第六章 STM32 定时器的使用 《基于ARM的单片机应用及实践--STM32案例式教学》课件
- 格式:pptx
- 大小:2.43 MB
- 文档页数:59
STM32F103系列单片机中的定时器工作原理解析
STM32F103系列的单片机一共有11个定时器,其中:
2个高级定时器
4个普通定时器
2个基本定时器
2个看门狗定时器
1个系统嘀嗒定时器
出去看门狗定时器和系统滴答定时器的八个定时器列表;
8个定时器分成3个组;
TIM1和TIM8是高级定时器
TIM2-TIM5是通用定时器
TIM6和TIM7是基本的定时器
这8个定时器都是16位的,它们的计数器的类型除了基本定时器TIM6和TIM7都支持向上,向下,向上/向下这3种计数模式
计数器三种计数模式
向上计数模式:从0开始,计到arr预设值,产生溢出事件,返回重新计时
向下计数模式:从arr预设值开始,计到0,产生溢出事件,返回重新计时
中央对齐模式:从0开始向上计数,计到arr产生溢出事件,然后向下计数,计数到1以后,又产生溢出,然后再从0开始向上计数。
(此种技术方法也可叫向上/向下计数)
基本定时器(TIM6,TIM7)的主要功能:
只有最基本的定时功能,。
基本定时器TIM6和TIM7各包含一个16位自动装载计数器,由各自的可编程预分频器驱动
通用定时器(TIM2~TIM5)的主要功能:
除了基本的定时器的功能外,还具有测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和PWM)。
stm32 timer 用法摘要:1.引言2.STM32定时器简介3.STM32定时器工作原理4.STM32定时器配置与使用5.STM32定时器应用实例6.总结正文:1.引言STM32是一款广泛应用于嵌入式系统的微控制器,拥有丰富的外设资源。
其中,定时器(Timer)是STM32外设中非常关键的部分,它在系统时钟、输入捕捉、输出比较、PWM等功能中起着举足轻重的作用。
本文将详细介绍STM32定时器的用法。
2.STM32定时器简介STM32定时器主要包括基本定时器(Basic Timer)、高级定时器(Advanced Timer)和看门狗定时器(Watchdog Timer)。
其中,基本定时器主要用于系统时钟的生成和控制;高级定时器具有更多的功能,如输入捕捉、输出比较、PWM等;看门狗定时器用于检测系统的运行状态,防止系统崩溃。
3.STM32定时器工作原理STM32定时器的工作原理主要基于计数器、预分频器和比较器。
计数器用于记录定时器滴答(Tick)的数量;预分频器用于控制定时器滴答频率;比较器用于产生定时器溢出信号。
当定时器溢出时,定时器硬件会自动产生中断,通过编程可以设置相应的中断处理程序,实现特定功能。
4.STM32定时器配置与使用配置STM32定时器主要包括以下步骤:(1)使能定时器:通过设置相应寄存器位,使能定时器;(2)配置定时器工作模式:根据需求选择定时器工作模式,如计数模式、PWM模式等;(3)配置定时器时钟源:选择定时器时钟源,如内部时钟、外部时钟等;(4)配置定时器预分频器:设置定时器预分频器值,以满足定时器滴答频率要求;(5)配置比较器:设置比较器值,以产生定时器溢出信号;(6)配置中断:根据需求配置定时器中断,如使能中断、设置优先级等。
5.STM32定时器应用实例以下是一个简单的STM32定时器应用实例:使用STM32F103C8T6微控制器实现一个LED闪烁的程序。
(1)配置定时器:使能定时器TIM2,设置工作模式为计数模式,时钟源为内部时钟,预分频器值为72000,比较器值为65536。
STM32定时器定时器功能简介区别于SysTick一般只用于系统时钟的计时,STM32的定时器外设功能非常强大。
STM32一共有8个都为16位的定时器。
其中TIM6、TIM7是基本定时器;TIM 2、TIM3、TIM4、TIM5是通用定时器;TIM1和TIM8是高级定时器。
