高考物理选考热学计算题(一)含答案与解析
- 格式:doc
- 大小:1.04 MB
- 文档页数:76
高考物理选考热学计算题(二十九)含答案与解析评卷人得分一.计算题(共40小题)1.如图甲所示为一长方体汽缸,长度为L=35cm,汽缸内用活塞封闭了一定质量的理想气体,汽缸横放在水平面上时,汽缸内气柱长度为L1=30cm。
已知活塞质量m=10kg、截面积S=100cm2.活塞厚度不计,汽缸与活塞间摩擦不计。
现用绳子系住汽缸底,将汽缸倒过来悬挂,如图乙所示,重力加速度大小g=10m/s2,大气压强为1×105Pa,外界环境温度为27℃。
①求汽缸内气柱的长度L2;(结果保留三位有效数字)②若使图乙中的活塞脱离汽缸,则至少应将汽缸内气体温度升高多少摄氏度?2.(1)一定质量的理想气体,其状态变化如图所示,则A→B过程中气体热,B→C过程中气体热。
(2)清晨,湖中荷叶上有一滴约为0.1cm3的水珠,已知水的密度ρ=1.0×103kg/m3,水的摩尔质量M=1.8×10﹣2kg/mol,试估算:①这滴水珠中约含有多少水分子;②一个水分子的直径多大。
(以上计算结果保留两位有效数字)3.如图所示,A、B气缸长度均为L,横截面积均为S,体积不计的活塞C可在B气缸内无摩擦地滑动,D为阀门。
整个装置均由导热性能良好的材料制成。
起初阀门关闭,A 内有压强2P1的理想气体,B内有压强的理想气体,活塞在B气缸内最左边,外界热力学温度为T0.阀门打开后,活塞C向右移动,最后达到平衡。
不计两气缸连接管的体积。
求:(1)活塞C移动的距离及平衡后B中气体的压强;(2)若平衡后外界温度缓慢降为0.50T0,气缸中活塞怎么移动?两气缸中的气体压强分别变为多少?4.如图所示,绝热气缸开口向下放置,质量为M的绝热活塞在气缸内封闭一定质量的理想气体,活塞下部空间与外界连通,气缸底部连接一U形细管(管内气体的体积忽略不计),初始时,封闭气体的温度为T0,活塞距离气缸底部h0,细管内两侧水银面存在高度差,已知水银面积为ρ,大气压强为p0,气缸横截面积为S,重力加速度为g,忽略活塞与气缸之间的摩擦,求:(1)U形细管内两侧水银柱的高度差△h(2)加热气体,使活塞缓慢下降△h0,求此时的温度;(3)在(2)所述的加热过程中,若气体吸收的热量为Q,求气体内能的变化;5.如图所示,一竖直放置、粗细均匀且足够长的U形玻璃管,右端通过橡胶管与放在水中导热的球形容器连通,球形容器连同橡胶管的容积为V0=90cm3,U形玻璃管中,被水银柱封闭有一定质量的理想气体。
高考物理选考热学计算题(一)组卷老师:莫老师评卷人得分一.计算题(共50 小题)1.开口向上、内壁光滑的汽缸竖直放置,开始时质量不计的活塞停在卡口处,气体温度为27℃ ,压强为0.9×105 Pa,体积为1×10﹣3m3,现缓慢加热缸内气体,试通过计算判断当气体温度为67℃时活塞是否离开卡口。
(已知外界大气压强p0=1×105Pa)2.铁的密度ρ=7.×8 103kg/m 3、摩尔质量M=5.6×10﹣2 kg/mol,阿伏加德罗常数NA=6.0× 1023mol﹣1.可将铁原子视为球体,试估算:(保留一位有效数字)① 1 克铁含有的分子数;②铁原子的直径大小.3.如图所示,一个上下都与大气相通的直圆筒,内部横截面积为S=0.01m2,中间用两个活塞A和B封住一定质量的气体。
A、B都可沿圆筒无摩擦地上下滑动,且不漏气。
A的质量不计,B的质量为M,并与一劲度系数为k=5×103N/m 的较长的弹簧相连。
已知大气压p0=1×105Pa,平衡时两活塞之间的距离l0=0.6m,现用力压A,使之缓慢向下移动一段距离后保持平衡。
此时用于压A的力F=500N.求活塞A 下移的距离。
4.如图,密闭性能良好的杯盖扣在盛有少量热水的杯身上,杯盖质量为m,杯身与热水的总质量为M ,杯子的横截面积为S.初始时杯内气体的温度为T0,压强与大气压强p0 相等.因杯子不保温,杯内气体温度将逐步降低,不计摩擦.(1)求温度降为T1 时杯内气体的压强P1;(2)杯身保持静止,温度为T1 时提起杯盖所需的力至少多大?(3)温度为多少时,用上述方法提杯盖恰能将整个杯子提起?5.如图,上端开口、下端封闭的足够长的细玻璃钌竖直放置,﹣段长为l=15.0cm 的水银柱下方封闭有长度也为l 的空气柱,已知大气压强为p0=75.0cmHg;如果使玻璃管绕封闭端在竖直平面内缓慢地转动半周.求在开口向下时管内封闭空气柱的长度.6.如图所示为一种减震垫,由12 个形状相同的圆柱状薄膜气泡组成,每个薄膜气泡充满了体积为V1,压强为p1 的气体,若在减震垫上放上重为G 的厚度均匀、质量分布均匀的物品,物品与减震垫的每个薄膜表面充分接触,每个薄膜上表面与物品的接触面积均为S,不计每个薄膜的重,大气压强为p0,气体的温度不变,求:(i)每个薄膜气泡内气体的体积减少多少?(ii)若撤去中间的两个薄膜气泡,物品放上后,每个薄膜上表面与物品的接触面积增加了0.2S,这时每个薄膜气泡的体积又为多大?7.一足够高的内壁光滑的导热气缸竖直地浸放在盛有冰水混合物的水槽中,用 不计质量的活塞封闭了一定质量的理想气体,活塞的面积为 1.5×10﹣3m 2,如图1 所示,开始时气体的体积为 3.0× 10﹣3m 3,现缓慢地在活塞上倒上一定质量的 细沙,最后活塞静止时气体的体积恰好变为原来的三分之一.设大气压强为 1.0 ×105Pa .重力加速度 g 取 10m/s 2,求:( 1)最后气缸内气体的压强为多少?(2)最终倒在活塞上细沙的总质量为多少千克? 3)在 P ﹣V 图上(图 2)画出气缸内气体的状态变化过程(并用箭头标出状态变化的方向).竖直放置的气缸,活塞横截面积为 S=0.01m 2,厚度不计。
1. 问题:一个容积为V的容器中充满了1mol的气体,此时容器的温度为T1,请计算容器中气体的平均动能。
答案:平均动能=(3/2)nRT1,其中n为气体的物质的量,R为气体常数。
2. 一个容积为V的容器中装满了水,水的温度为t℃,水的重量为m,水的热容为c,此时将容器中的水加热,经过一段时间后,水的温度升高到T℃,请计算:
(1)水加热的总热量
Q=mc(T-t)
(2)水加热的平均热量
Qavg=Q/t
3..一元系统中,向容器中加入了$m$克汽油,汽油的温度为$T_1$,容器中的水的温度为$T_2$,汽油和水的比容为$V_1$和$V_2$,如果汽油和水的温度最终变为$T_3$,那么汽油的最终温度$T_4$为多少?
