第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子
- 格式:ppt
- 大小:1.04 MB
- 文档页数:74
在Matlab中实现神经网络的方法与实例神经网络是一种模拟人类大脑神经系统的计算模型,它能够通过学习数据的模式和关联性来解决各种问题。
在计算机科学和人工智能领域,神经网络被广泛应用于图像识别、自然语言处理、预测等任务。
而Matlab作为一种功能强大的科学计算软件,提供了一套完善的工具箱,可以方便地实现神经网络的建模和训练。
本文将介绍在Matlab中实现神经网络的方法与实例。
首先,我们会简要介绍神经网络的基本原理和结构,然后详细讲解在Matlab中如何创建并训练神经网络模型,最后通过几个实例展示神经网络在不同领域的应用。
一、神经网络的原理和结构神经网络模型由神经元和它们之间的连接构成。
每个神经元接收输入信号,并通过权重和偏置进行加权计算,然后使用激活函数对结果进行非线性变换。
这样,神经网络就能够模拟复杂的非线性关系。
常见的神经网络结构包括前馈神经网络(Feedforward Neural Network)和循环神经网络(Recurrent Neural Network)。
前馈神经网络是最基本的结构,信号只能向前传递,输出不对网络进行反馈;而循环神经网络具有反馈连接,可以对自身的输出进行再处理,适用于序列数据的建模。
神经网络的训练是通过最小化损失函数来优化模型的参数。
常用的训练算法包括梯度下降法和反向传播算法。
其中,梯度下降法通过计算损失函数对参数的梯度来更新参数;反向传播算法是梯度下降法在神经网络中的具体应用,通过反向计算梯度来更新网络的权重和偏置。
二、在Matlab中创建神经网络模型在Matlab中,可以通过Neural Network Toolbox来创建和训练神经网络模型。
首先,我们需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及每个神经元之间的连接权重。
例如,我们可以创建一个三层的前馈神经网络模型:```matlabnet = feedforwardnet([10 8]);```其中,`[10 8]`表示隐藏层的神经元数量分别为10和8。
bp神经网络及matlab实现分类:算法学习2012-06-20 20:56 66399人阅读评论(28) 收藏举报网络matlab算法functionnetworkinput本文主要内容包括: (1) 介绍神经网络基本原理,(2) 实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法。
第0节、引例本文以Fisher的Iris数据集作为神经网络程序的测试数据集。
Iris数据集可以在找到。
这里简要介绍一下Iris数据集:有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。
不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。
我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。
一种解决方法是用已有的数据训练一个神经网络用作分类器。
如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。
第一节、神经网络基本原理1. 人工神经元( Artificial Neuron )模型人工神经元是神经网络的基本元素,其原理可以用下图表示:图1. 人工神经元模型图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。
则神经元i的输出与输入的关系表示为:图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。
若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:若用X表示输入向量,用W表示权重向量,即:X = [ x0 , x1 , x2 , ....... , xn ]则神经元的输出可以表示为向量相乘的形式:若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。
BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。
在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。
首先,需要准备一个数据集来训练和测试BP神经网络。
数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。
一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。
在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。
假设数据集的前几列是输入特征,最后一列是输出。
可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。
可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。
该函数的输入参数为每个隐藏层的神经元数量。
下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。
可以使用`train`函数来训练模型。
该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。
下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。
可以使用`net`模型的`sim`函数来进行预测。
下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。
计算智能实验报告实验名称:BP神经网络算法实验班级名称: 2010级软工三班专业:软件工程姓名:李XX学号: XXXXXX2010090一、实验目的1)编程实现BP神经网络算法;2)探究BP算法中学习因子算法收敛趋势、收敛速度之间的关系;3)修改训练后BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。
二、实验要求按照下面的要求操作,然后分析不同操作后网络输出结果。
1)可修改学习因子2)可任意指定隐单元层数3)可任意指定输入层、隐含层、输出层的单元数4)可指定最大允许误差ε5)可输入学习样本(增加样本)6)可存储训练后的网络各神经元之间的连接权值矩阵;7)修改训练后的BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果。
