人教版七年级数学下册第八章单元测试卷
- 格式:docx
- 大小:26.34 KB
- 文档页数:5
人教版七年级数学下册第 8 章《二元一次方程组》单元检测题人教版七年级下册第八章二元一次方程组单元检测题考试时间: 100 分钟; 满分: 120 分班级:姓名:学号:分数:一、选择题(本题共 10 个小题,每题 3 分,共 30 分) 1.以下各式是二元一次方程的是()A .1b2 B . 2m3n5C . 2x+3=5D . xy3a2.若x2是方程 ax -3y=2 的一个解,则 a 为 ()y 7A .8B. 23C.-23D .-192223.解方程组 4x 3 y 7时,较为简单的方法是()4x3y 5A .代入法B.加减法 C .试值法 D .没法确立4.方程组2xy的解为x2,则被掩盖的两个数分别为()x y3yA .1,2 B.1,3C .5,1(D) 2,4 5.以下方程组,解为x1是()y2A . x y 1B . x y 1C . x y 3D .x y33x y53x y53xy 1 3x y56.买钢笔和铅笔共 30 支,此中钢笔的数目比铅笔数目的 2 倍少 3 支.若设买钢笔 x 支,铅笔 y 支,依据题意,可得方程组()A . x y 30B . x y 30C . x y 30D .x y 30 y 2x 3y 2x 3x 2 y 3x 2 y 37.已知 x 、y 知足方程组x 2y8,则 x +y 的值是( )2x y 7A .3B .5C .7D .98.已知 3x m n y m n 与- 9x 7-m y 1+n 的和是单项式,则 m ,n 的值分别是()5A .m=- 1, n=-7B .m=3,n=1C .m=29, n=6D.m=5,n=- 210 549.依据图中供给的信息,可知一个杯子的价钱是( )A .51 元B .35元C .8 元D .7.5 元10.已知二元一次方程 3x +y =0 的一个解是xa,此中 a ≠ 0,那么( )y bA.b>0B.b=0C.b< 0D. 以上都不对aaa二、填空题(本题共 6 个小题,每题 4 分,共 24 分)11.请你写出一个有一解为的二元一次方程:.12.已知方程 3x +5y - 3=0,用含 x 的代数式表示 y ,则 y=________..若 x a-b-2-2y a + b是二元一次方程,则 a=________ , b=________.13 =314.方程 4x +3y =20 的全部非负整数解为:.15.某商品成本价为 t 元,商品上架前订价为 s 元,按订价的 8 折销售后赢利 45元。
n m七年级数学第八章单元检测卷一、填空题(每空3分,共30分)1、把方程2x -y -5=0化成含用Y 的代数式表示X 的形式:X = ,化成用含X 的代数式表示Y 的形式:Y= .2、在方程3x -ay =8中,如果是它的一个解是⎩⎨⎧==21y x ,那么a 的值为3、已知二元一次方程2x -y =1,若x =2,则y = ;若y =0,则x = .4、方程x +y =2的正整数解是__________.5、若∣x -2y +1∣+∣x +y -5∣=0,则x = ,y = .6、某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了枚,80分的邮票买了 枚。
7、大数和小数的差为12,这两个数的和为60,则大数是 ,小数是 .8、甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟X 米,每分钟Y 米,则可列方程组 ______.9、若3x953++n m +4y 724--n m =2是关于x 、y 的二元一次方程,则的值等于 二、选择题:(每题3分,共30分)11、方程023,13,3,532,62=+-===-=+z y x yx xy y x y x 中是二元一次方程的有( )个.A 、1B 、2C 、3D 、412、下列方程组中,属于二元一次方程组的是( )B 、⎪⎩⎪⎨⎧=-=+043112y x yx C 、⎪⎩⎪⎨⎧=+=343453z x y x D 、⎩⎨⎧=+=-12382y x y x A 、13、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、 ⎩⎨⎧=-=21y xB 、⎩⎨⎧-==12y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x14、下列说法正确的是( )A 、二元一次方程只有一个解;B 、二元一次方程组有无数个解;C 、二元一次方程组的解必是它所含的二元一次方程的解;D 、三元一次方程组一定由三个三元一次方程组成15、下列说法正确( )A.二元一次方程2x+3y=17的正整数解有2组16、若x、y为非负数,则方程y x 51-=2的解是( )A、无解 B、无数个解 C、唯一一个解D、不能确定17、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为 ( )A 、⎩⎨⎧=++=x y x y 5837B 、⎩⎨⎧=-+=x y x y 5837C 、⎩⎨⎧+=-=5837x y x yD 、⎩⎨⎧+=+=5837x y x y⎩⎨⎧==+725xy y x18、用代入消元法解方程组⎩⎨⎧-==-y x y x 211323代入消元,正确的是( )A 由①得y=3x+2,代入②后得3x=11-2(3x+2)B 、由②得 代入②得y y 21132113-=-⨯C 、由①得23-=x y 代入②得)23(2113--=x xD 、由②得3x =11-2y ,代入①得11-2y -y =219、用加减法解方程组⎩⎨⎧=-=+1123332y x y x 时,有下列四种变形,其中正确的是( ) A 、⎩⎨⎧=-=+1169364y x y x B 、⎩⎨⎧=-=+2226936y x y x C 、⎩⎨⎧=-=+3369664y x y x D 、 ⎩⎨⎧=-=+1146396y x y x 20、若=+--⨯-=-=-49)(3)(,21,2c b c b c a b a 则( ) A 、0 B 、 C 、2 D 、-4三、解答题(每题12分):21、解下列方程组(1)⎩⎨⎧=-=+22534y x y x (2) ⎩⎨⎧=-=-73032y x y x 22、代数式ax+by,当x=5,y=2时,它的值是7;当x =3,y=1时,它的值是4,试求x=7,y=-5时代数式ax-by 的值。
七年级数学(下)《第八章二元一次方程组》单元检测卷(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.如果a3x b y与-a2y b x+1是同类项,则( )A. B. C. D.2.若方程6kx﹣2y=8有一组解,则k的值等于()A. ﹣B.C.D. ﹣3.下列哪组数是二元一次方程组的解( )A. B. C. D.4.方程组的解满足方程x+y+a=0,那么a的值是( )A. 0B. -2C. 1D. -15.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A. 10g,40gB. 15g,35gC. 20g,30gD. 30g,20g6.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A.5510{424x yx y y-==+B.5510{424x yx y-=-=C.5510{424x yx x y-=-=D.5105{424x yx y+=-=7.方程组的解是()A. B. C. D.8.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和商是5,余数是1,则这样的两位数()A. 不存在B. 是唯一的C. 有两个D. 有无数解9.二元一次方程中非负整数解的个数是()A. 1个B. 2个C. 3个D. 4个10.已知关于,的方程组,给出下列结论:①是方程组的一个解;②当时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④,间的数量关系是x+y=4-a,其中正确的是()A. ②③B. ①②③C. ①③D. ①③④二、填空题(共10小题,每题3分,共30分)11.请你写出一个二元一次方程组,使它的解为,这个方程组是_________.【答案】等12.已知方程组,则__________.13.若方程组,则的值是_____.14.用加减消元法解方程组由①×2-②得 _____.15.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,那么甲种票买了____张,乙种票买了____张.16.已知{x my n==和{x ny m==是方程2x-3y=1的解,则代数式2635mn--的值为______.17.已知方程320{6320x y zx y z+-=++=,则x:y:z=________18.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为__________________.19.若关于的二元一次方程组的解满足,则____.20.若()25210a b a b +++-+=,则()2017b a -=_______________.三、解答题(共60分)21.(8分)解方程组: (1)(2)⎪⎩⎪⎨⎧=-+=+-=+321236z -y x z y x z y x22.(5分)若x 2y 1=⎧⎨=⎩ 是二元一次方程组3ax by 52ax by 2⎧+=⎪⎨⎪-=⎩ 的解,求a 2b +的值.23.(5分)已知二元一次方程:①x +y =4;②2x -y =2;③x -2y =1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.24.(8分)“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%.该专业户去年实际生产小麦、玉米各多少吨?(1)根据题意,甲和乙两同学分别列出了如下不完整的方程组:甲:⎪⎩⎪⎨⎧=+++=+.___101121,__%%yx y x 乙:⎩⎨⎧=+=+.____1012___,%y %x y x 根据甲、乙两位同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在上面的横线上分别补全甲、乙两位同学所列的方程组:甲:x 表示 ,y 表示 ; 乙:x 表示 ,y 表示(2)求该专业户去年实际生产小麦、玉米各多少吨?(写出完整的解答过程,就甲或乙的思路写出一种即可)25.(8分)某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共40s .求火车的速度和长度. (1)写出题目中的两个等量关系; (2)给出上述问题的完整解答过程.26.(8分)某景点的门票价格规定如下表购票人数1—50人51—100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?27.(8分)小文在甲、乙两家超市发现他看中的篮球的单价相同,书包单价也相同,一个篮球和三个书包的总费用是400元.两个篮球和一个书包的总费用也是400元.(1)求小文看中的篮球和书包单价各是多少元?(2)某一天小文上街,恰好赶上商家促销,超市甲所有商品打九折销售,超市乙全场购物满100元返30元购物券(不足100元不返券,购物券全场通用),如果他只能在同一家超市购买他看中的篮球和书包各一个,应选择哪一家超市购买更省钱?28.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.参考答案(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.如果a3x b y与-a2y b x+1是同类项,则( )A. B. C. D.【答案】D2.若方程6kx﹣2y=8有一组解,则k的值等于()A. ﹣B.C.D. ﹣【答案】D【解析】把代入6kx﹣2y=8得:-18k-4=8,∴k= .故选D.3.下列哪组数是二元一次方程组的解( )A. B. C. D.【答案】C【解析】,把②代入①得:x+4x=10,即x=2,把x=2代入②得:y=4,则方程组的解为.故选C.4.方程组的解满足方程x+y+a=0,那么a的值是( )A. 0B. -2C. 1D. -1【解析】,解得,所以a=-x-y=-2+3=1,故选C. 学科#网5.