解:$T_4=\frac{mT_1V_1+T_2V_2}{mV_1+V_2}T_3$
4. 一定体积的气体在温度为273K,压强为100kPa时,改变温度到273K,压强到400kPa,求气体的体积。
解:由比容量关系可得:
V2/V1=P2/P1
V2=V1×P2/P1
V2=V1×400/100
V2=4V1
答案:V2=4V1。
高考物理选考热学多选题模拟题(一)含答案与解析组卷老师:莫老师评卷人得分一.多选题(共40小题)1.下列说法正确的是()A.凡是不违背能量守恒定律的实验构想,都是能够实现的B.做功和热传递在改变内能的效果上是等效的,这表明要使物体的内能发生变化,既可以通过做功来实现,也可以通过热传递来实现C.保持气体的质量和体积不变,当温度升高时,每秒撞击单位面积器壁的气体分子数增多D.温度升高,分子热运动的平均动能一定增大,但并非所有分子的速率都增大E.在水池中,一个气泡从池底浮起,此过程可认为气泡的温度不变,气泡内气体为理想气体,则外界对气泡做正功,同时气泡吸热2.下列说法中正确的是()A.温度越高,分子的无规则热运动越剧烈B.物体的温度越高,所有分子的动能都一定越大C.分子间的引力和斥力都随分子间的距离增大而减小D.一定质量的理想气体在等压膨胀过程中温度一定升高E.如果物体从外界吸收了热量,则物体的内能一定增加3.下列说法正确的是()A.第二类永动机违反了热力学第二定律,但不违反能量守恒定律B.被踩扁的乒乓球(表面没有开裂)放在热水里浸泡,恢复原状的过程中,球内气体对外做正功的同时会从外界吸收热量C.由于液体表面分子间距离小于液体内部分子间的距离,液面分子间表现为引力,所以液体表而具有收缩的趋势D.两个分子间分子势能减小的过程中,两分子间的相互作用力可能减小E.布朗运动是指在显微镜下观察到的组成悬浮颗粒的固体分子的无规则运动4.下列说法正确的是()A.温度高的物体分子的平均动能一定大B.气体分子的体积大小等于气体的摩尔体积跟阿伏伽德罗常数的比值C.一定质量的o°c的冰溶解为0°C的水,分子平均动能不变,分子势能增加D.通过技术革新可以达到绝对零度以下E.一定质量的理想气体吸热热量,它的内能可不变5.下列说法正确的是()A.水是浸润液体,水银是不浸润液体B.布朗运动和扩散现象都可以在气体、液体中发牛C.只要经历足够长的时间,密封在瓶内的酒精一定会全部变成气体D.塑料丝尖端放在火焰上烧熔后尖端变成球形是表面张力的缘故E.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,不违背热力学第二定律6.下列说法正确的是()A.布朗运动说明了液体分子与悬浮颗粒之间存在着相互作用力B.物体的内能在宏观上只与其所处状态及温度有关C.一切自发过程总是沿着分子热运动的无序性增大的方向进行D.分子间的吸引力和排斥力都随分子间距离增大而减小E.气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力7.下列说法不正确的是()A.当分子间的距离增大时,分子间的引力和斥力均减小,但斥力减小得更快,所以分子间的作用力表现为引力B.所有晶体都具有各向异性C.自由落体运动的水滴呈球形D.在完全失重的状态下,一定质量的理想气体压强为零E.摩尔质量为M ( kg/mol)>密度为p (kg/m3)的In?的铜所含原子数为止N AM (阿伏伽德罗常数为N A)&以下说法正确的是()A.饱和蒸汽在等温变化的过程中,随体积减小压强增大C.气体放岀热量,其分子的平均动能可能增大D.将一个分子从无穷远处无限靠近另一个分子,则这两个分子间分子力先增大后减小最后再增大,分子势能是先减小冉增大E.附着层内分子间距离小于液体内部分子间距离时,液体与固体间表现为浸润9.下列说法正确的是()A.花粉颗粒在水中做布朗运动,反映了花粉分子在不停的做无规则运动B.外界对气体做正功,气体的内能不一定增加C.影响蒸发快慢以及影响人们对干爽与潮湿感受的因素是空气中水蒸气的压强与同一温度下水的饱和气压的差距D.第二类永动机不能制成是因为它违反了能量守恒定律E.晶体熔化过程中,分子的平均动能保持不变,分子势能增大10.质量一定的某种物质,在压强不变的条件下,由液态1到气态III变化过程中温度T随加热时间t变化关系如图所示,单位时间所吸收的热量可看做不变,气态III可看成理想气体。
高考物理选考热学计算题(二十三)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,开口向下竖直放置的内部光滑气缸,气缸的截面积为S,其侧壁和底部均导热良好,内有两个质量均为m的导热活塞,将缸内理想分成I、II两部分,气缸下部与大气相通,外部大气压强始终为p0,mg=0.2p0S,环境温度为T0,平衡时I、II两部分气柱的长度均为l,现将气缸倒置为开口向上,求:(i)若环境温度不变,求平衡时I、II两部分气柱的长度之比;(ii)若环境温度缓慢升高,但I、II两部分气柱的长度之和为2l时,气体的温度T为多少?2.如图所示,容器A和汽缸B都能导热,均处于27℃的环境中,汽缸B上方与大气连通,大气压强为P0=1.0×105Pa.开始时阀门K关闭。
A内为真空,其容积V A=1.2L,B内活塞横截面积S=100cm2、质量m=1kg,活塞下方充有理想气体,其体积V s=4.8L.活塞上方恰与汽缸上部接触但没有弹力。
A与B间连通细管体积不计,打开阀门K后使活塞缓慢下移。
不计摩擦,g取10m/s2。
①求稳定后活塞的位置及活塞下移过程中汽缸B内气体对活塞做的功。
②稳定后将阀门K再次关闭,然后把整个装置放置于207℃的恒温槽中。
求活塞稳定后汽缸B内气体的压强。
3.如图所示为一种减震垫,由12个形状相同的圆柱状薄膜气泡组成,每个薄膜气泡充满了体积为V1,压强为p1的气体,若在减震垫上放上重为G的厚度均匀、质量分布均匀的物品,物品与减震垫的每个薄膜表面充分接触,每个薄膜上表面与物品的接触面积均为S,不计每个薄膜的重,大气压强为p0,气体的温度不变,求:(i)每个薄膜气泡内气体的体积减少多少?(ii)若撤去中间的两个薄膜气泡,物品放上后,每个薄膜上表面与物品的接触面积增加了0.2S,这时每个薄膜气泡的体积又为多大?4.如图所示,直立的气缸中有一定质量的理想气体,活塞的质量为m,横截面积为S,气缸内壁光滑且缸壁导热良好,周围环境温度保持不变。
高考物理选考热学计算题(二)组卷老师:莫老师评卷人得分一.计算题(共50小题)1.如图所示,一个高为H的导热汽缸,原来开口,将其开口向上竖直放置。
在气温为27℃、气压为760mm Hg、相对湿度为75%时,用一质量可不计的光滑活塞将开口端封闭。
求将活塞下压多大距离时,将开始有水珠出现。
2.有一粗细均匀的U形管,当温度为31℃时,封闭端和开口端的水银面在同一水平面上,如图所示.封闭端内的空气柱长8cm,大气压强为76cmHg,问:(i)温度升高到多少摄氏度时,封闭端气柱将增加到9cm?(ii)在(i)问的操作结束后,如果再从开口端缓慢灌入水银(灌入的水银与开口端的水银面相连,其间没有气泡),使封闭端内的空气柱恢复到原长,此过程保持气体温度不变,那么封闭端和开口端的水银面相差几厘米?3.如图所示,两竖直固定且正对放置的导热气缸内被活塞各封闭一定质量的理想气体,活塞a、b用刚性轻杆相连,上下两活塞的横截面积S a:S b=1:2,活塞处于平衡状态时,A、B中气体的体积均为V0,温度均为300K,B中气体压强为0.75P0,P0为大气压强(两活塞及杆质量不计,活塞与气缸内壁间摩擦不计)。
