模长的比例关系可得()()32324a b a b -=-+,整理可求得结果. 【详解】()()72342345a b a b a b a b a b -=--+≤-++=当且仅当23a b -与4a b +反向时取等号又43223a ba b+=- ()()32324a b a b ∴-=-+ 整理得:8a b = 18ab ∴= 本题正确结果:18【点睛】本题考查向量模长的运算性质,关键是能够确定模长取得最大值时,两个向量之间的关系,从而得到两个向量之间的关系.20.【解析】【分析】由题意可得与夹角为先求得则再利用平面向量数量积的运算法则求解即可【详解】单位向量绕起点逆时针旋转再把模扩大为原来的3倍得到向量所以与夹角为因为所以所以故答案为【点睛】本题主要考查平面 解析:116-【解析】 【分析】由题意可得3OB =,OA 与OB 夹角为120︒,先求得1(2)3OC OA AC OA OB =+=+,则1(2)()3OC BA OA OB OA OB ⋅=+⋅-,再利用平面向量数量积的运算法则求解即可. 【详解】单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB , 所以3OB =,OA 与OB 夹角为120︒, 因为12AC CB =,所以111()(2)333OC OA AC OA AB OA OB OA OA OB =+=+=+-=+,所以()2211(2)()233OC BA OA OB OA OB OA OB OA OB ⋅=+⋅-=--⋅ 11291332⎡⎤⎛⎫=--⨯⨯- ⎪⎢⎥⎝⎭⎣⎦116=-,故答案为116-. 【点睛】 本题主要考查平面向量几何运算法则以及平面向量数量积的运算,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差;(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).21.【解析】分析:先根据三角函数定义得再根据诱导公式化简求值详解:因为角的终边上一点所以因此点睛:本题考查三角函数定义以及诱导公式考查基本求解能力解析:6. 【解析】分析:先根据三角函数定义得cos ,tan αα,再根据诱导公式化简求值.详解:因为角α的终边上一点)1A -,,所以cos tanαα===, 因此()sin tan 2παπα⎛⎫-++⎪⎝⎭cos tanαα=+== 点睛:本题考查三角函数定义以及诱导公式,考查基本求解能力.22.【解析】分析:先根据图像平移得解析式再根据图像性质求关系式解得最小值详解:因为函数的图象向左平移个单位得所以因为所以点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟 解析:12π【解析】分析:先根据图像平移得解析式,再根据图像性质求φ关系式,解得最小值. 详解:因为函数()2sin 26f x x π⎛⎫=-⎪⎝⎭的图象向左平移(0)φφ>个单位得()2sin(2())6g x x πφ=+-,所以2()()6122k k k Z k Z πππφπφ-=∈∴=+∈因为0φ>,所以min .12πφ=点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言.23.【解析】分析:先化简函数f(x)再求得再根据函数在区间内没有零点得到不等式组最后解不等式组即得w 的范围详解:由题得f(x)=因为所以当或时f(x)在内无零点由前一式得即由k=0得K 取其它整数时无解同解析:][1150,,848⎛⎤⋃⎥⎝⎦ 【解析】分析:先化简函数f(x) )24wx π=-,再求得(,2),444wx w w πππππ-∈--再根据函数()f x 在区间x ∈ (),2ππ内没有零点得到不等式组,最后解不等式组即得w 的范围.详解:由题得f(x)=1cos 1111sin sin cos )222224wx wx wx wx wx π-+-=-=-, 因为x ∈ (),2ππ,所以(,2),444wx w w πππππ-∈--当(,2)(2,2),44w w k k k z πππππππ--⊆+∈或(,2)(2,2),44w w k k k z πππππππ--⊆-∈时,f(x)在(),2ππ内无零点,由前一式得 24,224k w w k πππππππ⎧≤-⎪⎪⎨⎪-≤+⎪⎩即152,48k w k +≤≤+由k=0得1548w ≤≤, K 取其它整数时无解,同理,由后一式,解得1(0,]8w ∈, 综上,w 的取值范围是][1150,,848⎛⎤⋃ ⎥⎝⎦. 点睛:(1)本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的零点问题,意在考查学生对这些知识的掌握水平和分析推理能力数形结合的思想方法.