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A. 10g,40gB. 15g,35gC. 20g,30gD. 30g,20g【答案】C6.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A.5510{424x yx y y-==+B.5510{424x yx y-=-=C.5510{424x yx x y-=-=D.5105{424x yx y+=-=【答案】A【解析】根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x-5y=10;如果乙先跑2秒,甲跑4秒就可以追上乙,得方程4x=4y+2y.联立方程组,故选A.7.方程组的解是()A. B. C. D.8.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和商是5,余数是1,则这样的两位数()A. 不存在B. 是唯一的C. 有两个D. 有无数解【答案】B【解析】设这个两位数的十位数字为x,个位上的数字为y,根据题意得:解得:,所以这个两位数为56.故选:B.9.二元一次方程中非负整数解的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】∵在方程中,当时,;当时,;当时,;当时,;∴方程的非整数解有3个.故选C.10.已知关于,的方程组,给出下列结论:①是方程组的一个解;②当时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④,间的数量关系是x+y=4-a,其中正确的是()A. ②③B. ①②③C. ①③D. ①③④【答案】C二、填空题(共10小题,每题3分,共30分)11.请你写出一个二元一次方程组,使它的解为,这个方程组是_________.【答案】等【解析】∵,,∴这个方程组可以是:(答案不唯一).12.已知方程组,则__________.【答案】5【解析】,解得,所以故填5.13.若方程组,则的值是_____.【答案】24【解析】将方程组中得两个方程看作整体代入得:3(x+y)-(3x-5y)=3×7-(-3)=24.故答案为:24.学%科网14.用加减消元法解方程组由①×2-②得 _____.【答案】2x=-3.【解析】①×2﹣②得:6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得:2x=﹣3.故答案为:2x=﹣3.15.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,那么甲种票买了____张,乙种票买了____张.【答案】 20 1516.已知{x m y n ==和{ x n y m ==是方程2x -3y =1的解,则代数式2635m n --的值为______. 【答案】1【解析】将{x m y n ==和{ x n y m ==代入方程2x ﹣3y =1,得: 231{ 231m n n m -=-= ,解得: 1{ 1m n =-=-,则26263535m n ---=---=1.故答案为:1. 17.已知方程320{6320x y z x y z +-=++= ,则x :y :z=________【答案】﹣7:12:3 【解析】320{6320x y z x y z +-=++=①②,①×2+②得:12x+7y=0,12x =-7y ,所以x :y=-7:12, ①×2-②得:y-4z=0,y=4z,所以y:z=4:1=12:3, 所以x:y:z=-7:12:3, 故答案为:-7:12:3.18.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.【答案】83{74x yx y-=+=19.若关于的二元一次方程组的解满足,则____.【答案】3 【解析】,①−②×2得,y=−k −1;将y=−k −1代入②得,x=2k , ∵x+y=2, ∴2k −k −1=2, 解得k=3.故答案为:3.20.若()25210a b a b +++-+=,则()2017b a -=_______________.【答案】-1 【解析】52{{213a b a a b b +=-=-⇒-=-=-则()2017b a -=-1三、解答题(共60分)21.(8分)解方程组: (1)(2)⎪⎩⎪⎨⎧=-+=+-=+321236z -y x z y x z y x【答案】(1)⎩⎨⎧=-=124y x ;(2)⎪⎪⎩⎪⎪⎨⎧-=-==3173310z y x【解析】考点:1、一元二次方程组;2、三元一次方程组.22.(5分)若x2y1=⎧⎨=⎩是二元一次方程组3ax by52ax by2⎧+=⎪⎨⎪-=⎩的解,求a2b+的值.【答案】3 【解析】试题分析:根据方程组解的定义,将x2y1=⎧⎨=⎩代入3ax by52ax by2⎧+=⎪⎨⎪-=⎩得到关于a,b的二元一次方程组,二式相减即可求得a2b+的值.试题解析:把x2y1=⎧⎨=⎩代入方程组3ax by52ax by2⎧+=⎪⎨⎪-=⎩得:3a b5(1)2a b2(2)+=⎧⎨-=⎩,(1)-(2),得a+2b=3.考点:1.方程组的解;2.求代数式的值;3.整体思想的应用.23.(5分)已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.【答案】22xy=⎧⎨=⎩(答案不唯一)【解析】考点:解二元一次方程组.24.(8分)“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%.该专业户去年实际生产小麦、玉米各多少吨?(1)根据题意,甲和乙两同学分别列出了如下不完整的方程组:甲:⎪⎩⎪⎨⎧=+++=+.___101121,__%%yx y x 乙:⎩⎨⎧=+=+.____1012___,%y %x y x 根据甲、乙两位同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在上面的横线上分别补全甲、乙两位同学所列的方程组:甲:x 表示 ,y 表示 ; 乙:x 表示 ,y 表示(2)求该专业户去年实际生产小麦、玉米各多少吨?(写出完整的解答过程,就甲或乙的思路写出一种即可)【答案】(1)20,18;18,20-18;甲:x 表示该专业户去年实际生产小麦吨数,y 表示该专业户去年实际生产玉米吨数;乙:x表示原计划生产小麦吨数,y表示原计划生产玉米吨数;(2)小麦11.2吨,玉米8.8吨. 【解析】试题分析:小麦超产12%,玉米超产10%都是相对于计划来说的,所以不能设直接未知数,而应设原计划生考点:二元一次方程组的应用.25.(8分)某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程.【答案】(1)火车1min行驶的路程等于桥长与火车长的和,火车40s行驶的路程等于桥长与火车长的差;(2)200米、20米/秒.【解析】试题分析:通过理解题意可知本题存在两个等量关系,即整列火车过桥通过的路程=桥长+车长,整列火车在桥上通过的路程=桥长-车长,根据这两个等量关系可列出方程组.试题解析:(1)火车1min行驶的路程等于桥长与火车长的和,火车40s行驶的路程等于桥长与火车长的差;(2)设火车的速度为xm/s,火车的长度为ym,根据题意得601000,401000.x yx y=+⎧⎨=-⎩解得20,200.xy=⎧⎨=⎩,火车的长度为200米,速度为20米/秒.考点:二元一次方程组的应用.26.(8分)某景点的门票价格规定如下表购票人数1—50人51—100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【答案】(1)一班48名,二班55名;(2)节省302元.学……科%网【解析】考点:二元一次方程组的应用.27.(8分)小文在甲、乙两家超市发现他看中的篮球的单价相同,书包单价也相同,一个篮球和三个书包的总费用是400元.两个篮球和一个书包的总费用也是400元.(1)求小文看中的篮球和书包单价各是多少元?(2)某一天小文上街,恰好赶上商家促销,超市甲所有商品打九折销售,超市乙全场购物满100元返30元购物券(不足100元不返券,购物券全场通用),如果他只能在同一家超市购买他看中的篮球和书包各一个,应选择哪一家超市购买更省钱?【答案】(1)篮球单价为160元,书包单价为80元;(2)乙【解析】试题分析:(1)设篮球的单价为x元,书包的单价为y元,根据“一个篮球和三个书包的总费用是400元,两个篮球和一个书包的总费用也是400元”即可列方程组求解;考点:二元一次方程组的应用28.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【答案】(1)3,4;(2)有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆;(3)方案三,940.【解析】试题分析:(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”,“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出方程,组成方程组求出即可;(2)由题意得出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.试题解析:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:210211x yx y+=⎧⎨+=⎩,解方程组,得:34xy=⎧⎨=⎩,故1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨;考点:1.二元一次方程组的应用;2.二元一次方程的应用.。
人教版七年级数学下册 第八章 二元一次方程组 单元综合测试卷(1)一、选择题(本大题共10小题,,共30分)1.下列方程组中,是二元一次方程组的是( )A.⎩⎨⎧=-=+53262z y y xB.⎪⎩⎪⎨⎧=-=+1221y x y xC.⎩⎨⎧==+34y y xD.⎩⎨⎧==+34xy y x 2.已知方程组⎩⎨⎧-=+=-4272y x y x 的解是( ) A .⎩⎨⎧=-=23y x B .⎩⎨⎧-==32y x C .⎩⎨⎧==51y x D .⎩⎨⎧-==20y x 3.⎩⎨⎧==72y x 是方程ax -3y=2的一个解,则a 为( )A.8B.223C.-223 D.-219 4.若0)23(22=++-y x ,则y x )1(+的值是( )A. ﹣1B. ﹣2C. ﹣3D. 23 5.如果2x-7y=8,那么用含y 的代数式表示x 正确的是( )A .827x y -=B .287x y +=C .872y x +=D .872y x -= 6.已知是方程组的解,则a+b+c 的值是( )A .3B .2C .1D .无法确定 7.已知方程组54{ 58x y x y +=+=,则x ﹣y 的值为( ) A. 2 B. ﹣1 C. 12 D. ﹣48.如图,宽为50的大长方形图案由10个完全相同的小长方形拼成,其中一个小长方形的面积为( )A. 400B. 500C. 600D. 40009.成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比小客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是( )A.207717066x y x y +=+=⎧⎪⎨⎪⎩B.207717066x y x y -=+=⎧⎪⎨⎪⎩C.207717066x y x y +=-=⎧⎪⎨⎪⎩D.7717066772066x y x y +=-=⎧⎪⎪⎨⎪⎪⎩10.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分,不答记0分,已知李刚不答的题比答错的题多2题,他的总分为74分,则他答对了( )A .19题B .18题C .20题D .21题二、填空题(本大题共8小题,共24分)11.二元一次方程4x +y =11的所有自然数解是______ .12.已知,则x 与y 的关系式为______ .13.三元一次方程组的解是______ . 14.如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =___, b =__。