三、实验原理1 明确BP神经网络算法的基本思想如下:在BPNN中,后向传播是一种学习算法,体现为BPNN的训练过程,该过程是需要教师指导的;前馈型网络是一种结构,体现为BPNN的网络构架反向传播算法通过迭代处理的方式,不断地调整连接神经元的网络权重,使得最终输出结果和预期结果的误差最小BPNN是一种典型的神经网络,广泛应用于各种分类系统,它也包括了训练和使用两个阶段。
由于训练阶段是BPNN能够投入使用的基础和前提,而使用阶段本身是一个非常简单的过程,也就是给出输入,BPNN会根据已经训练好的参数进行运算,得到输出结果2 明确BP神经网络算法步骤和流程如下:1初始化网络权值2由给定的输入输出模式对计算隐层、输出层各单元输出3计算新的连接权及阀值,4选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。
四、实验内容和分析1.实验时建立三层BP神经网络,输入节点2个,隐含层节点2个,输出节代码:P=[0.0 0.0 1.0 1.0;0.0 1.0 0.0 1.0];%输入量矩阵T=[0.0 1.0 1.0 0.0];%输出量矩阵net=newff(minmax(P),T,[2 1],{'tansig','purelin'},'traingd');%创建名为net的BP神经网络inputWeights=net.IW{1,1};%输入层与隐含层的连接权重inputbias=net.b{2};%输入层与隐含层的阈值net.trainParam.epochs=5000;%网络参数:最大训练次数为5000次net.trainParam.goal=0.01;%网络参数:训练精度为0.001 net.trainparam.lr=0.5;%网络参数:学习设置率为0.5net.trainParam.mc=0.6; %动量[net,tr]=train(net,P,T); %训练A=sim(net,P); %仿真E=T-A; %误差MSE=mse(E); %均方误差训练次数5000,全局误差0.0083642.输入测试样本为可见网络性能良好,输出结果基本满足识别要求。
BP神经⽹络(原理及MATLAB实现)⼈⼯神经⽹络概述:⼈⼯神经元模型:神经⽹络的分类:按照连接⽅式,可以分为:前向神经⽹络 vs. 反馈(递归)神经⽹络;按照学习⽅式,可以分为:有导师学习神经⽹络 vs. ⽆导师学习神经⽹络;按照实现功能,可以分为:拟合(回归)神经⽹络 vs. 分类神经⽹络。
数据归⼀化:将数据映射到[0, 1]或[-1, 1]区间或其他的区间。
数据归⼀化的原因:1.输⼊数据的单位不⼀样,有些数据的范围可能特别⼤,导致的结果是神经⽹络收敛慢、训练时间长。
2.数据范围⼤的输⼊在模式分类中的作⽤可能会偏⼤,⽽数据范围⼩的输⼊作⽤就可能会偏⼩。
3.由于神经⽹络输出层的激活函数的值域是有限制的,因此需要将⽹络训练的⽬标数据映射到激活函数的值域。
例如神经⽹络的输出层若采⽤S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经⽹络的输出只能限制在(0,1),所以训练数据的输出就要归⼀化到[0,1]区间。
4.S形激活函数在(0,1)区间以外区域很平缓,区分度太⼩。
例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。
归⼀化算法:1.y = ( x - min )/( max - min );2.y = 2 * ( x - min ) / ( max - min ) - 1。
部分函数:参数对BP神经⽹络性能的影响:隐含层神经元节点个数激活函数类型的选择学习率初始权值与阈值交叉验证训练集测试集验证集留⼀法MATLAB实现程序:1 %% I. 清空环境变量2 clear all3 clc45 %% II. 训练集/测试集产⽣6 %%7 % 1. 导⼊数据8 load spectra_data.mat910 %%11 % 2. 随机产⽣训练集和测试集12 temp = randperm(size(NIR,1));13 % 训练集——50个样本14 P_train = NIR(temp(1:50),:)';15 T_train = octane(temp(1:50),:)';16 % 测试集——10个样本17 P_test = NIR(temp(51:end),:)';18 T_test = octane(temp(51:end),:)';19 N = size(P_test,2);2021 %% III. 数据归⼀化22 [p_train, ps_input] = mapminmax(P_train,0,1);23 p_test = mapminmax('apply',P_test,ps_input);2425 [t_train, ps_output] = mapminmax(T_train,0,1);2627 %% IV. BP神经⽹络创建、训练及仿真测试28 %%29 % 1. 创建⽹络30 net = newff(p_train,t_train,9);3132 %%33 % 2. 设置训练参数34 net.trainParam.epochs = 1000;35 net.trainParam.goal = 1e-3;36 net.trainParam.lr = 0.01;3738 %%39 % 3. 训练⽹络40 net = train(net,p_train,t_train);4142 %%43 % 4. 仿真测试44 t_sim = sim(net,p_test);4546 %%47 % 5. 数据反归⼀化48 T_sim = mapminmax('reverse',t_sim,ps_output);4950 %% V. 性能评价51 %%52 % 1. 相对误差error53 error = abs(T_sim - T_test)./T_test;5455 %%56 % 2. 决定系数R^257 R2 = (N * sum(T_sim .* T_test) - sum(T_sim) * sum(T_test))^2 / ((N * sum((T_sim).^2) - (sum(T_sim))^2) * (N * sum((T_test).^2) - (sum(T_test))^2)); 5859 %%60 % 3. 结果对⽐61 result = [T_test' T_sim' error']6263 %% VI. 绘图64 figure65 plot(1:N,T_test,'b:*',1:N,T_sim,'r-o')66 legend('真实值','预测值')67 xlabel('预测样本')68 ylabel('⾟烷值')69 string = {'测试集⾟烷值含量预测结果对⽐';['R^2=' num2str(R2)]};70 title(string)运⾏效果截图:。
BP网络MATLAB仿真介绍对于BP网络,存在一个重要的结论,即单隐层的BP网络可以逼近任意的非线性映射,前提是隐含层的神经元个数可以随意调整。
下面以一个单隐层的BP神经网络设计为例,介绍利用神经网络工具箱进行BP网络设计及分析的过程。
此处,利用一个单隐层的BP网络来逼近一个函数。