(2)解答本题的关键有两点,其一是分析得到当(,2)(2,2),44w w k k k z πππππππ--⊆+∈或(,2)(2,2),44w w k k k z πππππππ--⊆-∈时,f(x)在(),2ππ内无零点,其二是进一步转化得到不等式组解不等式组. 24.【解析】在圆中若=(+)即=+即+的和向量是过AO 的直径则以ABAC 为邻边的四边形是矩形则⊥即与的夹角为90°故答案为:90° 解析:90︒【解析】 在圆中若AO =12(AB +AC ), 即2AO =AB +AC ,即AB +AC 的和向量是过A ,O 的直径, 则以AB ,AC 为邻边的四边形是矩形, 则AC ⊥AB ,即AB 与AC 的夹角为90°, 故答案为:90°25.【解析】将函数的图象向右平移个单位长度后得到的图象而所以可得故答案为 解析:【解析】32cos cos 2333y sinx x sinx xsin sin x πππ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭ ,将函数的图象向右平移()0ϕϕ> 个单位长度后,得到()2233y sin x sin x ππϕϕ⎡⎤⎛⎫=-+=+- ⎪⎢⎥⎣⎦⎝⎭的图象,而sin y x x =-2sin 3x π⎛⎫=- ⎪⎝⎭,所以,33ππϕ-=- ,可得23ϕπ= ,故答案为23π.三、解答题 26.(Ⅰ)见解析(Ⅱ)函数()f x 在区间[,]122ππ-上的值域为[2- 【解析】 【分析】(Ⅰ)利用两角和与差的正弦、余弦公式以及辅助角公式化简函数()f x ,由周期公式以及正弦函数的对称轴求解即可;(Ⅱ)由正弦函数的单调性求得函数函数()f x 在区间[,]122ππ-的单调性,比较(),()122f f ππ-的大小,即可得出值域. 【详解】(Ⅰ)()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )2x x x x x x =++-+221cos 22sin cos 22x x x x =++-1cos 22cos 22x x x =- πsin(2)6x =-22T ππ∴== 26232k x k x πππππ-=+⇒=+则对称轴方程为,32k x k Z ππ=+∈ (Ⅱ)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()12222f f ππ-=-<=,∴当12x π=-时,()f x 取最小值所以 函数()f x 在区间[,]122ππ-上的值域为[ 【点睛】 本题主要考查了两角和与差的正弦、余弦公式以及辅助角公式,正弦函数的性质,求正弦型函数的值域,属于中档题.27. (Ⅰ) ()2sin(2)13f x x π=+-;对称中心的坐标为,126k ππ⎛⎫-- ⎪⎝⎭(k Z ∈) (Ⅱ)见解析 【解析】【分析】(I )先根据图像得到函数的最大值和最小值,由此列方程组求得,A B 的值,根据周期求得ω的值,根据图像上()112f π=求得ϕ的值,由此求得()f x 的解析式,进而求得()f x 的对称中心.(II )求得图像变换之后的解析式()2sing x x =,通过求出()g x 的单调区间求得()g x 在区间7π0,6⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【详解】 解:(I )由图像可知:13A B A B +=⎧⎨-+=-⎩,可得:2,1A B ==- 又由于721212T ππ=-,可得:T π=,所以22T πω== 由图像知()112f π=,sin(2)112πϕ⨯+=,又因为2363πππϕ-<+< 所以2122ππϕ⨯+=,3πϕ=.所以()2sin(2)13f x x π=+- 令23x k ππ+=(k Z ∈),得:26k x ππ=-(k Z ∈) 所以()f x 的对称中心的坐标为,126k ππ⎛⎫-- ⎪⎝⎭(k Z ∈) (II )由已知的图像变换过程可得:()2sin g x x =由()2sin g x x =的图像知函数在7π0,6x ⎡⎤∈⎢⎥⎣⎦上的单调增区间为0,2π⎡⎤⎢⎥⎣⎦,单调减区间7,26ππ⎡⎤⎢⎥⎣⎦ 当2x π=时,()g x 取得最大值2;当76x π=时,()g x 取得最小值1-. 【点睛】本小题主要考查根据三角函数图像求三角函数解析式,考查三角函数对称中心的求法,考查三角函数图像变换,考查三角函数的单调性和最值的求法,属于中档题.28.(1)x 72=或x =﹣2;(2)x >﹣2且x 12≠. 【解析】【分析】 (1)利用向量的数量积为零列出方程求解即可.