人教版七年级数学下册第八章 二元一次方程组 单元测试卷一、选择题(共 10 小题,每题 3 分,共 30 分) 1. 以下各方程组中,属于二元一次方程组的是()3x 2y 72x y 1xy 15 y 1C .32D . x 3 2A .5B .2xyx z3x 4 y 2x 2 y 32 方程组3x 2 y 7).4x y 的解是(13x 1 B .x 3 x3 x 1A .3y-1C .1D .-3yyy 3.假如 2x-7y=8, 那么用含 y 的代数式表示x 正确的选项是()8 2 xB . y2x 8C . x8 7 yD . x8 7yA . y7722x 3是二元一次方程 3xmy 5 的一组解,则 m 的值为 ()4.已知2 yA . -2B . 2C . -0.5D . 0.55. 方程 2 x y 8 的正整数解的个数是()A . 4B . 3C . 2D . 16. 若方程 ax3y2x 6 是对于 x , y 的二元一次方程,则a 一定知足()A. a ≠ 2B. a ≠-2C. a=2D. a=07.若 3x 2 y 7 0 ,则 6 y 9x 6 的值为 ()A . 15B . -27C . -15D .没法确立x 2 ax by 5b 的值是 (8.已知是方程组bx ay的解,则 a)y11A. -1B. 2C. 3D. 49.假如方程 x 2y 4,2 xy7, y kx 9 0 有公共解,则 k 的解是()A .-3B . 3C .6D . -610. 甲、乙两人练习跑步,假如乙先跑 10 米,则甲跑 5 秒便可追上乙;假如乙先跑 2 秒,则甲跑 4 秒便可追上乙,若设甲的速度为 x 米 /秒,乙的速度为 y 米 /秒,可列方程组正确的选项是()5x 5 y 10B .5x5y105x+10 5 y5x 5 y 10A .C.D.4x 2 4y 4x 4 y 2 y4x 2 y 4 y4x 4 y 2二、填空题(每题 3 分,共 18 分)11.已知方程5x3y40 ,用含x的代数式表示y 的形式,则 y=__________________ 。
人教版七年级数学 第8章《二元一次方程组》单元提优测试题完成时间:120分钟 满分:150分姓名 成绩10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)1.已知x2m-1+3y4-2n=-7是关于x ,y 的二元一次方程,则m ,n 的值是( )A. ⎩⎨⎧m =2n =1 B. ⎩⎪⎨⎪⎧m =1n =-32 C. ⎩⎪⎨⎪⎧m =1n =52 D. ⎩⎪⎨⎪⎧m =1n =322.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,购买30支铅笔和5本笔记本共需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( ) A. ⎩⎨⎧20x +30y =11010x +5y =85 B. ⎩⎨⎧20x +10y =11030x +5y =85 C. ⎩⎨⎧20x +5y =11030x +10y =85 D. ⎩⎨⎧5x +20y =11010x +30y =85 3.若34x 2a+b y 3及34x 6y a-b的和是单项式,则a +b =( ) A. -3 B. 0 C. 3 D. 6 4.已知|a +b -1|+2a +b -2=0,则(a -b)2 017的值为( )A. 1B. -1C. 2 017D. -2 017 5.若方程mx +ny =6的两个解是⎩⎨⎧x =1,y =1,⎩⎨⎧x =2,y =-1,则m ,n 的值为( ) A. 4,2 B. 2,4 C. -4,-2 D. -2,-46.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. ⎩⎨⎧x +y =1003x +3y =100 B. ⎩⎪⎨⎪⎧x +y =100x +13y =100 C. ⎩⎪⎨⎪⎧x +y =1003x +13y =100 D. ⎩⎨⎧x +y =1003x +y =100 7.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组为( ) A. ⎩⎪⎨⎪⎧x +y =3.2(1+17)x =(1+13)y B. ⎩⎪⎨⎪⎧x +y =3.2(1-17)x =(1-13)y C. ⎩⎪⎨⎪⎧x +y =3.213x =17y D. ⎩⎪⎨⎪⎧x +y =3.2(1-13)x =(1-17)y 8.端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组正确的是( )A. ⎩⎨⎧x +y =6036x +24y =1 680B. ⎩⎨⎧x +y =6024x +36y =1 680C. ⎩⎨⎧36x +24y =60x +y =1 680D. ⎩⎨⎧24x +36y =60x +y =1 6809.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( ) A. 50人,40人 B. 30人,60人 C. 40人,50人 D. 60人,30人10.通讯员要在规定时间内到达某地,若每小时走15千米,则可提前24分钟到达某地;若每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( ) A. ⎩⎨⎧x 15-15=y x 12+12=y B. ⎩⎨⎧x 15+15=y x 12-12=y C. ⎩⎨⎧x 15-2460=y x 12-1560=y D. ⎩⎨⎧x 15+2460=y x 12-1560=y二、填空题(每题5分,共20分)11.小刚解出了方程组⎩⎨⎧3x -y =3,2x +y =▲,解为⎩⎨⎧x =4,y =◆,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲= ,◆= .12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 .13.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是 分.14.一个两位数的十位数字及个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字及个位数字对调后所组成的新两位数,则原来的两位数为三、解答题(共90分)15.(8分)解下列二元一次方程组:(1)⎩⎨⎧3x +2y =19,①2x -y =1.② (2)⎩⎨⎧4x +3y =14,①3x +2y =22;②16.(8分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,求1套文具和1套图书各需多少元? 17.(8分)已知⎩⎨⎧x =2,y =-1是方程组⎩⎨⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值.18.(8分)甲、乙两人共同解方程组⎩⎨⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧x =5,y =4.试计算a2017+(-110b)2 018的值. 19.(10分)甲、乙两位同学一起解方程组⎩⎨⎧ax +by =2,cx -3y =-2,甲正确地解得⎩⎨⎧x =1,y =-1,乙仅因抄错了题中的c ,解得⎩⎨⎧x =2,y =-6,求原方程组中a ,b ,c 的值.20.(10分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/公里计算,耗时费按q 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数及车速如表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少? 21.(12分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知 购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔 方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种魔方多少个时,两种活动费用相同?22.(12分)某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,那么一共支付1 118元,如果两班联合起来作为一个团体购票,那么只需花费816元. (1)两个班各有多少名学生?(2)团体购票及单独购票相比较,两个班各节约了多少钱?23.(14分)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7 000 分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮 亮妈妈的兑换方法.人教版七年级数学 第8章《二元一次方程组》单元提优测试题参 考 答 案1.已知x2m-1+3y4-2n=-7是关于x ,y 的二元一次方程,则m ,n 的值是( D )A. ⎩⎨⎧m =2n =1 B. ⎩⎪⎨⎪⎧m =1n =-32 C. ⎩⎪⎨⎪⎧m =1n =52 D. ⎩⎪⎨⎪⎧m =1n =322.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,购买30支铅笔和5本笔记本共需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( B )A. ⎩⎨⎧20x +30y =11010x +5y =85B. ⎩⎨⎧20x +10y =11030x +5y =85C. ⎩⎨⎧20x +5y =11030x +10y =85D. ⎩⎨⎧5x +20y =11010x +30y =85 3.若34x 2a+b y 3及34x 6y a-b的和是单项式,则a +b =( C ) A. -3 B. 0 C. 3 D. 6 4.已知|a +b -1|+2a +b -2=0,则(a -b)2 017的值为( A )A. 1B. -1C. 2 017D. -2 017 5.若方程mx +ny =6的两个解是⎩⎨⎧x =1,y =1,⎩⎨⎧x =2,y =-1,则m ,n 的值为( A ) A. 4,2 B. 2,4 C. -4,-2 D. -2,-46.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( C ) A. ⎩⎨⎧x +y =1003x +3y =100 B. ⎩⎪⎨⎪⎧x +y =100x +13y =100C. ⎩⎪⎨⎪⎧x +y =1003x +13y =100 D. ⎩⎨⎧x +y =1003x +y =100 7.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组为( D ) A. ⎩⎪⎨⎪⎧x +y =3.2(1+17)x =(1+13)y B. ⎩⎪⎨⎪⎧x +y =3.2(1-17)x =(1-13)y C. ⎩⎪⎨⎪⎧x +y =3.213x =17y D. ⎩⎪⎨⎪⎧x +y =3.2(1-13)x =(1-17)y 8.端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组正确的是( B )A. ⎩⎨⎧x +y =6036x +24y =1 680B. ⎩⎨⎧x +y =6024x +36y =1 680C. ⎩⎨⎧36x +24y =60x +y =1 680D. ⎩⎨⎧24x +36y =60x +y =1 6809.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( C )A. 50人,40人B. 30人,60人C. 40人,50人D. 60人,30人10.通讯员要在规定时间内到达某地,若每小时走15千米,则可提前24分钟到达某地;若每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( D ) A. ⎩⎨⎧x 15-15=y x 12+12=y B. ⎩⎨⎧x 15+15=y x 12-12=y C. ⎩⎨⎧x 15-2460=y x 12-1560=y D. ⎩⎨⎧x 15+2460=y x 12-1560=y二、填空题(每题5分,共20分)11.小刚解出了方程组⎩⎨⎧3x -y =3,2x +y =▲,解为⎩⎨⎧x =4,y =◆,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲= 17 ,◆= 9 .12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ⎩⎪⎨⎪⎧y -x =4.5y 2=x -1 .13.