1.问题描述通过对函数进行采样得到了网络的输入变量P和目标变量T,分别为:P = -1 : 0.1 : 1;T = [-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609 0.1336 -0.2013 -0.4344 -0.5000 -0.3930 -0.1647 0.0988 0.3072 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201];每组向量都有21维数据,可以将输入向量和目标向量绘制在一起,如下图:2. 网络设计网络的输入层和输出层的神经元个数均为1,根据隐含层设计经验,解决该问题的网络的隐层神经元个数应该在3~8之间。
下面设计一个隐含层神经元数目可变的BP网络,通过误差对比,确定最佳的隐含层神经元个数,并检查隐含层神经元个数对网络性能的影响。
网络设计及训练代码如下:P = -1 : 0.1 : 1;T = [-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609 0.1336 -0.2013 -0.4344 -0.5000 -0.3930 -0.1647 0.0988 0.3072 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201];s = 3 : 8; % S表示隐层数目的可选项res = 1 : 6;for i = 1 : 6% 隐含层神经元的传递函数为tansig,输出层神经元的传递函数为logsig% 目标函数在[-1, 1]间,刚好满足tansig的输出要求。
%清空环境变量clcclear%读取数据num = xlsread('C:\Users\Administrator\Desktop\模型训练matlab\正样本标记.xls',1,'C3:AN52');num1= xlsread('C:\Users\Administrator\Desktop\模型训练matlab\负样本标记.xls',1,'C3:AN52');训练数据输入fu_input=[num1(:,1),num1(:,3),num1(:,5),num1(:,7),num1(:,10),num1(:,12),num1(:,14) ,num1(:,16),num1(:,18),num1(:,20),num1(:,24),num1(:,26),num1(:,33),num1(:,35),num1 (:,37)];zheng_input=[num(:,1),num(:,3),num(:,5),num(:,7),num(:,10),num(:,12),num(:,14),num (:,16),num(:,18),num(:,20),num(:,24),num(:,26),num(:,33),num(:,35),num(:,37)];Input=[fu_input; zheng_input];训练数据输出a1=ones(50,1)*1;a2=ones(50,1)*0;output=[a1;a2];save data1.mat bsave data2.mat aload data1load data2%节点个数inputnum=100;hiddennum=50;outputnum=100;%训练数据和预测数据input_train=Input;output_train=output;input_test=a(:,91:137);output_test=b(:,91:137);%将训练样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);[pn,minp,maxp,tn,mint,maxt]=premnmx(input,output); %将数据归一化NodeNum1 =20; % 隐层第一层节点数NodeNum2=40; % 隐层第二层节点数TypeNum = 1; % 输出维数TF1 = 'tansig';TF2 = 'tansig';TF3 = 'tansig';net=newff(minmax(pn),[NodeNum1,NodeNum2,TypeNum],{TF1 TF2 TF3},'traingdx');%网络创建traingdmnet.trainParam.show=50;net.trainParam.epochs=50000; %训练次数设置net.trainParam.goal=1e-5; %训练所要达到的精度net.trainParam.lr=0.01; %学习速率net=train(net,pn,tn);p2n=tramnmx(ptest,minp,maxp);%测试数据的归一化an=sim(net,p2n);[a]=postmnmx(an,mint,maxt) %数据的反归一化,即最终想得到的预测结果plot(1:length(t),t,'o',1:length(t)+1,a,'+');title('o表示预测值--- *表示实际值')grid onm=length(a); %向量a的长度t1=[t,a(m)];error=t1-a; %误差向量figureplot(1:length(error),error,'-.')title('误差变化图')grid on%构建BP神经网络net=newff(inputn,outputn,[20,12],{'tansig','purelin'},'traingdx'); net.trainParam.epochs=1000;net.trainParam.lr=0.01;net.trainParam.goal=0.00000001;%BP神经网络训练net=train(net,inputn,outputn);%测试样本归一化inputn_test=mapminmax('apply',input_test,inputps);%BP神经网络预测an=sim(net,inputn_test);%%网络得到数据反归一化BPoutput=mapminmax('reverse',an,outputps);d=BPoutput>cfigure(1)%plot(d,':og');scatter(1:(137-90),d,'rx');hold on;%plot(output_test,'-*');scatter(1:(137-90),output_test,'o');legend('预测输出','期望输出','fontsize',12);title('BP网络预测输出','fontsize',12);xlabel('样本','fontsize',12);xlabel('优化前输出的误差','fontsize',12);figure(2)error=d-output_test;plot(1:(137-90),error);xlabel('样本','fontsize',12);ylabel('优化前输出的误差','fontsize',12);%save net net inputs outputs-----精心整理,希望对您有所帮助!。