(2)根据题意得a •b >0且a ,b 不同向,列出不等式,即可求出结果.【详解】(1)a +2b =(1+2x ,4),2a b -=(2﹣x ,3),(a +2b )⊥(2a b -),可得(2x +1)(2﹣x )+3×4=0. 即﹣2x 2+3x +14=0.解得:x 72=或x =﹣2. (2)若a <,b >为锐角,则a •b >0且a ,b 不同向. a •b =x +2>0,∴x >﹣2,当x 12=时,a ,b 同向. ∴x >﹣2且x 12≠. 【点睛】 本题主要考查向量垂直的坐标表示,考查向量夹角为锐角的充要条件,意在考查学生对这些知识的掌握水平和分析推理能力.29.(1)()3,2;(2)6270x y +-=【解析】【分析】()1设(),C x y ,由AD BC =,能求出点C 的坐标.()2设线段BD 的中点为E ,则11,2E ⎛⎫ ⎪⎝⎭,求出13CD k =,则3l k =-,由此能求出l 的方程.【详解】() 1设(),C x y ,在顺次连接的平行四边形ABCD 中,点()1,1A --,()2,0B ,()0,1D .AD BC ∴=,即()()1,22,x y =-,解得3x =,2y =,∴点C 的坐标()3,2.()2设线段BD 的中点为E ,则11,2E ⎛⎫ ⎪⎝⎭, 121033CD k -==-, 直线l 过E 且垂直于CD ,3l k ∴=-, l ∴的方程为()1312y x -=--,即6270x y +-=. 【点睛】本题考查构成平行四边形满足的条件,考查直线方程的求法,结合了向量的基础知识及基本运算,是基础题.30.(1)13;(2)[0,2]. 【解析】【分析】 (1)当1t =时,()5,5m =-,()2,21n k k =-+,由m ∥n 得()()521520k k -+--=,解出即可;(2)由||5m n -≤得()()2234225k k --+-≤,解出即可.【详解】解:∵(1,2)a =,(2,1)b =-,(2)m a t b =++,n ka tb =+,∴()23,4m t t =--+,()2,2n k t k t =-+,(1)当1t =时,()5,5m =-,()2,21n k k =-+,∵m ∥n ,∴()()521520k k -+--=, ∴13k =; (2)∵()3,42m n k k -=---,且||5m n -≤,∴()()2234225k k --+-≤,化简得()20k k -≤, 解得02k ≤≤,∴k 的取值范围是[]0,2.【点睛】本题主要考查平面向量共线的坐标运算,考查平面向量的模,属于基础题.。
最新棠湖中学数学周末试题(含答案)
第Ⅰ卷选择题(共30分)
一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.有理数6的相反数是( )
A.-6
B.6
C.1/6
D.-1/6
2.在下列各组中,表示互为相反意义的量是()
A.向东走3 m,再向南走3 m B.足球比赛胜5场与负5场
C.增产10 t粮食与减产-10 t粮食D.节约汽油10 kg和浪费酒精10 kg
3.若|x+2|+|y-3|=0,则 x-y的值为()A.5 B.-5 C.1或-1 D.以上都不对
4.(3分)将一张长方形的纸对折,然后用笔尖在上面扎出“E”,再把它铺平,你可见到的图形是()
5.如果a>b,下列各式中不正确
...的是……………………………………………( )
A.-5a>-5b B.a+3>b+3 C.a
2>
b
2D.a-b>0
6.把弯曲的道路改直,能够缩短行程,其道理用数学知识解释应是……………( ) A.垂线段最短B.两点确定一条直线
C.线段可以大小比较D.两点之间,线段最短
7.如图,在下列四个几何体中,它的三视图(主视图、左视图、俯视图)不完全相同的是…………………………………………………………………………………( )
A.①②B.②③ C.①④D.②④
8.a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;
当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为--------------()
A.1 B.-1 C.7 D.-7
9.已知点O是线段AB上的一点,且AB=10㎝,点M、N分别是线段AO、线段BO 的中点,那么线段MN的长度是()
A、3㎝
B、5㎝
C、2㎝
D、无法确定
10.把全体自然数按下面的方式进行排列:按照这样的规律推断,从2014到2016,箭头
的方向应是()
A.↓→B.→↑C.↑→D.→↓
第Ⅱ卷非选择题(共90分)
二、填空题(本大题共5个小题,每小题3分,共15分)
11.—2的相反数的倒数是_____.