(1)求A中气体的压强;(2)现对B中气体加热,同时保持A中气体温度不变,活塞重新达到平衡状态后,A中气体的压强为P0,求此时B中气体的温度。
4.如图,两汽缸A、B粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A的直径是B的2倍,A上端封闭,B上端与大气连通;两汽缸除A顶部导热外,其余部分均绝热。
两汽缸中各有一厚度可忽略的绝热轻活塞a、b,活塞下方充有氮气,活塞a上方充有氧气;当大气压为p0、外界和汽缸内气体温度均为7℃且平衡时,活塞a离汽缸顶的距离是汽缸高度的,活塞b在汽缸正中间。
(1)现通过电阻丝缓慢加热氮气,当活塞b恰好升至顶部时,求氮气的温度;(2)继续缓慢加热,使活塞a上升,当活塞a上升的距离是汽缸高度的时,求氧气的压强。
高考物理选考热学计算题(三十四)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,一个圆形、上部有挡板的气缸,缸内用一薄而轻的活塞封闭一定质量的气体.已知缸内部高度为a,开始时活塞在离缸底部的高度是,此时外界大气压强为1.0×105Pa,温度为27℃.若对气体加热,使其温度升高到427℃时,气缸内的压强为多少?2.如图,横截面积相等的绝热气缸A与导热气缸B(B气缸能与环境充分热交换)均固定于地面,由刚性杆连接的绝热活塞与两气缸间均无摩擦.两气缸内都装有理想气体,初始时体积均为V0、温度为T0且压强相等.缓慢加热A中气体,停止加热达到稳定后,A 中气体压强变为原来的2倍.设环境温度始终保持不变,求稳定后气缸A中气体的体积V A和温度T A.3.如图所示,用面积为S的活塞在气缸内封闭着一定质量的空气,活塞上放一砝码,活塞和砝码的总质量为m.现对气缸缓缓加热,使气缸内的空气温度从T1升高到T2,空气柱的高度增加了△L.已知加热时气体吸收的热量为Q,外界大气压强为P0.求:(Ⅰ)气缸内温度为T1时,气柱的长度为多少?(Ⅱ)此过程中被封闭气体的内能变化了多少?4.一定质量理想气体在初始状态A时,压强P A=1×105Pa,结合如图(V﹣T图线)中交代的信息,试求:(1)E点时气体的压强;(2)试分析由A→B→C的过程中气体是吸热还是放热.5.在热力学中有一种循环过程叫做焦耳循环。
它由两个等压过程和和两个绝热过程组成。
图示为一定质量的理想气体的焦耳循环过程(A→B→C→D→A)。
已知某些状态的部分参数如图所示(见图中所标数据)。
①已知状态A的温度T A=600K,求状态C的温度T C。
②若已知A→B过程放热Q=90J,求B→C过程外界对气体做的功。
6.小方同学在做托里拆利实验时,由于操作不慎,玻璃管漏进了一些空气,当大气压强为76cmHg时,管内外水银面高度差为60cm,管内被封闭的空气柱长度是30cm,如图所示.问:(1)此时管内空气的压强是多少cmHg;(2)现保持下端水银槽不动,将玻璃管向下插入10cm,则此时的空气柱长度是多少.(设此时玻璃管还未触到水银槽底,不考虑水银槽液面的变化,且整个过程温度不变)7.如图所示,容积为V0=90cm3的金属球形容器内封闭有一定质量的理想气体,与竖直放置、粗细均匀且足够长的U形玻璃管连通,当环境温度为27℃,U形玻璃管左侧水银面高h1=18cm,右侧水银面高h2=2cm,水银柱上方空气柱长h0=20cm.现在对金属球形容器缓慢加热.大气压强p0=76cmHg,U形玻璃管的横截面积为S=0.5cm2)玻璃管的直径与水银柱高相比可以忽略不计,底边长度足够.(1)当加热到多少摄氏度时,两边水银柱在同一水平面上?(2)当加热到多少摄氏度时,右侧水银面高为h3=24cm.8.若上题中加热前气缸内理想气体的体积V=0.4m3,密度ρ=0.45kg/m3,摩尔质量M=1.6×10﹣2kg/mol,试估算气缸内理想气体的分子数.(结果保留两位有效数字)9.某氧气瓶的容积V=30L,在使用过程中,氧气瓶中的压强由P1=100atm下降到P2=50atm,且温度始终保持0℃.已知在标准状况1mol气体的体积22.4L.求:使用掉的氧气分子数为多少?(阿伏加德罗常数为N A=6.0×1023mol﹣1,结果保留两位有效数字)10.将如图所示的装置的右端部分气缸B置于温度始终保持不变的环境中,绝热气缸A和导热气缸B均固定在地面上,由刚性杆连接的绝热活塞与两气缸间均无摩擦,开始时两形状相同的长方体气缸内装有理想气体,压强均为p0、体积均为V0、温度均为T0.缓慢加热A中气体,使气缸A的温度升高到2T0,稳定后.求:(i)气缸A中气体的压强p A以及气缸B中气体的体积V B(ii)试分析说明此过程中B中气体吸热还是放热?11.如图甲所示,两相同导热气缸A、B均被固定在水平地面上,两活塞通过刚性杆连接为一个整体,活塞与两气缸间均无半摩擦.初始状态时A、B气缸中存在不同质量的同种理想气体,A气缸中气体的质量只有B气缸中气体质量的一半,系统处于平衡状态.现将两气缸以如图乙所示方式放置后,系统再次达到平衡状态.已知大气压强为P0,活塞截面积为S,活寨、气缸、刚性杆的质量均为,g为重力加速度.设环境温度始终保持不变,求甲、乙状态时A、B气缸中气体的体积之比.12.如图所示,溶剂为υ0=90cm3的金属球行容器内封闭有一定质量的理想气体,与竖直放置、粗细趋匀直定够长的U形玻璃管连通,当环境温度为27℃时,U形玻璃管右侧水银面比左侧水银面高出h1=18cm,右侧水银面高h2=2cm,水银柱上方空气长h0=20cm.现在对金属球形容器缓慢加热.当U形玻璃管左侧水银面比右侧水银面高出h2=24cm时停止加热,求此时金属球形容器内气体的温度为多少摄氏度?大气压强P0=76cmHg,U形玻璃管的横截面积为S=0.5cm2,玻璃管的直径与水银柱高相比可以忽略不计,底边长度足够.①当加热到多少摄氏度时,两边水银面在同一平面上.②当加热到多少摄氏度时,右侧水银面高为h2=24cm.13.如图所示,冷藏室里桌面上一根竖直的弹簧支持着一倒立气缸的活塞,使气缸悬空而静止,气缸内壁光滑且导热性能良好.开始时冷藏室温度为27℃,气缸内气柱长度为L;在室内气压不变情况下缓慢降温,稳定后发现气柱缩短了,则:①气缸内气体作的是等温、等压还是等容变化?②现在的室温为多少?14.如图所示,在一端封闭的U形管中用水银柱封一段空气柱,当空气柱的温度为14℃时,左边水银柱的高度h1=10cm,右边水银柱的高度h2=7cm,空气柱长度L=15cm;将U 形管放入100℃的水中至状态稳定时,h1变为7cm.(1)求末状态空气柱的压强和当时的大气压强(单位用cmHg).(2)空气柱从初状态变化到末状态,内能(填“增大”或“减小”),若吸收的热量为Q,对外界做功为W,一定有Q W(填“大于”或“小于”).15.如图所示,内径均匀的U形玻璃管竖直放置,截面积为5cm2,右侧管上端封闭,左侧管上端开口,内有用细线拴住的活塞.两管中分别封入L=11cm的空气柱A和B,活塞上、下气体压强相等均为76cm水银柱产生的压强,这时两管内的水银面的高度差h=6cm,现将活塞用细线缓慢地向上拉,使两管内水银面相平.整个过程中空气柱A、B的温度恒定不变.问(76cm水银柱的压强相当于1.01×105 Pa)①活塞向上移动的距离是多少?②需用多大拉力才能使活塞静止在这个位置上?16.如图所示,抽气机的最大容积是被抽气体容器容积的,当上提活塞将阀门a打开时,阀门b关闭;当下压活塞将阀门b打开时,阀门a关闭.设容器中气体原来的压强为P0=75cmHg,容器中气体温度视为恒定,求抽气2次后容器中气体的压强是多少?17.如图所示,一足够长的圆柱形绝热气缸竖直放置,通过绝热活塞封闭着一定质量的理想气体.活塞的质量为m,横截面积为S,与底部容器相距为h.现通过电热丝缓慢加热气体,当气体的温度为时活塞上升了h.已知大气压强为p0,重力加g,不计活塞与气缸的摩擦.求:①温度为T时气体的压强p;②加热前气体的温度T o.18.如图所示,水平放置的气缸内封闭了一定质量的理想气体,气缸的侧壁为光滑绝缘体,缸底M及活塞D均为导体并用导线按图连接,活塞面积S=2cm2.电键断开时,DM间距l1=5μm,闭合电键后,活塞D与缸底M分别带有等量异种电荷,并各自产生匀强电场(D与M间的电场为各自产生的电场的叠加)。