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是 21 分.14.一个两位数的十位数字及个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字及个位数字对调后所组成的新两位数,则原来的两位数为 35. 三、解答题(共90分)15.(8分)解下列二元一次方程组:(1)⎩⎨⎧3x +2y =19,①2x -y =1.② (2)⎩⎨⎧4x +3y =14,①3x +2y =22;② 解:由②,得y =2x -1.③ 将③代入①,得3x +4x -2=19. 解得x =3.将x =3代入③,得y =5. ∴原方程组的解为⎩⎨⎧x =3,y =5.16.(8分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,求1套文具和1套图书各需多少元? 解:设1套文具的价格为x 元,一套图书的价格为y 元,根据题意,得⎩⎨⎧x +3y =104,3x +2y =116, 解得⎩⎨⎧x =20,y =28.答:1套文具和1套图书各需20元、28元.17.(8分)已知⎩⎨⎧x =2,y =-1是方程组⎩⎨⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值.解:把⎩⎨⎧x =2,y =-1代入⎩⎨⎧ax +y =b ,4x -by =a +5得⎩⎨⎧2a -1=b ,①8+b =a +5.②把①代入②,得8+(2a -1)=a +5. 解得a =-2.把a =-2代入①,得2×(-2)-1=b. 解得b =-5. ∴a =-2,b =-5.18.(8分)甲、乙两人共同解方程组⎩⎨⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧x =5,y =4.试计算a2017+(-110b)2 018的值. 解:把⎩⎨⎧x =-3,y =-1代入方程②中,得4×(-3)-b×(-1)=-2,解得b =10. 把⎩⎨⎧x =5,y =4代入方程①中,得 5a +5×4=15,解得a =-1. ∴a2 017+(-110b)2 018=(-1)2 017+(-110×10)2 018=(-1)+1=0. 19.(10分)甲、乙两位同学一起解方程组⎩⎨⎧ax +by =2,cx -3y =-2,甲正确地解得⎩⎨⎧x =1,y =-1,乙仅因抄错了题中的c ,解得⎩⎨⎧x =2,y =-6,求原方程组中a ,b ,c 的值.解:把⎩⎨⎧x =1,y =-1代入⎩⎨⎧ax +by =2,cx -3y =2中,得⎩⎨⎧a -b =2,c +3=-2,∴⎩⎨⎧a -b =2,c =-5.由题意知:⎩⎨⎧x =2,y =-6是方程ax +by =2的解,∴2a -6b =2,即a -3b =1. 联立⎩⎨⎧a -b =2,a -3b =1,解得⎩⎨⎧a =52,b =12.故a =52,b =12,c =-5. 20.(10分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/公里计算,耗时费按q 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数及车速如表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少? 解:(1)由题意,得⎩⎨⎧8p +8q =12,10p +12q =16. 解得⎩⎪⎨⎪⎧p =1,q =12.(2)小华的里程数是11 km ,时间为12 min. 则总费用是:11p +12q =17(元).答:总费用是17元.21.(12分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方 和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同. (1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个. 某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种 魔方多少个时,两种活动费用相同?解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意,得⎩⎨⎧2x +6y =130,3x =4y , 解得⎩⎨⎧x =20,y =15.答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个. (2)设购进A 种魔方m 个,则购进B 种魔方(100-m)个,根据题意,得0.8×20m +0.4×15(100-m)=20m +15(100-m -m),解得m =45. 答:购进A 种魔方45个时,两种活动费用相同. 22.(12分)某景点的门票价格如下表:购票人数/人 1~50 51~100 100以上 每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,那么一共支付 1 118元,如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生?(2)团体购票及单独购票相比较,两个班各节约了多少钱? 解:(1)设七年级(1)班有x 名学生,七年级(2)班有y 名学生. ①若两班人数多于50人且少于100人,则⎩⎨⎧12x +10y =1 118,10(x +y )=816.解得⎩⎨⎧x =151,y =-69.4.不合题意,舍去;②若两班人数多于100人,则⎩⎨⎧12x +10y =1 118,8(x +y )=816. 解得⎩⎨⎧x =49,y =53.答:七年级(1)班有49名学生,七年级(2)班有53名学生. (2)∵49×(12-8)=196,53×(10-8)=106,∴团体购票及单独购票相比较,七年级(1)班节约了196元,七年级(2)班节约了106元. 23.(14分)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7 000 分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮 亮妈妈的兑换方法.礼品表兑换礼品 积分 榨汁机一个 3 000分 电茶壶一个 2 000分 书包一个1 000分解:①设亮亮妈妈兑换了x 个电茶壶和y 个书包,由题意,得⎩⎨⎧2 000x +1 000y =7 000,x +y =5, 解得⎩⎨⎧x =2,y =3.②设亮亮妈妈兑换了x 个榨汁机和y 个书包,由题意,得⎩⎨⎧3 000x +1 000y =7 000,x +y =5, 解得⎩⎨⎧x =1,y =4.③设亮亮妈妈兑换x 个榨汁机和y 个电茶壶,由题意,得⎩⎨⎧3 000x +2 000y =7 000,x +y =5,解得⎩⎨⎧x =-3,y =8.不合题意,舍去.答:亮亮妈妈兑换了2个电茶壶和3个书包或1个榨汁机和4个书包.。
人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组一、填空题(本大题共8小题,共32分)1.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.2.方程mx -2y=x+5是二元一次方程时,则m________.3.若2x 2a-5b +y a -3b =0是二元一次方程,则a=______,b=______. 4.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________5.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________. 6.已知都是ax+by=7的解,则a=_______,b=______.7.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________.8.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________.二、选择题(本大题共8小题,每小题4分,共32分。
)9.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 10.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )A .2B .-2C .1D .-1 11.若关于x 、y 的方程组⎩⎨⎧=-=+k y x k y x 73的解满足方程2x +3y =6,那么k 的值为( ) A .-23 B .23 C .-32 D .-23 12.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm 2C .600 cm 2D .4 000 cm 213.方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、114.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =m ,x -y =4m 的解为3x +2y =14的一个解,那么m 的值为( ). A .1 B .-1 C .2 D .-215.六年前,A 的年龄是B 的年龄的3倍,现在A 的年龄是B 的年龄的2倍,A 现在的年龄是( ).A .12岁B .18岁C .24岁D .30岁16.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( )A .1B .2C .3D .4三、解答题(本大题共6小题,共36分)17.(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 45133218.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.19.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个人教版七年级下册第8章二元一次方程组综合素质检测卷(解析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。
1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。
人教版七年级数学下册第八章 二元一次方程组单元检测试题(有答案)一、选择题1 . 下列各方程组中,属于二元一次方程组的是( )A .B .C .D .2 .将方程 2 x + y =3 写成用含 x 的式子表示 y 的形式,正确的是 ( ) A . y = 2 x - 3 B . y = 3 - 2 x C . x = 2y-3D . x =3-2y3 .若方程组 的解为 ,则被 “☆” 、 “ K ” 遮住的两个数分别是 ( )A . 10 , 3B . 3 , 10C . 4 , 10D . 10 , 44 .已知 x , y 满足方程组 则 x + y 的值为 ( )A . 9B . 7C . 5D . 35 .已知甲、乙两数的和是 7 ,甲数是乙数的 2 倍,设甲数为 x ,乙数为 y ,根据题意,列方程组正确的是 ( )A. B. C. D.6 .按如图所示的运算程序,能使输出结果为 5 的 x , y 的值是 ( )A . x = 5 , y =- 5B . x =- 1 , y = 1C . x = 2 , y = 1D . x = 3 , y = 27.若2310x y z ++=,43215x y z ++=,则x y z ++的值为( ) A .5 B .4 C .3 D .28.若方程组431(1)3x yax a y+=⎧⎨+-=⎩的解x与y相等,则a的值等于()A.4 B.10 C.11 D.129. 两个水池共储水40吨,如果甲池注进水4吨,乙池注进水8吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池原来各储水的吨数是()A.甲池21吨,乙池19吨B.甲池22吨,乙池18吨C. 甲池23吨,乙池17吨D.甲池24吨,乙池16吨10.