12.计算:17254
'
︒⨯= .
13.在计算器上按键6^2 1 6 -7 = 显示的结果是.
14. 七(1)班40位同学站成一列,玩报数游戏. 规则是:从第1位同学开始,每位同学报自
己排队序号数的倒数再加上1,第1位同学报,第2位同学报,第3位同学报,…,则这40位同学所报数的积是 .
①正方体②圆柱③圆锥④球
15.读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为,这里“”是求和符号.例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为;又如“”可表示为.同学们,通过对以上材料的阅读,请解答下列问题:
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示
为;
(2)计算:= (填写最后的计算结果).
三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:﹣++|(精确到0.01)
17.化简
①x2+5y-4x2-3y-1 ②-(2a-3b)-(4a-5b)
18.在数轴上画出表示下列5个数的点,并用
..“.<.”.把.它.们连接起来
.....
:
-(-4),-||
-3.5,+(-
1
2) ,+(+2.5),1
1
2
19.(本题8分)一座楼梯的示意图如图所示,要在楼梯上铺一条地毯。
(1)地毯至少需多少长?(用关于a,h的代数式表示)
(2)若楼梯的宽为b,则地毯的面积为多少?
(3)当a=5 m,b=1.2 m,h=3 m时,则地毯的面积是多少m2 ?
-4 -3 -2 2
20.已知在纸面上有一数轴(如图),折叠纸面.
(1)若1表示的点与-1表示的点重合,则-2表示的点与数表示的点重合
(2)若-1表示的点与3表示的点重合,回答以下问题:
① 5表示的点与数表示的点重合;
② 若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后
重合,求A、B两点表示的数是多少?
21.(本题满分5分)某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套。
如果每套比原销售价降低10元销售,则每天可多销售100套。
该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论(每套西服的利润=每套西服的销售价-每套西服的进价)。
1、按原销售价销售,每天可获利润元。
2、若每套降低10元销售,每天可获利润元。
3、如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多
销售200套。
按这种方式:
(1)若每套降低10x元,则每套的销售价格为_____ ________元;(用代数式表示)
(2)若每套降低10x元,则每天可销售_________ ____ 套西服。
(用代数式表示)
(3)若每套降低10x元,则每天共可以获利润元。
(用代数式表示)
22. 仔细观察下面的日历,回答下列问题:
⑴在日历中,用正方形框圈出四个日期(如图)。
求出图中这四个数的和;
⑵任意用正方形框圈出四个日期,如果正方形框中的第一个数为x,用代数式表示正方形框中的四个数的和;
⑶若将正方形框上下左右移动,可框住另外的四个数,这四个数的和能等于40吗?如果能,依次写出这四个数;如果不能,请说明理由.
23. 仔细观察下面的日历,回答下列问题:
⑴在日历中,用正方形框圈出四个日期(如图)。
求出图中这四个数的和;
⑵任意用正方形框圈出四个日期,如果正方形框中的第一个数为x,用代数式表示正方形框中的四个数的和;
⑶若将正方形框上下左右移动,可框住另外的四个数,这四个数的和能等于40吗?如果能,依次写出这四个数;如果不能,请说明理由.。