高三物理热学全部题型练习题1. 题目:热量和功的关系题目描述:做功时,系统释放了20 J的热量,求该系统的净功。
解答:根据热力学第一定律可知,系统净功等于系统所做的功减去释放的热量。
所以,净功 = 做的功 - 释放的热量。
净功 = 0 J - 20 J = -20 J。
因此,该系统的净功为-20 J。
2. 题目:温度和热量的转移题目描述:一杯水的温度为20℃,将放在室温为25℃的房间内,经过一段时间,杯中水的温度变为22℃。
求该过程中水释放了多少热量。
解答:根据热力学第一定律可知,传热时系统释放的热量等于所吸收的热量。
所以,所释放的热量 = 所吸收的热量。
根据温度的变化可知,水从20℃降到22℃,吸收了25℃的热量。
所释放的热量 = 25 J。
因此,该过程中水释放了25 J的热量。
3. 题目:理想气体的升压等温过程题目描述:一摩尔理想气体初时体积为1 L,压强为1 atm,最后体积变为2 L,求该过程中系统吸收的热量。
解答:根据理想气体的状态方程 PV = nRT,其中P为压强,V为体积,n为物质的摩尔数,R为气体常数,T为温度。
由于该过程为等温过程,所以温度保持不变。
即T1 = T2。
根据理想气体的状态方程可得,P1V1 = P2V2。
代入已知数据可得,1 atm × 1 L = P2 × 2 L。
解得P2 = 0.5 atm。
由于等温过程中吸收的热量等于外界对系统所做的功,而理想气体的等温过程的功为:W = nRT × ln(V2/V1)。
代入已知数据可得,W = (1 mol × 0.0821 atm L/mol K × T) × ln(2/1)。
由于T1 = T2,所以T取任意值均可。
假设T = 300 K,代入可得W ≈ 0.08 J/mol。
因此,该过程中系统吸收的热量约为0.08 J/mol。
4. 题目:热机的效率题目描述:一台热机从高温热源吸收300 J的热量,向低温热源释放150 J的热量。
高考物理选考热学计算题(三十三)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,一竖直放置的U形管两端开口、粗细均匀,两管的竖直部分高度为20cm,内径很小,水平部分BC长16cm.一空气柱将管内水银分割成左、右两段.大气压强p0=76cmHg.当空气柱温度T0=273K、长L0=8cm时,BC管内左边水银柱和AB管内水银柱长都为2cm.右边水银柱只画出了一部分,求:(1)右边水银柱总长度;(2)若缓慢降低空气柱的温度,当空气柱的温度为多少时,左边水银柱全部进入BC管?(3)若缓慢升高空气柱的温度,当空气柱的温度为多少时,左边的水银恰好有一半溢出U 形管?2.如图所示的试管内由水银封有一定质量的气体,静止时气柱长为l0,大气压强为p0,其他尺寸如图所示.当试管绕竖直轴以角速度ω在水平面内匀速转动时气柱长变为l,求转动时气体的压强.(设温度不变,试管横截面积为S,水银密度为ρ)3.已知每秒从太阳射到地球上垂直于太阳光的每平米截面积上的辐射能为1.4×103J,其中可见光部分约占45%.假如认为可见光的波长均为0.55μm,太阳向各个方向的辐射是均匀的,日地间距离R=1.5×1011m,普朗克常量h=6.63×10﹣34L/S,由此可估算(1)出太阳每秒辐射出的可见光的光子数约为多少?(2)若已知地球的半径R0=6.4×106m,估算地球接收太阳辐射的总功率.(结果保留两位有效数字)4.氙气灯在亮度、耗能及寿命上都比传统灯有优越性.某轿车的灯泡的容积V=l.5ml,充入氙气的密度ρ=5.9kg/m3,摩尔质量M=0.131kg/mol,阿伏伽德罗常数N A=6×1023mol ﹣1.试估算灯泡中:①氙气分子的总个数;②氙气分子间的平均距离.(结果保留一位有效数字)5.医院某种型号的氧气瓶的容积为0.08m3,开始时瓶中氧气的压强为10个大气压.假设病人在一种手术过程中吸氧相当于1个大气压的氧气0.04 m3.当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这种型号氧气瓶重新充气前可供病人在这种手术过程中吸氧多少次?6.已知金刚石的密度为ρ,摩尔质量为M,现有一块体积为V的金刚石,它含有多少个碳原子?假如金刚石中的碳原子是紧密地挨在一起,试估算碳原子的直径?(阿伏伽德罗常数N A)7.已知水的密度为ρ,摩尔质量为M,阿伏伽德罗常数为N A,一滴水的直径为D.求:①这滴水中的分子数n;②水分子的直径d.8.已知水的摩尔质量是1.8×10﹣2kg/mol,水的密度是1.0×103kg/m3,求水分子的体积是多少立方米?(已知N A=6.0×1023mol﹣1)(结果保留一位有效数字)9.假设水在100℃时的汽化热为41.0kJ/mol,冰的熔化热为6.0kJ/mol,水的比热容为4.2×103J/(kg•℃),水的摩尔质量为18g/mol,则18g0℃的冰变成100℃的水蒸气时需要吸收大约多少的热量?10.中央气象台5月4日06时发布沙尘暴蓝色预警.其预计4月08时至5日08时,新疆南疆盆地、内蒙古中西部、甘肃中西部、宁夏、陕西北部、山西中北部、河北北部、北京、吉林西部和黑龙江西南部等地的部分地区将有扬沙或浮尘天气,其中内蒙古中西部等地的部分地区将有沙尘暴,局地强沙尘暴.据北京环保监测中心,这波外来浮尘已影响北京.其表示,昨天下午开始,北京上游出现大片起沙区域.夜间,沙尘主体东移,南部边缘经过北京,3点起从西北方向入境,4点全市PM10已达严重污染水平,全市绝大部分点位均超过1000微克/立方米.预计北京地区今日白天首要污染物为PM10,空气质量达到重污染级别.(1)博文说“沙尘暴尘土飞扬,说明分子做无规则运动.”请你判断他的说法是否正确,并简述理由.(2)请写出与“狂风卷起沙尘”的形成相关的物理知识.(写出一条即可)11.如图所示,两个粗细均匀的直角U形管导热良好,左右两管竖直且两端开口,管内水银柱的长度如图中标注,水平管内两段空气柱a、b的长度分别为10 cm、5 cm.在左管内缓慢注入一定量的水银,稳定后右管的水银面比原来高h=10cm.已知大气压强P0=76cmHg,环境温度恒定,求向左管注入的水银柱长度.12.如图所示,一定质量的理想气体被一定质量的水银柱封闭在足够长的竖直玻璃管内,气柱的长度为h.现向管内缓慢地添加相同质量的水银,水银添加完成时,气柱长度变为h.已知添加水银的过程中没有液体逸出,温度保持不变恒为T0;外界大气压强为p0保持不变.I.求没有添加水银时气体的压强;II.水银添加完成后,使气体温度缓慢升高,求气柱长度恢复到原来长度h时气体的温度.13.所研究的过程中,如果环境温度发生变化,气缸中的气体推动活塞做功3×105J,同时吸收热量为2×105J,则此过程中理想气体的内能是增加还是减少?增加或减少了多少?14.横截面积为3dm2的圆筒内有0.6kg的水,太阳光垂直照射了2min,水温升高了1℃,设大气顶层的太阳能只有45%到达地面,试估算出太阳的全部辐射功率为多少?