某校七年级(2)班40表格中捐款2元和32元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( )A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题1.方程组的解是________ .2.已知关于x ,y 的二元一次方程2 x +■ y =7 中,y 的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是________ .3.某旅行社组织甲、乙两个旅游团分别到庐山、婺源旅游,已知这两个旅游团共有55 人,甲旅游团的人数比乙旅游团的人数的2 倍少5 人,问甲、乙两个旅游团各有多少人?设甲、乙两个旅游团分别有x 人、y 人,根据题意可列方程组为__________ .4.已知+( x +2 y -5) 2 =0 ,则x +y =________ .5.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票________张,儿童票___ _ 张.三、计算题1.解方程组:(1) (2)2.已知与都是方程kx -b =y 的解,求k 和b 的值.3.已知方程组小马由于看错了方程① 中的m ,得到方程组的解为小虎由于看错了方程② 中的n ,得到方程组的解为请你根据上述条件求原方程组的解.4.请你根据王老师所给的内容,完成下列各小题.(1) 若x =-5 ,2 ◎ 4 =-18 ,求y 的值;(2) 若1 ◎ 1 =8 ,4 ◎ 2 =20 ,求x ,y 的值.5. “ 六一” 儿童节有一投球入盆的游戏,深受同学们的喜爱,游戏规则如下:如图,在一大盆里放一小茶盅( 叫幸运区) 和小茶盅外大盆内( 环形区) 分别得不同的分数,投到大盆外不得分;每人各投 6 个球,总得分不低于30 分得奖券一张.现统计小刚、小明、小红三人的得分情况如下图.(1) 每投中“ 幸运区” 和“ 环形区” 一次,分别得多少分?(2) 根据这种得分规则,小红能否得到一张奖券?请说明理由.6.数学方法:解方程组若设x +y =A ,x -y =B ,则原方程组可变形为解方程组得所以解方程组得我们把某个式子看成一个整体,用一个字母去代替它,这种解方程组的方法叫作换元法.(1) 请用这种方法解方程组(2) 已知关于x ,y 的二元一次方程组的解为那么关于m ,n 的二元一次方程组的解为________ ;(3) 已知关于x ,y 的二元一次方程组的解为则关于x ,y 的方程组的解为________ .答案与解析一、选择题。
人教版七年级数学下册第八章 二元一次方程组复习检测试题一、选择题1.下列各式,属于二元一次方程的个数有( ) ①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .42.如果方程组⎩⎪⎨⎪⎧x +y =★,2x +y =16的解为⎩⎪⎨⎪⎧x =6,y =■,那么被“★”“■”遮住的两个数分别是( ) A .10,4 B .4,10 C .3,10 D .10,33.已知二元一次方程30x y +=的一个解是x ay b=⎧⎨=⎩,其中0a ≠,那么( )A.0ba> B.0ba= C.0ba< D.以上都不对4.若满足方程组的x 与y 互为相反数,则m 的值为( ) A .1B .﹣1C .﹣11D .115今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是踢负场数的整数倍,则小虎足球队踢负场数的情况有( ) A .2种 B .3种C .4种D .5 种6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为 ( )A.12a b =⎧⎨=⎩B.46a b =-⎧⎨=-⎩ C.62a b =-⎧⎨=⎩D.142a b =⎧⎨=⎩7.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.⎩⎪⎨⎪⎧x -y =320x +10y =36B.⎩⎪⎨⎪⎧x +y =320x +10y =36 C.⎩⎪⎨⎪⎧y -x =320x +10y =36 D.⎩⎪⎨⎪⎧x +y =310x +20y =368.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩9.某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店()A、赔8元B、赚32元C、不赔不赚D、赚8元10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题1.将方程3y﹣x=2变形成用含y的代数式表示x,则x=.2.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有____种购买方案.3.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.4.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.三、解答题1.解方程组:2.定义一个非零常数的运算,规定:a*b=ax+by,例如:2*3=2x+3y,若1*1=8,4*3=27,求x、y的值.3.甲、乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为;乙把字母b看错了得到方程组的解为.(1)求a,b的正确值;(2)求原方程组的解.4.某工厂第一季度生产甲、乙两种机器共550台,经市场调查决定调整两种机器的产量,计划第二季度生产这两种机器共536台,其中甲种机器产量要比第一季度增产12%,乙种机器产量要比第一季度减产20%.该厂第一季度生产甲、乙两种机器各多少台?5.某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准如下:已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需花费17700元,若两个年级联合组团只需花费14700元.(1)两个年级参加春游学生人数之和超过200人吗?为什么?(2)两个年级参加春游学生各有多少人?6.某超市第一次用4600元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍少40件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多280元,则第二次乙商品是按原价打几折销售的?参考答案一.选择题1.B. 2.A.3.B.4.D.5.B.6.B.7.B.8.B.9.C.10.A.二.填空题1.3y﹣2 2.两 3. k=1.4..三.解答题1.解:原方程组可整理得:,②﹣①得:2x=4,解得:x=2,把x=2代入①得:2﹣2y=﹣3,解得:y=,即原方程组的解为:.2.解:∵a*b=ax+by∴1*1=8,即为x+y=8,4*3=27 即为4x+3y=27;解方程组①×3﹣②,得﹣x=﹣3,解得x=3,将x=3代入①,得y=5.3.解:(1)根据题意得:,解得:a=2,b=﹣3,(2)方程组为,解得.4.解:设某工厂第一季度人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。
人教版七年级数学下册第八章二元一次方程组单元综合测试卷含答案一、选择题 (本大题共 10小题,,共 30 分 )1.已知方程 2 m6x |n |1n2y m 2 80是二元一次方程,则m+n 的值()A.1B. 2C.-3D.32.用代入法解方程组2y- 3x= 1,() x=y- 1,下边的变形正确的选项是A . 2y- 3y+ 3= 1B. 2y- 3y- 3= 1C. 2y- 3y + 1= 1D .2y- 3y- 1= 13.以下方程组,解为x1y 是().2A.x y 1B.x y 1x y 3x y3 3x y53x y5C.y1D.53x3x y4.已知 x,y 知足方程组x m4y5,则 x, y 的关系式是()mA. x+y=1B. x+y=- 1C. x+y=9D.x+y=9 5.依据图中供给的信息,可知一个杯子的价钱是()A.51 元 B. 35 元C.8 元D.7.5 元6.已知x2ax by5b 的值是(y是方程组bx ay的解,则 a)11A. -1B. 2C.3D. 47.在等式y x2mx n 中,当x2时, y5; x3时, y 5.则 x3时,y()。
A.23B.-13C.-5D.138.方程组2x y 53x 2 y ,消去 y 后获得的方程是()8A. 3x4x100B.3x4x58C.3x2(52x)8D.3x4x1089.已知是方程组的解,则a+b+c 的值是()A.3B. 2C. 1D.没法确立10.甲、乙两人练习跑步,假如乙先跑10 米,则甲跑 5 秒便可追上乙;假如乙先跑 2 秒,则甲跑 4 秒便可追上乙,若设甲的速度为x 米/ 秒,乙的速度为y 米 / 秒,可列方程组正确的选项是()5x5y10B.5x5y105x+105y5x 5 y10A.4y 2 y4x 2 y C.4x 4 y2D.2 4 y4x4y4x 二、填空题 (本大题共 6 小题,每题 4 分,共24 分)11.写出一个解为x1的二元一次方程组 __________.y212.方程4 xy7中,用含 x 的式子表示y,则y=13.若 2x 5a b+41- 2b2a是同类项,则 a+b=________.y与- x ya1是对于 a, b 的二元一次方程 ax+by- b=7 的一个解,则代数式2x- 4y+1?的14.若b2值是 _________.15.在△ ABC中,∠ B-∠ A= 45°,∠ A+∠ B= 135 °.则∠ C=____16.今年甲和乙的年纪和为24, 6 年后甲的年纪就是乙的年纪的 2 倍,则甲今年的年纪是_________岁 .三、解答题 (本大题共 6 小题,,共 66 分 )17.解方程组(每题 5 分,共 20 分)4x3y5( 2)3x 5 y10(1)y22x 3 y62x人教版七年级数学下册第八章二元一次方程组复习检测试题一、选择题。
第八章-二元一次方程组一、单选题1.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A. 6个B. 5个 C. 3个 D. 无数个2.下列各组数中①;②;③;④是方程的解的有( )A. 1个 B. 2 C. 3 个D. 4个3.下列方程中,是二元一次方程的是()A. -y=6B. +=1C. 3x-y2=0D. 4xy=34.二元一次方程组的解为()A. B.C. D.5.已知方程组,则x﹣y的值为()A. -1B. 0C. 2D. 36.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需()A. 4.5元B. 5元 C. 6元 D. 6.5元7.下列方程组中,是二元一次方程组的是()A. B. C.D.8.笼中有x只鸡y只兔,共有36只脚,能表示题中数量关系的方程是()A. x+y=18B. x+y=36C.4x+2y=36 D. 2x+4y=369.二元一次方程x+2y=5在实数范围内的解()A. 只有1个B. 只有2个 C. 只有3个 D. 有无数个二、填空题10.请写出一个你所喜欢的二元一次方程组________11.若+(2a+3b﹣13)2=0,则a+b= ________.12.已知,则a+b等于________.13.若关于x、y的二元一次方程组的解满足x+y=1,则a的值为________.14.请构造一个二元一次方程组,使它的解为.这个方程组是________.15.已知|x﹣y+2|+(2x+y+4)2=0.则x y=________.16.将方程5x﹣y=1变形成用含x的代数式表示y,则y=________.17.方程组的解是________.三、计算题18.解方程组:.19.解下列二元一次方程组:(1)(2)20.解下列方程组:(1)(2)四、综合题21.已知y=kx+b,当x=1时,y=﹣2;当x=﹣1时,y=4.(1)求k、b的值;(2)当x取何值时,y的值小于10?答案一、单选题1.【答案】 A【解析】【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.2.【答案】 B【解析】【解答】解:把①代入得左边=10=右边;把②代入得左边=9≠10;把③代入得左边=6≠10;把④代入得左边=10=右边;所以方程的解有①④2个.故答案为:B【分析】能使二元一次方程的左边和右边相等的未知数的值就是二元一次方程的解,二元一次方程有无数个解,根据定义将每一对x,y的值分别代入方程的左边算出答案再与右边的10比较,若果相等,x,y的值就是该方程的解,反之就不是该方程的解。