(保留一位有效数字,设太阳与地球之间的平均距离1.5×1011 m)15.一个密闭的气缸,被活塞分成体积相等的左右两室,气缸壁与活塞是不导热的,它们之间没有摩擦.开始两室中气体的温度相等,如图所示.现利用右室中的电热丝对右室中的气体加热一段时间,达到平衡后,左室的体积变为原来的,气体的温度T1=300K.求右室气体的温度.16.如图所示,手握一上端封闭、下端开口的细长玻璃管,在空中(足够高处)处于竖直静止状态,内部有一段长l1=25.0cm的水银柱封闭着一段空气柱,稳定时空气柱长l2=15.0cm,已知大气压强p0=75.0cmHg,若不慎滑落,玻璃管做自由落体运动时,内部水银柱相对玻璃管会移动多少厘米?(空气温度保持不变)17.如图所示,A,B两个固定的气缸,缸内气体均被活塞封闭着,A缸内活塞的面积是B 缸内活塞面积的2倍,两个活塞之间被一根细杆连接.当大气压强为p0,A缸内气体压强为1.5p0时,两个活塞恰好静止不动,求此时B缸内气体的压强.(活塞和缸壁间的摩擦不计)18.如图所示,一圆柱形绝热气缸竖直放置,通过绝热活塞封闭着一定质量的理想气体。
高考物理选考热学计算题(二十)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,一开口向上的气缸固定在水平地面上,质量均为m、横截面积均为S的活塞A、B将缸内气体分成Ⅰ、Ⅱ两部分在活塞A的上方放置一质量也为m的物块,整个装置处于静止状态,此时Ⅰ、Ⅱ两部分气体的长度均为L0.已知大气压强,气体可视为理想气体且温度始终保持不变,不计一切摩擦,气缸足够高。
当把活塞A上面的物块取走时,活塞A将向上移动,求系统重新达到静止状态时,A活塞上升的高度。
2.如图为一内径粗细均匀的U形管,导热性能良好。
U形管右侧B管上端封闭,左侧A 管上端开口且足够长。
管内注入水银。
并在A管内装配有光滑的轻质活塞,使两管中均封入L=28cm的空气柱,活塞上方的大气压强为p0=76cmHg,这时两管内水银面高度差h=10cm。
环境的温度为T0=280K.现缓慢升高环境温度,使两管内水银面一样高。
求:①此时的环境温度;②轻活塞移动的距离。
3.如图所示,容积均为V的汽缸A、B下端有细管(容积可忽略)连通,阀门K2位于细管的中部,A、B的顶部各有一阀门K1、K3;B中有一可自由滑动的活塞(质量、体积均可忽略)。
初始时,三个阀门均打开,活塞在B的底部;关闭K2、K3,通过K1给汽缸缓慢充气,使A中气体的压强达到大气压p0的3倍后关闭K1,打开K2.已知室温为27℃,汽缸导热。
①求稳定后活塞上方气体的体积和压强;②稳定后,再打开K3,求再次稳定后活塞的位置及活塞下方气体与A中气体的压强。
4.如图甲、乙所示,汽缸由两个横截面不同的圆筒连接而成,活塞A、B被长度为0.9m的轻质刚性细杆连接在一起,可无摩擦移动,A、B的质量分别为m A=12kg、m B=8.0kg,横截面积分别为S A=4.0×10﹣2m2,S B=2.0×10﹣2m2.一定质量的理想气体被封闭在两活塞之间,活塞外侧大气压强P0=1.0×105Pa.取重力加速度g=10m/s2。
第二篇 热 学 第一章 温度一、选择题1.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体分子数密度为3n 1,则混合气体的压强p 为 (A )3p 1 (B )4p 1 (C )5p 1 (D )6p 12.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常数,R 为摩尔气体常数,则该理想气体的分子数为:(A )m pV (B )kT pV (C )RT pV (D )mT pV二、填空题1.定体气体温度计的测温气泡放入水的三相点管的槽内时,气体的压强为Pa 31065.6⨯ 。
用此温度计测量的温度时,气体的压强是 ,当气体压强是Pa 3102.2⨯时,待测温度是 k, 0C 。
三、计算题1.一氢气球在200C 充气后,压强为,半径为。
到夜晚时,温度降为100C ,气球半径缩为,其中氢气压强减为 atm 。
求已经漏掉了多少氢气第二章 气体分子动理论一、选择题1. 两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等。
现将6 J 热量传给氦气,使之升高到一定温度。
若使氦气也升高同样的温度,则应向氦气传递热量:(A) 6 J (B) 10 J (C) 12 (D) 5 J 2. 在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121=V V ,则其内能之比21/E E 为:(A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10 3. 在容积V = 4×103-m 3的容器中,装有压强p = 5×102P a 的理想气体,则容器中气分子的平均平动动能总和为:(A) 2 J (B) 3 J (C) 5 J (D) 9 J4. 若在某个过程中,一定量的理想气体的内能E 随压强 p 的变化关系为一直线(其延长线过E ~ p 图的原点),则该过程为(A) 等温过程 (B) 等压过程(C) 等容过程 (D) 绝热过程5. 若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则)(21221v Nf mv v v ⎰d v 的物理意义是:(A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差。
高考物理选考热学计算题(十)组卷老师:莫老师一.计算题(共50小题)1.正月十五,我国部分地区有放孔明灯祈福的习俗.如图所示为一圆柱形孔明灯,底面开口,其半径R=0.2m,高h=1.0m,灯体的质量m=0.03kg.将灯体固定,加热灯内气体,当温度由7℃升至77℃时,取重力加速度g=10m/s2,常压下7℃空气密度p=1.3kg/m3.求:(1)灯内溢出气体的质量与加热前灯内气体的质量之比;(2)灯体解除固定,孔明灯能否升空?(通过计算判断)2.如图所示,两端开口的U形玻璃管两边粗细相同,管中装入水银,两管中水银面与管口距离均为12 cm,大气压强为p0=75 cmHg.现将粗管管口封闭,环境温度为27℃,保持U形管竖直,缓慢加热左管气体,使左管气柱长度变为14cm,此过程中右管中气体温度不变,求:此时左管中气体的温度和压强.3.一足够长竖直放置的圆柱形气缸内,有一轻质活塞封闭着一定量的理想气体,气缸壁导热良好,活塞可以沿气缸内壁做无摩擦的滑动,同时有一弹簧两端分别与活塞下表面和气缸底部连接,弹簧劲度系数为k.开始时封闭气体的压强为P,活塞与气缸底部的高度为h,弹簧刚好处于原长,外界温度为T0,当外界温度升高到某一温度时,活塞上升了h的距离后达到平衡.然后再往活塞上表面缓慢增加质量为m的沙子,活塞下降了,求最后达到平衡后理想气体压强为多少?温度T为多少?已知外界大气的压强始终保持不变,重力加速度为g.4.如图所示,长为31cm内径均匀的细玻璃管开口向上竖直放置,管内水银柱的上端正好与管口齐平,封闭气体的长度为10cm,温度为27℃,外界大气压强p0=75cmHg.若把玻璃管在竖直平面内缓慢转至开口竖直向下,求:①这时留在管内的水银柱的长度l;②缓慢转回到开口竖直向上,且外界温度降为﹣28℃时,需要加入多长水银柱,才使水银柱的上端恰好重新与管口齐平.5.如图所示,在温度为27℃、大气压为P0=105Pa的教室里,有一导热性能良好、内壁光滑的气缸,封闭着一定质量的某种理想气体.