第八章二元一次方程组单元测试一.选择题1.下列是二元一次方程的是()A.3x﹣6=x B.2x﹣3y=x2C.D.3x=2y2.若关于x、y的方程ax+y=2的一组解是,则a的值为()A.﹣1B.C.1D.23.已知方程组,则x﹣y的值是()A.1B.2C.4D.54.用代入法解方程组时,使用代入法化简比较容易的变形是()A.由①,得x=B.由①,得y=2x﹣1C.由②,得y=D.由②,得x=5.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.5cm,3cm B.4.5cm,3.5cmC.6cm,4cm D.10cm,6cm6.已知关于x,y的方程组和的解相同,则(a+b)2021的值为()A.0B.﹣1C.1D.20217.已知关于x,y的二元一次方程组的解为,则k的值是()A.3B.2C.1D.08.某中学组织全区优秀九年级毕业生参加学校冬令营,一共有x名学生,分成y个学习小组.若每组10人,则还差5人;若每组9人,还余下3人.若求冬令营学生的人数,所列的方程组为()A.B.C.D.9.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”大意是:甲、乙二人带着钱,不知是多少,若甲得到乙的钱数的,则甲的钱数为50;若乙得到甲的钱数的,则乙的钱数也能为50,问甲、乙各有多少钱?设甲持钱为x,乙持钱为y,可列方程组为()A.B.C.D.10.已知关于x,y的方程组,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题11.把方程5x﹣2y=3改写成用含x的式子表示y的形式是:.12.若关于x、y的二元一次方程2x+ay=7有一个解是,则a=.13.若关于x,y的方程2x|n|+3y m﹣2=0是二元一次方程,则m+n=.14.已知x,y互为相反数且满足二元一次方程组,则k的值是.15.若方程组与方程组的解相同,则a+b的值为.16.小新出生时父亲28岁,现在父亲的年龄是小新的3倍还多2岁,则现在小新的年龄是岁.17.如果方程组的解为,那么“*”表示的数是.18.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.19.在《九章算术》中,二元一次方程组是通过“算筹”摆放的.若图中各行从左到右列出的三组算筹分别表示未知数x,y的系数与相应的常数项,如图1表示方程组是,则如图2表示的方程组是.20.某校七年级的数学竞赛中共有30道题,答对一题得5分,不答得0分,答错扣4分,学生小王有5题未答,最后得71分,那么他答对了题.21.若方程组的解是,则方程组的解是x=,y =.三.解答题22.解方程组:(1)(代入法);(2)(加减法).23.解方程组:(1);(2).24.已知,都是关于x,y的二元一次方程y=x+b的解,且m﹣n=b2+b﹣,求b的值.25.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?26.在抗击新冠肺炎疫情期间,某社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.求每次购买的酒精和消毒液分别是多少瓶?参考答案一.选择题1.解:A.是一元一次方程,不是二元一次方程,故本选项不符合题意;B.是二元二次方程,故本选项不符合题意;C.分式方程,不是二元一次方程,故本选项不符合题意;D.是二元一次方程,故本选项符合题意;故选:D.2.解:将代入方程ax+y=2,得4a﹣6=2,解得a=2.故选:D.3.解:∵2x+3y﹣(x+4y)=x﹣y=14﹣12=2,∴x﹣y=2,故选:B.4.解:A、B、C、D四个答案都是正确的,但“化简比较容易的”只有B.故选:B.5.解:设这个长方形的长为xcm,宽为ycm,依题意得:,解得:.故选:B.6.解:联立得:,①×5+②×3得:29x=58,解得:x=2,把x=2代入①得:y=1,代入得:,解得:,则原式=(﹣2+2)2021=0.故选:A.7.解:把x=3,y=﹣3代入方程3x+2y=k+1,得9﹣6=k+1,解得k=2.故选:B.8.解:每组10人时,实际人数可表示为10y﹣5;每组9人时,实际人数可表示为9y+3;可列方程组为:,故选:C.9.解:由题意可得,,故选:B.10.解:①(1)×3+(2)得:4x+8y=12∴x+2y=3 (3)将x=5,y=﹣1代入(3),左边=5+2×(﹣1)=3=右边故①正确;②将a=﹣2代入方程组得:解得:x,y的值互为相反数,故②正确;③将a=1代入方程组得:解得:当a=1时,方程x+y=4﹣a化为:x+y=3∴x=3,y=0是方程x+y=3的解,故③正确.故选:D.二.填空题11.解:5x﹣2y=3,移项得:﹣2y=3﹣5x,系数化1得:=.故答案为:y=.12.解:把代入方程2x+ay=7,得6+a=7,解得a=1.故答案为:1.13.解:根据题意得:|n|=1,m﹣2=1,解得:n=±1,m=3,∴m+n=3+1=4,m+n=3﹣1=2,∴m+n的值是2或4,故答案为:2或4.14.解:解方程组:,得:,∵x和y互为相反数,则有2k+3+(﹣k﹣2)=0,解得k=﹣1.故答案为:﹣1.15.解:把代入,得:,①+②得:7(a+b)=14,则a+b=2,故答案为:2.16.解:设小新现在的年龄为x岁,父亲现在的年龄是y岁,由题意得:,解得:,即现在小新的年龄是13岁,故答案为:13.17.解:将x=6代入2x﹣y=16,得12﹣y=16,解得y=﹣4,∴x+y=6﹣4=2.故答案为:2.18.解:∵x,y的二元一次方程组的解互为相反数,∴x+y=0.解方程组,得.把x=3,y=﹣3代入方程3x+2y=k+1,得9﹣6=k+1,解得k=2.故答案为2.19.解:依题意得:.故答案为:.20.解:设小王答对了x道题,答错了y道题,依题意得:,解得:.故答案为:19道.21.解:把代入方程组得,,所以c1﹣c2=2(a1﹣a2),c1﹣2a1=3,方程组,①﹣②得,(a1﹣a2)x=a1﹣a2﹣(c1﹣c2),所以(a1﹣a2)x=﹣(a1﹣a2),因此x=﹣1,把x=﹣1代入方程组中的方程①得,﹣a1+y=a1﹣c1,所以y=2a1﹣c=﹣(c﹣2a)=﹣3,故答案为:﹣1,﹣3.三.解答题22.解:(1),由①得:y=4﹣x③,将③代入②得,3x﹣2(4﹣x)=2,5x﹣8=2,5x=10,x=2,将x=2代入①得,y=2,∴方程组的解为:,(2),将①×2+②得,5x=10,x=2,将x=2代入①得,y=3,∴方程组的解为:.23.解:,①×5+②,14x=﹣14,解得x=﹣1,把x=﹣1代入①,﹣2+y=﹣5,解得y=﹣3,∴原方程组的解是;(2)方程组整理得,①+②×4,﹣37y=74,解得y=﹣2,把y=﹣2代入①,8x+18=6,解得x=﹣,∴原方程组的解是.24.解:∵,都是关于x,y的二元一次方程y=x+b的解,∴①+②,得2m+3=2n+2b+2,整理,得2m﹣2n=2b﹣1∴m﹣n=b﹣∴b﹣=b2+b﹣即b2=5,∴b=±.25.解:设绳长是x尺,井深是y尺,依题意有:,解得:,答:绳长是36尺,井深是8尺.26.解:设每次购买酒精x瓶,消毒液y瓶,依题意得:,解得:.答:每次购买酒精20瓶,消毒液30瓶.。
人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一.选择题1.下列方程中,是二元一次方程的是( )A .3x -2y =4zB .6xy +9=0C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧x +y =42x +3y =7B.⎩⎪⎨⎪⎧2a -3b =115b -4c =6C.⎩⎪⎨⎪⎧x 2=9y =2xD.⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.方程组的解为( ) A .B .C .D .4.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A . B . C .D .5.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .156.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.7.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.8.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=609.阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定: =a ×d﹣b×c,例如: =3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为10.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣811.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种12.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B. C.D.二.填空题1.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a= .2.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.3.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.4.已知x,y满足方程组,则x2﹣4y2的值为.5.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.6.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.7.若二元一次方程组的解为,则a﹣b= .8.已知是关于x,y的二元一次方程组的一组解,则a+b= .9.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为.三.解答题1.解方程组:.2.用消元法解方程组3.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.4.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?5.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8 辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.参考答案:一、选择题。