活塞密闭性良好,质量不计,横截面积S=100cm2,离气缸底部距离L1=0.6m.现将此气缸移至温度为﹣53℃的冷冻实验室中,并在活塞上方放置一质量为m=10kg的铅块.冷冻实验室中气压也为P0=105Pa.(g取10 m/s2)求:①在冷冻实验室中,活塞稳定时距气缸底部的距离L2;②已知一定质量的理想气体内能与热力学温度成正比,且在教室时气缸内气体内能为U1=30J.已知在教室中稳定状态到实验室稳定状态变化过程中,活塞对气体做功W=210J,求此过程中通过缸壁传递的热量Q.6.如图所示,竖直放置的导热气缸内用活塞封闭着一定质量的理想气体,活塞的质量为m,横截面积为S,缸内气体高度为2h.现在活塞上缓慢添加砂粒,直至缸内气体的高度变为h.然后再对气缸缓慢加热,让活塞恰好回到原来位置.已知大气压强为p0,大气温度均为T0,重力加速度为g,不计活塞与气缸间摩擦.求:(1)所添加砂粒的总质量;(2)活塞返回至原来位置时缸内气体的温度.7.长100cm的内径均匀的细玻璃管,一端封闭,一端开口,如图所示,当开口竖直向上时,用25cm的水银柱封闭住L0=44cm长的空气柱,现缓慢转动玻璃管,当开口竖直向下时,管内被封闭的空气柱长为多少?(p0=75cmHg,温度不变)8.如图,一定质量的理想气体被活塞封闭在竖直放置的绝热气缸内,活塞质量为30kg、横截面积S=100cm2,活塞与气缸间连着自然长度L=50cm、劲度系数k=500N/m的轻弹簧,活塞可沿气缸壁无摩擦自由移动。
高考物理选考热学计算题(三十)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,一小车静止在水平地面上,车上固定着一个导热良好的圆柱形密闭气缸,在气缸正中间有一面积为3×10﹣4m2的活塞,活塞厚度及活塞与气缸内壁间摩擦可忽略不计。
此时活塞左右两侧的气体A、B的压强均为1.0×105Pa.现缓慢增加小车的加速度,最后小车以20m/s2的加速度向右匀加速运动时,A气体的体积正好是原来的一半,若环境温度保持不变,求活塞的质量。
2.2016年里约奥运会,赢得个人第23枚奥运金牌的菲尔普斯是青睐中国古老的拔罐疗法的奥运选手之一,如今火罐已风靡全球,若罐的容积为50cm3,空气温度为27℃,已知大气压p0=1.0×105Pa,罐导热性能良好。
(1)某次拔罐过程中,罐内空气被加热到57℃,求此时罐内空气质量与室温下罐内空气质量的比;(2)当罐被扣到人体上之后,罐内的空气从57℃降温到室温,罐的容积由于皮肤变形减少2cm3,求降温之后罐内气体的压强(结果保留两位有效数字)。
3.一圆柱形汽缸直立在地面上,内有一具有质量而无摩擦的绝热活塞,把汽缸分成容积相同的A、B两部分,如图所示,两部分气体温度相同,都是T0=27℃,A部分气体压强P A0=1.0×105Pa,B部分气体压强P B0=2.0×105Pa.现对B部分的气体加热,使活塞上升,使A部分气体体积减小为原来的2/3.求此时:(1)A部分气体的压强p A;(2)B部分气体的温度T B。
4.如图所示为一竖直放置、上粗下细两端封闭的薄壁玻璃管,在管内用水银隔开上、下两部分理想气体,上管空气柱长度L1=20cm,水银柱长度为h=5cm,上管内空气柱压强p0=75cmHg,下管空气柱长度L2=13cm,水银柱长度为2h=10cm。
打开阀门K将水银抽出,待水银柱上液面恰好与细管口相齐时关闭阀门,气体没有泄露,环境温度保持不变,求管内剩余水银柱的长度。
高考物理选考热学计算题(二十六)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,一粗细均匀的导热U形玻璃管,其右端开口,左端由水银柱封有一段理想气体.当大气压强为76cmHg,环境温度为27℃时气柱长为16cm,开口端水银面比封闭端水银面低4cm,求:(1)该状态下封闭气体的压强P1和热力学温度T1;(2)对封闭气体缓慢加热,当其温度上升到多少℃时,气柱长变为20cm.2.生活中有一种很有意思的现象:给空暖水瓶灌上开水,塞紧瓶塞,过会瓶塞会自动跳起来.现给一只空暖水瓶灌上开水,塞紧瓶塞后,暖水瓶中仍封闭有少部分空气.开始时内部封闭空气的温度为320K,压强为大气压强P0.当封闭气体温度上升至360K时,瓶塞恰好被整体顶起,放出少许气体后再将瓶塞塞紧,其内部压强立即减为P0,温度仍为360K.再经过一段时间,内部气体温度下降到320K.设瓶塞的横截面积为S,瓶塞的重力及瓶塞与瓶口的摩擦力保待不变,整个过程中封闭空气可视为理想气体.求:(i)当温度上升到360K且尚未放气时,封闭气体的压强;(ii )当温度下降到320K时,至少要用多大的力才能将瓶塞拔出?3.如图所示,竖直放置,粗细均匀且足够长的U形玻璃管,玻璃管中的水银柱封闭一定质量的理想气体,当环境温度t1=7℃时,U形玻璃管右侧水银面比左侧水银面高出h1=6cm,右管水银柱上方空气柱长h0=19cm,现在左管中加入水银,保持温度不变,使两边水银柱在同一高度,大气压强p0=76cmHg.(1)求需要加入的水银柱的长度L.(2)若在满足(1)的条件下,通过加热使右管水银面恢复到原来的位置,求此时封闭气体的温度t2(℃).4.如图所示,升降机内衣开口向下、质量为M的气缸与轻活塞一起封闭了一定质量的理想气体.活塞与气缸被一弹簧支起,气缸内壁光滑且气缸与活塞导热良好.开始时升降机静止,活塞离缸底L1.现升降机匀加速下降时活塞离缸底L2,已知大气压强为P0,气缸的横截面积为S,重力加速度为g,环境温度保持不变.求①加速下降时的加速度②气体是吸热还是放热,为什么?5.如图所示,一开口向上竖直放置于水平面的导热气缸,活塞面积S=0.02m2,开始时活塞到缸底0.4m,缸内气体温度为127℃.现使外界环境温度缓慢降低至某一温度,活塞下降到离缸底0.3m处缸内气体内能减少了700J.不计活塞与气缸间的摩擦,活塞质量为20kg,g取10m/s2,外界大气压强p0=1.0×105Pa.求:在此过程中,缸内气体(1)气体压强和末状态气体的温度;(2)与外界交换的热量,并说明缸内气体是吸热还是放热.6.上端开口的圆柱形气缸竖直放置,截面积为20cm2质量为4kg的活塞将一定质量的气体和形状不规则的固体A封闭在气缸内。
高考物理选考热学计算题(二十一)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,圆柱形汽缸上部开口且有挡板,内部底面积S为0.1m2,内部高度为d。
筒内一个很薄的质量不计的活塞封闭一定量的理想气体,活塞上放置一质量为10kg的重物,开始时活塞处于离底部的高度,外界大气压强为1.01×105Pa,温度为27℃.活塞与汽缸内壁的摩擦忽略不计,现对气体加热,求:①当活塞刚好到达汽缸口时气体的温度;②气体温度达到387℃时气体的压强。
2.如图所示,圆柱形容器由粗细两部分组成,它们的横截面积之比为2.5:1,细的部分长L1=25cm,下端封闭,上端与粗的部分连通,内有h=15cm的水银柱封闭一定质量的气体A,水银上表面位于粗、细分界处。
粗的部分上部有一可自由滑动的轻质活塞,活塞到分界面处的距离为L2=10cm,其内封闭有一定质量的气体B.现将活塞竖直向上缓慢提起,直到水银全部进入粗圆柱形容器内,已知初始时气体A的压强P0=75cmHg,整个过程温度不变,所有气体视为理想气体。
(1)求水银全部进入粗圆柱形容器中时气体A的压强;(2)活塞移动的距离。
3.如图所示,某小组在一次实验中,将底面积S=30cm2、导热性良好的薄壁圆筒开口向下竖直缓慢地放入水中,筒内封闭了一定质量的气体(可视为理想气体)。
当筒底与水面相平时,圆筒恰好静止在水中,此时水的温度t1=7℃,筒内气柱的长度h1=14cm,若大气压强p0=1.0×105Pa,水的密度ρ=1.0×103kg/m3,重力加速度g大小取10m/s2.(计算结果保留3位有效数字)(i)当水的温度缓慢升高至27℃时,筒底露出水面一定高度。
该过程中,气体吸收的热量为5J,则气体的内能变化了多少?(ii)若水温升至27℃后保持不变,用力将圆筒缓慢下移至某一位置(水足够深),撤去该力后圆筒恰能静止,求此时筒底到水面的距离H。
4.如图所示,横截面积均为S,内壁光滑的导热气缸A、B.A水平、B竖直放置,A内气柱的长为2L,D为B中可自由移动的轻活塞,轻活塞质量不计。
2023年辽宁省部分高中高考物理选考试卷(一)1. 下列说法正确的是( )A. 放射性元素的半衰期是大量原子核衰变的统计规律,由核的内部因素决定B. 卢瑟福分析了粒子散射的实验数据,提出了原子的轨道量子化结构模型C. 爱因斯坦的光电效应理论指出光子能量与频率有关,表明光只具有波动性D. 太阳是一个巨大的热核反应堆,靠原子核的衰变和裂变在不断地放出能量2. 可伸缩式的晾衣杆不用打孔、不用打钉就能固定在墙上,安装简单方便。
如图所示,将杆水平放在相对而立的两个竖直墙面之间,调整杆的长等于两墙之间的距离,再通过旋转杆的两端,让杆的两端紧紧顶在两个墙面上就安装完成了,下列说法正确的是( )A. 不挂重物,杆在静止不动时受到3个力作用B. 挂上重物,杆在静止不动时受到5个力作用C. 所挂重物质量越大,杆对墙面的摩擦力越大D. 所挂重物质量变大,杆对墙面的摩擦力不变3. 如图为一个热机理想循环的图像,一定质量理想气体从状态A依次经过状态B、C和D后再回到状态A完成一个循环过程,则( )A. 从状态A变化到状态B的过程中,气体放出热量B. 从状态A变化到状态B的过程中,气体对外做功C. 从状态C变化到状态A的过程中,气体内能增加D. 从状态C变化到状态A的过程中,气体压强变大4. 场致发射显微镜能够用来分析样品的原子排列。
其核心结构如图,金属针与荧光膜之间加上高电压,形成辐射状电场。
关于图中A、B两点的电场强度和电势的判断正确的是( )A. B. C. D.5. 图甲是电动公交车无线充电装置,供电线圈设置在充电站内,受电线圈和电池系统置于车内。
如图乙所示,供电线路中导线的等效电阻为R,当输入端ab接入电压为正弦交流电时,供电线圈与受电线圈两端电压分别、,通过电池系统的电流为I。
若不计其他电阻,忽略线圈中的能量损失,下列说法正确的是( )A. ab 端的输入功率等于B. ab端的输入功率等于C.供电线圈和受电线圈匝数比为: D. 供电线圈和受电线圈匝数比为:6. 如图所示是某款手机防窥屏的原理图,在透明介质中有相互平行排列的吸光屏障,屏障垂直于屏幕,可实现对像素单元可视角度的控制可视角度定义为某像素单元发出的光在图示平面内折射到空气后最大折射角的2倍。
2020年新高考I卷物理热学题及解答2020年新高考I卷物理试题中,热学部分占据了重要的一部分。
本文将为大家详细解析其中的热学题目及解答,帮助大家更好地理解和掌握热学知识。
【题目一】某理想气体的3mol在温度为300K下体积为40L,气体进行绝热膨胀过程后,体积变为100L。
求该气体的最终温度。
【解答一】根据理想气体的绝热膨胀定律,我们可以得到以下关系:P1V1^γ = P2V2^γ其中,P1和P2分别为初始状态和终态下的气体压强,V1和V2分别为初始状态和终态下的气体体积,γ为气体的绝热指数。
由题目中所给出的条件,我们可以得到:P1V1^γ = P2V2^γP1 * 40^γ = P2 * 100^γ同时,我们还知道理想气体的状态方程为:PV = nRT其中,P为气体压强,V为气体体积,n为气体的物质的量,R为气体常数,T为气体的绝对温度。
结合以上两个公式,我们可以得到:P1 * 40^γ = P2 * 100^γP1 * (nRT1 / P1)^γ = P2 * (nRT2 / P2)^γ化简后得到:(40 / P1)^(γ - 1) = (100 / P2)^(γ - 1)将P1V1 / T1 = P2V2 / T2 代入,得到:(40 / P1)^(γ - 1) = (100 / (P1 * 40 / 100))^(γ - 1)化简后得到:(40 / P1)^(γ - 1) = 2^(γ - 1)两边取对数,得到:(γ - 1) * ln(40 / P1) = (γ - 1) * ln2化简后得到:ln(40 / P1) = ln2进一步得到:40 / P1 = 2P1 = 20由此可知,初始状态下的气体压强P1为20Pa。
根据理想气体状态方程 PV = nRT,我们可以得到:P1V1 / T1 = P2V2 / T2将已知条件代入,得到:20 * 40 / 300 = P2 * 100 / T2化简后得到:T2 = 200K因此,该气体的最终温度为200K。
高考物理选考热学计算题(一)组卷老师:莫老师评卷人得分一.计算题(共50小题)1.开口向上、内壁光滑的汽缸竖直放置,开始时质量不计的活塞停在卡口处,气体温度为27℃,压强为0.9×105 Pa,体积为1×10﹣3m3,现缓慢加热缸内气体,试通过计算判断当气体温度为67℃时活塞是否离开卡口。
(已知外界大气压强p0=1×105Pa)2.铁的密度ρ=7.8×103kg/m3、摩尔质量M=5.6×10﹣2 kg/mol,阿伏加德罗常数NA=6.0×1023mol﹣1.可将铁原子视为球体,试估算:(保留一位有效数字)①1 克铁含有的分子数;②铁原子的直径大小.3.如图所示,一个上下都与大气相通的直圆筒,内部横截面积为S=0.01m2,中间用两个活塞A和B封住一定质量的气体。
A、B都可沿圆筒无摩擦地上下滑动,且不漏气。
A的质量不计,B的质量为M,并与一劲度系数为k=5×103N/m的较长的弹簧相连。
已知大气压p0=1×105Pa,平衡时两活塞之间的距离l0=0.6m,现用力压A,使之缓慢向下移动一段距离后保持平衡。
此时用于压A的力F=500N.求活塞A下移的距离。
4.如图,密闭性能良好的杯盖扣在盛有少量热水的杯身上,杯盖质量为m,杯身与热水的总质量为M,杯子的横截面积为S.初始时杯内气体的温度为T0,压强与大气压强p0相等.因杯子不保温,杯内气体温度将逐步降低,不计摩擦.(1)求温度降为T1时杯内气体的压强P1;(2)杯身保持静止,温度为T1时提起杯盖所需的力至少多大?(3)温度为多少时,用上述方法提杯盖恰能将整个杯子提起?5.如图,上端开口、下端封闭的足够长的细玻璃钌竖直放置,﹣段长为l=15.0cm 的水银柱下方封闭有长度也为l的空气柱,已知大气压强为p0=75.0cmHg;如果使玻璃管绕封闭端在竖直平面内缓慢地转动半周.求在开口向下时管内封闭空气柱的长度.6.如图所示为一种减震垫,由12个形状相同的圆柱状薄膜气泡组成,每个薄膜气泡充满了体积为V1,压强为p1的气体,若在减震垫上放上重为G的厚度均匀、质量分布均匀的物品,物品与减震垫的每个薄膜表面充分接触,每个薄膜上表面与物品的接触面积均为S,不计每个薄膜的重,大气压强为p0,气体的温度不变,求:(i)每个薄膜气泡内气体的体积减少多少?(ii)若撤去中间的两个薄膜气泡,物品放上后,每个薄膜上表面与物品的接触面积增加了0.2S,这时每个薄膜气泡的体积又为多大?7.一足够高的内壁光滑的导热气缸竖直地浸放在盛有冰水混合物的水槽中,用不计质量的活塞封闭了一定质量的理想气体,活塞的面积为1.5×10﹣3m2,如图1所示,开始时气体的体积为3.0×10﹣3m3,现缓慢地在活塞上倒上一定质量的细沙,最后活塞静止时气体的体积恰好变为原来的三分之一.设大气压强为1.0×105Pa.重力加速度g取10m/s2,求:(1)最后气缸内气体的压强为多少?(2)最终倒在活塞上细沙的总质量为多少千克?(3)在P﹣V图上(图2)画出气缸内气体的状态变化过程(并用箭头标出状态变化的方向).8.如图所示,竖直放置的气缸,活塞横截面积为S=0.01m2,厚度不计。