人教版数学七年级下册第八章 二元一次方程组 能力提升检测卷一.选择题(共10小题)1.下列方程是二元一次方程的是( )A .2x-4=xB .x-2y=6C .x+ 2y =3D .xy=52.以方程组 ⎩⎨⎧x +y =102x +y =6的解为坐标的点(x,y)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.在方程组 = =中,代入消元可得( ) A .3y-1-y=7 B .y-1-y=7 C .3y-3=7 D .3y-3-y=74.若2x |k|+(k-1)y=3是关于x ,y 的二元一次方程,则k 的值为( )A .-1B .1C .1或-1D .05.若关于x ,y 的二元一次方程组 = = 的解为 = =,则a+4b 的值为( ) A .17 B .197 C .1 D .36.如果方程x-y=3与下面的方程组成的方程组的解为 = =,那么这一个方程可以是( ) A .2(x-y)=6y B .3x-4y=16 C .14x+2y =5D .12x+3y =8 7.某加工厂有工人50名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?设应安排x 人生产螺栓,y 人生产螺母,则所列方程组为( )A . = =B . = =C . = =D .= =8.关于x ,y 的方程组 = = 的解是 = = ,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( )A.- 12B.12C.-14D.149.A、B两地相距900km,一列快车以200km/h的速度从A地匀速驶往B地,到达B地后立刻原路返回A地,一列慢车以75km/h的速度从B地匀速驶往A地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km的次数是()A.5 B.4 C.3 D.210.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数()A.25 B.15 C.12 D.14二.填空题(共5小题)11.把方程5x+y=3改写为用含x的式子表示y的形式是.12.已知==是方程ax+by=3的一组解(a≠0,b≠0),任写出一组符合题意的a、b值,则a= ,b= .13.已知方程组==和==的解相同,则2m-n= .14.小明,小丽,小刚到同一个文具店买文具,小明买了2支钢笔,2本作业本,3个文件袋共花了20元;小丽买了1支钢笔,2个文件袋共花了10元;那么小刚买了5支钢笔,4本作业本,8个文件袋共花了元.15.甲乙二人分别从相距20km的A,B两地出发,相向而行.如图是小华绘制的甲乙二人运动两次的情形,设甲的速度是xkm/h,乙的速度是ykm/h,根据题意所列的方程组是.三.解答题(共10小题)16.解下列方程(组)(1)==(2)==(3)===17.已知==,==都是关于x,y的二元一次方程y=x+b的解,且m-n=b2+2b-4,求b的值.18.甲、乙两人同求方程ax-by=7的整数解,甲求出一组解为==,而乙把ax-by=7中的7错看成1,求得一组解为==,试求a、b的值.19.阅读下列解方程组的部分过程,回答下列问题解方程组=,①=,②现有两位同学的解法如下:解法一;由①,得x=2y+5,③把③代入②,得3(2y+5)-2y=3.……解法二:①-②,得-2x=2.……(1)解法一使用的具体方法是,解法二使用的具体方法是,以上两种方法的共同点是.(2)请你任选一种解法,把完整的解题过程写出来20.某人沿着相同的路径上山、下山共用了2h.如果上山速度为3km/h,下山速度为5km/h,那么这条山路长是多少?21.我校准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买1个足球和1个篮球共需130元.求购买足球、篮球的单价各是多少元?22.【方法体验】已知方程组=①=②求4037x+y的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:【方法迁移】根据上面的体验,填空:已知方程组==则3x+y-z=.【探究升级】已知方程组==求-2x+y+4z的值.小明凑出"-2x+y+4z=2﹒(x+2y+3z)+(-1)﹒(4x+3y+2z)=20-15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设-2x+y+4z=m﹒(x+2y+3z)+n﹒(4x+3y+2z),对照方程两边各项的系数可列出方程组===,它的解就是你凑的数!根据丁老师的提示,填空:2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a-b+kc=4,且a+3b+2c=-2,当k为时,8a+3b-2c为定值,此定值是.(直接写出结果)23.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的23,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”24.【阅读材料】南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.【解决问题】甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?答案:1.B2.B3.D4.A5.D6.A7.B8.A9.B10.B11. y=-5x+312.1,113.514.5015.16.解:(1) = ①= ② ,①+②×5,得:13x=26,x=2,将x=2代入②,得:4-y=3,y=1,所以方程组的解为 == ;(2)将方程组整理成一般式为 = ①= ②,①+②,得:6x=14,x=73,将x=73代入①,得:7-2y=8,y=- 12,所以方程组的解为(3)= ①= ② = ③, ①+②,得:3x+4y=24 ④,③+②,得:6x-3y=人教版 七年级下册-第八章 二元一次方程组 专题练习一、单选题1.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有( )A. 6个B. 5个C. 3个D. 无数个2.下列各组数中① ; ② ;③ ;④ 是方程 的解的有( )A. 1个B. 2个C. 3个D. 4个3.下列方程中,是二元一次方程的是( )A. -y=6B. +=1C. 3x-y 2=0D. 4xy=34.二元一次方程组 的解为( )A. B. C. D.5.已知方程组, 则x ﹣y 的值为( )A. -1B. 0C. 2D. 36.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需( )A. 4.5元B. 5元C. 6元D. 6.5元7.下列方程组中,是二元一次方程组的是( )A. B. C. D.8.笼中有x 只鸡y 只兔,共有36只脚,能表示题中数量关系的方程是( )A. x+y=18B. x+y=36C. 4x+2y=36D. 2x+4y=369.二元一次方程x+2y=5在实数范围内的解()A. 只有1个B. 只有2个C. 只有3个D. 有无数个二、填空题10.请写出一个你所喜欢的二元一次方程组________11.若+(2a+3b﹣13)2=0,则a+b= ________.12.已知,则a+b等于________.13.若关于x、y的二元一次方程组的解满足x+y=1,则a的值为 ________.14.请构造一个二元一次方程组,使它的解为.这个方程组是 ________.15.已知|x﹣y+2|+(2x+y+4)2=0.则x y=________.16.将方程5x﹣y=1变形成用含x的代数式表示y,则y=________.17.方程组的解是________.三、计算题18.解方程组:.19.解下列二元一次方程组:(1)(2)20.解下列方程组:(1)(2)四、综合题21.已知y=kx+b,当x=1时,y=﹣2;当x=﹣1时,y=4.(1)求k、b的值;(2)当x取何值时,y的值小于10?答案一、单选题1.【答案】A【解析】【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.2.【答案】B【解析】【解答】解:把① 代入得左边=10=右边;把② 代入得左边=9≠10;把③ 代入得左边=6≠10;把④ 代入得左边=10=右边;所以方程的解有①④2个.故答案为:B【分析】能使二元一次方程的左边和右边相等的未知数的值就是二元一次方程的解,二元一次方程有无数个解,根据定义将每一对x,y的值分别代入方程的左边算出答案再与右边的10比较,若果相等,x,y的值就是该方程的解,反之就不是该方程的解。
七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版一、单选题1.如果21x y =⎧⎨=-⎩是关于x 、y 的二元一次方程ax+y=1的解,那么a 的值为( )A .-2B .-1C .0D .I2.已知二元一次方程组 522048x y x y +=⎧⎨-=⎩①②,若用加减法消去y ,则正确的是( )A .①×1+②×1B .①×1+②×2C .①×1-②×1D .①×1-②×23.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.方程组24x y x y -=⎧⎨-=⎩的解为2x y =-⎧⎨=⎩▽则被△和△遮盖的两个数分别为(,)A .-10,6B .2,-6C .2,6D .10,-65.已知13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解,则m 的值是( )A .5B .2C .-5D .-26.关于x ,y 的二元一次方程组538y x x y =-⎧⎨-=⎩,用代入法消去y ,得到的方程是( )A .3583x x --=B .358x x +-=C .358x x ++=D .358x x -+=7.已知24328a b a b +=⎧⎨+=⎩,则2a+2b 的值为()A .3B .4C .6D .78.小明计划用100元钱在京东商城购买价格分别为6元和8元的两种商品,则在钱全部用完的前提下,可供小明选择的方案有( ) A .3种B .4种C .5种D .6种9.举办“书香文化节”的活动中,将x 本图书分给了y 名学生,若每人分6本,则剩余40本;若每人分8本,则还缺50本,下列方程组正确的是( )A .640850y x y x -=⎧⎨+=⎩B .640850y xy x +=⎧⎨-=⎩C .640850x y x y +=⎧⎨-=⎩D .640850y xy x -=⎧⎨-=⎩10.若方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x ay z c=⎧⎪=⎨⎪=⎩,则6a b c ++的值是( )A .-3B .0C .3D .6二、填空题11.已知二元一次方程x -2y =10,用含x 的代数式表示y ,则y = . 12.已知x 、y 满足方程组3202132022x y x y +=⎧⎨+=⎩,则x y -= .13.若273330x y y z z x +=⎧⎪+=⎨⎪+=⎩,则代数式x+y+z 的值为 .14.小明家准备装修一套新房,若甲、乙两家装修公司合作需6周完成,装修费用为5.2万元;若甲公司单独做4周,剩下的由乙公司做,还需9周完成,此时装修费用为4.8万元.若小明只选甲公司单独完成,则他需要付给甲公司装修费用 万元.三、计算题15.解方程组:(1){y =2x3x +2y =7 (2){4x −y =112x +y =1316.解方程组: 4223327x y z x y z x y z +-=⎧⎪-+=-⎨⎪+-=⎩四、解答题17.解方程组 64ax by x cy +=⎧⎨+=⎩ 时甲同学因看错 a 符号,从而求得解为32x y =⎧⎨=⎩ ,乙因看漏 c ,从而求得解为 62x y =⎧⎨=-⎩ ,试求 a , b , c 的值.18.已知方程组31313x y mx y m +=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数,求m 的取值范围.19. 2021年下半年,新冠疫情在全球新一波蔓延,接种新冠疫苗是当前抗击疫情最有效的手段.某县注射的疫苗有两种,一种是2针剂的灭活疫苗,另种是3针剂的重组蛋白疫苗.某校120名教职工全部完成其中一种疫苗的注射,共注射了325针,注射2针剂和3针剂疫苗的教职工各有多少人?五、综合题20.已知二元一次方程20ax y b +-=(a ,b 均为常数,且a≠0).(1)当a =3,b =﹣4时用x 的代数式表示y ;(2)若()2212x a by b b =-⎧⎪⎨=+⎪⎩是该二元一次方程的一个解 ①探索a 与b 关系,并说明理由;②无论a 、b 取何值,该方程有一组固定解,请求出这组解.21.下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:{3x −y =4 ①6x −3y =10 ②解:①×2,得628x y -=……③ 第一步 ②-③,得2y -= 第二步=2y -. 第三步将=2y -代入①,得2x =.第四步所以,原方程组的解为22x y =⎧⎨=-⎩第五步(1)这种求解二元一次方程组的方法叫做 法,以上求解步骤中,马小虎同学第 步开始出现错误.(2)请写出此题正确的解答过程.22.目前,新型冠状病毒在我国虽可控可防,但不可松懈.建兰中学欲购置规格分别为200mL 和500mL 的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要80元,购买1瓶甲和4瓶乙免洗手消毒液需要110元. (1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10mL 的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费2500元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将8.4L 的免洗手消毒液全部装入最大容量分别为200mL 和500mL 的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗10mL ,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.参考答案与解析1.【答案】D【解析】【解答】解:将 21x y =⎧⎨=-⎩ 代入ax+y=1得2a-1=1 解得a=1. 故答案为:D.【分析】根据方程根的概念,将x=2与y=-1代入ax+y=1可得关于字母a 的方程,求解即可得出a 的值.2.【答案】B【解析】【解答】解: ACD 、既不能消去x ,也不能消去y ,错误;B 、能消去y ,正确; 故答案为:B.【分析】观察两方程中y 的系数,找出两系数的最小公倍数,结合系数的符号,即可判断.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】B【解析】【解答】解:∵方程组24x y x y -=⎧⎨-=⎩①②的解为2x y =-⎧⎨=⎩▽ 424y y --=⎧⎨--=⎩①②解之:y=-6, △=2【分析】将x=-2代入第二个方程,可求出△的值,再将x ,y 的值代入第一个方程,可求出△的值.5.【答案】C【解析】【解答】解:13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解123m ∴-⨯=5m ∴=-故答案为:C.【分析】将x=1、y=3代入方程中进行计算可得m 的值.6.【答案】D【解析】【解答】解:方程:{y =x −5①3x −y =8②把①式代入②式,可得:()358x x --=整理,可得:358x x -+= 故答案为:D.【分析】将第一个方程代入第二个方程中可得3x-(x-5)=8,然后化简即可.7.【答案】C【解析】【解答】解:24328a b a b +=⎧⎨+=⎩①② ①+②,可得: 4a +4b =12 ∴2a +2b =12÷2=6. 故答案为:C .【分析】两方程组中两方程相加即可求解.8.【答案】B【解析】【解答】设购买价格为6元的商品x 件,价格为8元的商品y 件依题意得:68100x y +=5034xy -∴=又x ,y 均为正整数解得211x y =⎧⎨=⎩或68x y =⎧⎨=⎩或105x y =⎧⎨=⎩或142x y =⎧⎨=⎩因此可供小明选择的方案有4种.【分析】设购买价格为6元的商品x 件,价格为8元的商品y 件, 根据购买价格分别为6元和8元的两种商品共花费100元,列出二元一次方程,再求出其正整数解即可.9.【答案】B【解析】【解答】解:由题意得: 640850y xy x +=⎧⎨-=⎩故答案为:B.【分析】根据“ 每人分6本,则剩余40本”得方程6y-40=x ;根据“每人分8本,则还缺50本”得方程8y-50=x ,依此列出二元一次方程组,即可解答.10.【答案】A【解析】【解答】解:∵方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x a y z c=⎧⎪=⎨⎪=⎩∴41233a b c a b c -+=⎧⎨-+=⎩①② 由①-②得:2b c +=- ∴2b c =--把2b c =--代入①,得:()241a c c ---+=∴51a c +=-∴65123a b c a c b c ++=+++=--=-. 故答案为:A.【分析】由题意把x 、y 、z 的值代入方程组可得关于a 、b 、c 的方程组,将c 作为常数,用含c 的式子表示出a 、b ,整体代换计算即可求解.11.【答案】x 102- 【解析】【解答】解:x -2y =102y=x-10 解之:y=x 102-. 故答案为x 102-【分析】先移项,再将y的系数化为1,可求出y.12.【答案】1 2 -【解析】【解答】解:3202132022 x yx y+=⎧⎨+=⎩①②①-②得,2x-2y=﹣1两边同除以2得,x-y=1 2 -故答案为1 2 -.【分析】将①式和②式整体相减得出2x-2y=﹣1,然后根据等式的性质两边同除以2,即可解答. 13.【答案】45【解析】【解答】解:273330x yy zz x+=⎧⎪+=⎨⎪+=⎩①②③①+②+③得:2x+2y+2z=90整理得:x+y+z=45.故答案为:45.【分析】将方程组中的三个方程相加并化简可得x+y+z的值. 14.【答案】6【解析】【解答】解:设甲公司的工作效率为x,乙公司的工作效率为y.依题意列方程组,得661 491 x yx y+=⎧⎨+=⎩解这个方程组,得110115 xy⎧=⎪⎪⎨⎪=⎪⎩所以,甲公司单独做需10周,乙公司单独做需15周;设甲一周的装修费是m万元,乙一周的装修费是n万元.依题意列方程组,得66 5.2 49 4.8 m nm n+=⎧⎨+=⎩解这个方程组,得35415 mn⎧=⎪⎪⎨⎪=⎪⎩甲单独做的装修费:35×10=6(万元)故答案为:6.【分析】设甲公司的工作效率为x,乙公司的工作效率为y,根据相等关系“ 甲装修公司6周完成的工作量+乙装修公司6周完成的工作量=1,甲装修公司4周完成的工作量+乙装修公司9周完成的工作量=1”可得关于x、y的方程组,解之求出x、y的值;设甲一周的装修费是m万元,乙一周的装修费是n万元,根据相等关系“ 甲装修公司6周所需费用+乙装修公司6周完成所需费用=1,甲装修公司4周所需费用+乙装修公司9周所需费用=1”可得关于m、n的方程组,解之可求解.15.【答案】(1)解:{y=2x①3x+2y=7②将①代入②得3x+4x=7解得x=1将x=1代入①得y=2∴12 xy=⎧⎨=⎩(2)解:{4x−y=11①2x+y=13②①+②得6x=24解得x=4将x=4代入②得8+y=13解得y=5∴45 xy=⎧⎨=⎩【解析】【分析】(1)将①方程直接代入②方程可求出x的值,再将x的值代入①方程可求出y的值,从而即可得出方程组的解;(2)将方程组中的两个方程相加可求出x的值,再将x的值代入②方程可求出y的值,从而即可得出方程组的解.16.【答案】解:4 223 327x y zx y zx y z+-=⎧⎪-+=-⎨⎪+-=⎩①②③解:①+②得, 31x y -=④ ②×2+③得, 731x y -=⑤④与⑤组成方程组得 31731x y x y -=⎧⎨-=⎩解方程组得, 12x y =⎧⎨=⎩把 12x y =⎧⎨=⎩ 代入①得, 124z +-=解得, 1z =-∴原方程组的解为: 121x y z =⎧⎪=⎨⎪=-⎩【解析】【分析】利用第一个方程加上第二个方程可得3x-y=1,利用第二个方程的2倍加上第三个方程可得7x-3y=1,联立求解可得x 、y 的值,然后将x 、y 的值代入第一个方程中求出z 的值,据此可得方程组的解.17.【答案】解:甲同学因看错 a 符号∴ 把 3x = , 2y = 代入 4x cy +=解得 12c =326a b -+= .乙因看漏 c∴ 把 6x = , 2y =- 代入 6ax by +=得 626a b -= 得 326626a b a b -+=⎧⎨-=⎩解得, a=4 , b=9【解析】【分析】甲同学看错a 的负号,把x=3,y=2代入x+cy=4,求出c 值,因看错a 的符号,得-3a+2b=6,再由乙看漏c ,把x=6,y=-2代入ax+by=6,得6a-2b=6,联立方程组解方程组得a 、b 的值,即可解决问题.18.【答案】解:解方程组31313x y m x y m +=-+⎧⎨-=+⎩,得324x m y m =-⎧⎨=--⎩ ∵x 为非正数,y 为负数∴30240m m -≤⎧⎨--<⎩解得-2<m≤3【解析】【分析】先求出方程组的解324x m y m =-⎧⎨=--⎩,再根据题意列出不等式组30240m m -≤⎧⎨--<⎩,最后求出m 的取值范围即可。
第八章单元测试卷
班级 ________ 姓名 ___________ 坐号 __________ 成绩 __________
一填空题(每小题4分,共24分)
、 1 、
1.方程 3x — =0, 8x+y=0, 9x+xy=1 , 8x+y — 2x=0, x2 — x+1=0 中,二兀一次
方
y
程
的
个
数
是()
A . 1个
B . 2个
C . 3个
D . 4个
2. 一兀
次方程2x y 7i 的正整数解有(
)个。
A. 1
B. 2
C .
.3 D. 4
x y 1
3. 方程组x y 3
的解是(
)
x 2 x 1
x 3 x 1
A 、
y
1
B>
y
2 C 、 y 2 D 、
y 2
ax by 4
,
x 2,
4、
已知方程组ax
by 2 的解为 y 1,则 2a 3b
的值为(
)
A . 4
B . 6
C . 6
D . 4
5、 有一个两位数,它的十位数字与个位数字之和为
6,这样的两位数的个数有
( )个
A. 3
B. 5
C. 6
D.无数个 6.
(2017山东临沂)甲、乙二人做某种机械零件,已知甲每小时比乙多做 6
个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多 二填空题(每小题4分,共16分)
1
1. 由方程2x y 丄,得到用含
3
2. 已知x 3 t ,则
x 与y 的关系式为
y 5 t.
------------------------
3. 如图1,宽为50 cm 的矩形图案由10个全等的小长方形拼成, 其中一个小长方形的面积为 _______________ 4、如果 2x 2a-b -少个•如果设乙每小时做x 个,那么所列方程是( 90 60 X x+6
9 Cl
SO
x+6
90
60
x-6
X
)
n 90_60
D. -----
x 的代数式表示y ,则y=
A . B
. C . 图1
O
3y3a+2b-11=10 是一个二元一次方程,则ab=
3
3x y 1
5、 用加减消元法解方程组
,由①X 2—②得 _______________ 。
4x 2y 1
x 1
6. 若y 2是关于x 、 y 的方程ax by 1的一个解,且a b 3,则
5a 2b = _________ 。
7•某校现有学生804人,与去年相比:男生增加10%,女生减少10%,学生总数增加0.5%,则现有 男、女学生的人数分别为 ____________ . 8.某工厂第一季度生产甲、乙两种机器共 450台,改进生产技术后,计划第二季度生产这两种
机器共520台,其中甲种机器增产10%,乙种机器增产20%,该厂第一季度生产甲、 乙两种机器 的台
数分别为 ___________ .
到小排起来应该是
三、解答题
11.用适当方法解方程组:(每题4分) ⑴
2S 3t 1
, 4s 9t 8.
x 5y 3z 0,
(4) y 4z 3,
2x z 1.
X 1 X 2
9.在关于X 1,X 2,X 3的方程组 X 2
X 3
a 1
a 2中,已知 a 1 a 2 a 3,那么将x 1,x 2,x 3从大
X 3 X 1 a 3
10.若(5x 2y 12)2
3x 2y
0,则 2x 4y
4(x y 1) 3(1 y) 2
3x 2y 10.
12.(本题5)用16 元买了60 分、80 分两种邮票共22 枚,60 分与80 分的邮票各买了多少枚?4x y 5 ax by 3
y和y 有相同的解,求a2 2ab b2的值.
13(. 本题5)分已知方程组
3x 2y 1 ax by 1
14.(本题6)王大伯承包了25 亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了
44000 元。
其中种茄子每亩用了1700 元,获纯利2400 元;种西红柿每亩用了1800 元,获纯利2600 元。
问王大伯一共获纯利多少元?
15(. 本题8 分)甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行。
如果乙先走20 km,那么甲用1 h就能追上乙;如果乙先走 1 h,那么甲只用15 min就能追上乙,求甲、乙二人的速度。
16.(本题10 分)某市根据信息产业部调整“因特网”的资费要求,规定如下:上“因特网”
的费用为电话费0.22元/3分钟。
上网费为每月不超过a小时,按4元/时计算;超过a小时部分按8元/时计算。
现在网民李先生有一个月的上网费用为736元,上网时间为80小时。
(1)你知道该市规定时间 a 为多少?李先生上网超过 a 多少小时?
(2)该市还有一种上网方式宽带网,收费标准如下:电话费0.22 元/3 分钟,上网费为388元/半年,一次交安装费240元。
若李先生每月上网时间均为80小时,他改上宽带网合适吗?。