可在气缸内无摩擦滑动。
气缸侧壁有一个小孔,与装有水银的U形玻璃管相通。
气缸内封闭了一段高为L=50cm的气柱(U形管内的气体体积不计)。
此时缸内气体温度为27℃,U形管内水银面高度差h l=5cm。
已知大气压强p0=1.0×l05Pa,水银的密度ρ=13.6×103kg/m3,重力加速度g取10m/s2。
①求活塞的质量m;②若在活塞上缓慢添加M=26.7kg的沙粒时,活塞下降到距气缸底部H=45cm处,求此时气缸内气体的温度。
9.如图所示,在两端封闭粗细均匀的竖直长管道内,用一可自由移动的活塞A 封闭体积相等的两部分气体,开始时管道内气体温度都为T0=500K,下部分气体的压强p0=1.25×105Pa,活塞质量m=0.25kg,管道的内径横截面积S=1cm2.现保持管道下部分气体温度不变,上部分气体温度缓慢降至T,最终管道内上部分气体体积变为原来的四分之三,若不计活塞与管道壁间的摩擦,g=10m/s2,求此时:①下部分气体的压强p;②上部分气体的温度T.10.国庆期间小华和家人去拉萨市参观布达拉宫,为了防止出现高原反应现象,他上网购买了一瓶便携式登山瓶装氧气,氧气瓶导热性能良好,品牌产品数据见表格,瓶内氧气可视为理想气体,厂家将瓶装氧气送达小华在拉萨市的酒店,该地海拔约为3700m,大气压强为65000pa,温度为7℃,回答下列问题。
品牌制氧机类别型号规格灌装压强灌装温度适用人群艾润科技氧气瓶02ar﹣k20.65L 1.0×106Pa27℃学生高考、户外旅游缺氧、老人等缺氧人群使用①在拉萨市,瓶内氧气的实际压强为多少?②酒店在受到该瓶装氧气后,由于保管不慎,发生缓慢泄漏,设瓶内氧气在未泄漏前,质量为M,当瓶内气压减小到等于外界大气压时,瓶内剩余氧气的质量为多少?11.某同学用如图所示装置研究气体的等温变化,导热良好的气缸固定,轻质细绳一端固定,另一端与活塞相连,定滑轮下面挂一只小桶,改变小桶中沙子质量来改变细绳对活塞的拉力,已知活塞质量为m1,横截面积为S,小桶质量为m2,大气压强为p0,不计滑轮质量和各出摩擦,环境温度保持不变,小桶中没有盛放沙子时测出活塞与气缸底部之间距离为h,现缓慢给小桶中加入质量为m的沙子,问此过程活塞移动的距离是多少?12.将一厚度不计粗细均匀的导热性能良好的长直玻璃管水平固定在桌面上,现用一厚度不计的活塞封闭一定质量的理想气体,已知活塞与玻璃管之间的摩擦可忽略不计。
已知外界大气压强为p,封闭气柱的长度为L,外界环境温度为T.现用质量不计的细绳跨过光滑的定滑轮连接活塞与质量为m的重物,连接活塞的细绳呈水平状态,当系统再次平衡时,活塞向右移动的距离为.假设整个过程中外界大气压强恒为p,重力加速度大小为g。
求:①玻璃管的横截面积为多大?②当外界环境的温度降为时,系统再次达到平衡,气柱的长度为多少?13.一质量M=10kg、高度L=35cm的圆柱形气缸,内壁光滑,气缸内有一薄活寨封闭了一定质量的理想气体,活塞质量m=4kg、截面积s=100cm2.温度t0=47℃时,用绳子系住活塞将气缸悬挂起来,如图甲所示,气缸内气体柱的高L1=32cm,如果用绳子系住气缸底,将气缸倒过来悬挂起来,如图乙所示,气缸内气体柱的高L2=30cm,两种情况下气缸都处于竖直状态,取重力加速度g=10m/s2,求:(i)当时的大气压强:(ii)图乙状态时,在活塞下挂一质量m'=6kg的物体,如图丙所示,则温度升高到多少时,活塞将从气缸中脱落.14.如图,将导热性良好的薄壁圆筒开口向下竖直缓慢地放入水中,筒内封闭了一定质量的气体(可视为理想气体)。
当筒底与水面相平时,圆筒恰好静止在水中。
此时水的温度t1=7.0℃,筒内气柱的长度h1=14cm。
已知大气压强p0=1.0×105Pa,水的密度ρ=1.0×103kg/m3,重力加速度大小g取10m/s2。
(ⅰ)若将水温缓慢升高至27℃,此时筒底露出水面的高度△h为多少?(ⅱ)若水温升至27℃后保持不变,用力将圆筒缓慢下移至某一位置,撤去该力后圆筒恰能静止,求此时筒底到水面的距离H(结果保留两位有效数字)。
15.2017年5月。
我国成为全球首个海域可燃冰试采获得连续稳定气流的国家,可燃冰是一种白色固体物质,1L可燃冰在常温常压下释放160L的甲烷气体,常温常压下甲烷的密度0.66g/L,甲烷的摩尔质量16g/mol,阿伏伽德罗常数6.0×1023mol﹣1,请计算1L可燃冰在常温常压下释放出甲烷气体分子数目(计算结果保留一位有效数字)16.如图所示,水平放置的两端开口长14cm、横截面积为1×10﹣5m2的均匀玻璃管一端与一体积为3.9×10﹣6m3球形玻璃泡相通,当环境温度为47℃时在管口封入长为5cm的水银柱。
假设环境温度改变时大气压强不变。
①为了不让水银柱进人玻璃泡,环境温度不能低于多少℃?②若将该装置改装成一个环境温度计,可在玻璃管上标上刻度来显示对应的环境温度,请通过分析说明在有效的范围内玻璃管上标出的刻度是均匀的还是不均匀的?17.如图所示,足够长密闭气缸直立于水平面上,活塞将气缸分成两部分,上部为真空,下部封有一定量的气体,活塞和缸的顶部连有一轻弹簧,如果活塞处于气缸底部,弹簧刚好处于原长.在图示位置气体的长度L1=0.2m,此时弹簧的弹力等于活塞重力的0.8倍.忽略活塞与缸壁间的摩擦.现保持缸内气体温度不变,将气缸水平放置,求缸内气体的长度L2.18.一个水平放置的气缸,由两个截面积不同的圆筒联接而成.活塞A、B用一长为4L的刚性细杆连接,L=0.5m,它们可以在筒内无摩擦地左右滑动.A、B的截面积分别为S A=40cm2,S B=20cm2,A、B之间封闭着一定质量的理想气体,两活塞外侧(A的左方和B的右方)是压强为P0=1.0×105Pa的大气.当气缸内气体温度为T1=525K时两活塞静止于如图所示的位置.(1)现使气缸内气体的温度缓慢下降,当温度降为多少时活塞A恰好移到两圆筒连接处?(2)若在此变化过程中气体共向外放热500J,求气体的内能变化了多少?19.如图所示,两端开口、粗细均匀的足够长U型玻璃管插在容积很大的水银槽中,管的上部有一定长度的水银,两段空气柱被封闭在左右两侧的竖直管中。
开启阀门A,当各水银液面稳定时,位置如图所示,此时两部分气体温度均为300K.已知h1=5cm,h2=l0cm,右侧气体柱长度L1=60cm,大气压为P0=75cmHg,求:①左则竖直管内气体柱的长度L2:②关闭阀门A,当右侧竖直管内的气体柱长度为L3=68cm时(管内气体未溢出),则气体温度应升高到多少。
20.如图所示,开口向下竖直放置的内部光滑气缸,气缸的截面积为S,其侧壁和底部均导热良好,内有两个质量均为m的导热活塞,将缸内理想分成I、II两部分,气缸下部与大气相通,外部大气压强始终为p0,mg=0.2p0S,环境温度为T0,平衡时I、II两部分气柱的长度均为l,现将气缸倒置为开口向上,求:(i)若环境温度不变,求平衡时I、II两部分气柱的长度之比;(ii)若环境温度缓慢升高,但I、II两部分气柱的长度之和为2l时,气体的温度T为多少?21.如图所示,一圆柱形绝热气缸竖直放置,通过绝热活塞封闭着一定质量的理想气体。