这些定时器使STM32具有定时、信号的频率测量、信号的PWM测量、PWM输出、三相6步电机控制及编码器接口等功能,都是专门为工控领域量身定做的。
定时器工作分析基本定时器基本定时器TIM6和TIM7只具备最基本的定时功能,就是累加的时钟脉冲数超过预定值时,能触发中断或触发DMA请求。
这两个基本定时器使用的时钟源都是TIMxCLK,时钟源经过PSC预分频器输入至脉冲计数器TIMx_CNT,基本定时器只能工作在向上计数模式,在重载寄存器TIMx_ARR中保存的是定时器的溢出值。
工作时,脉冲计数器TIMx_CNT由时钟触发进行计数,当TIMx_CNT的计数值X等于重载寄存器TIMx_ARR中保存的数值N时,产生溢出事件,可触发中断或DMA请求。
然后TIMx_CNT的值重新被置为0,重新向上计数。
通用定时器相比之下,通用定时器TIM2~TIM5就比基本定时器复杂得多了。
除了基本的定时,它主要用在测量输入脉冲的频率、脉冲宽与输出PWM脉冲的场合,还具有编码器的接口。
通用定时器的基本计时功能与基本定时器的工作方式是一样的,同样把时钟源经过预分频器输出到脉冲计数器TIMx_CNT累加,溢出时就产生中断或DMA请求。
而通用定时器比基本定时器多出的强大功能,就是因为通用定时器多出了一种寄存器----捕获/比较寄存器TIMx_CRR(capture/compareregister)它在输入时被用于捕获(存储)输入脉冲在电平发生翻转时脉冲计数器TI Mx_CNT的当前计数值,从而实现脉冲的频率测量;在输出时被用来存储一个脉冲数值,把这个数值用于与脉冲计数器TIMx_CNT的当前计数值进行比较,根据比较结果进行不同的电平输出定时器的时钟源从时钟源方面来说,通用定时器比基本定时器多了一个选择,它可以使用外部脉冲作为定时器的时钟源。
stm32f103zet6定时器详解及应用
1、stm32f103zet6芯片及引脚图
2、stm32f103xx器件功能与配置
3、stm32f103zet6 定时器大容量的STM32F103XX增强型系列产品包含最多2个高级控制定时器、4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。
下表比较了高级控制定时器、普通定时器和基本定时器的功能:
定时器功能比较
1)计数器三种计数模式
向上计数模式:从0开始,计到arr预设值,产生溢出事件,返回重新计时
向下计数模式:从arr预设值开始,计到0,产生溢出事件,返回重新计时
中央对齐模式:从0开始向上计数,计到arr产生溢出事件,然后向下计数,计数到1以后,又产生溢出,然后再从0开始向上计数。
(此种技术方法也可叫向上/向下计数)
2)高级控制定时器(TIM1和TIM8)
两个高级控制定时器(TIM1和TIM8)可以被看成是分配到6个通的三三相PWM发生器,它具有带死区插入的互补PWM输出,还可以被当成完整的通用定时器。
四个独立的通道可以用于:
(1)输入捕获
(2)输出比较
(3)产生PWM(边缘或中心对齐模式)
(4)单脉冲输出
配置为16位标准定时器时,它与TIMX定时器具有相同的功能。
配置为16位PWM发生器时,它具有全调制能力(0~100%)。
在调试模式下,计数器可以被冻结,同时PWM输。
STM32定时器的使用流程1. 简介STM32定时器是STM32系列微控制器中重要的外设之一。
定时器可以用于生成特定的定时器事件,实现计时、测量时间间隔、产生PWM信号等功能。
本文将介绍STM32定时器的使用流程。
2. STM32定时器的基本工作原理STM32定时器通常由一个或多个计数器和若干个通道组成。
计数器用于计算时间的流逝,而通道用于控制输出。
计数器的计数范围和分辨率可以根据需求进行配置。
通常情况下,定时器通过外部时钟源进行计数,也可以使用内部时钟源。
3. STM32定时器的使用流程使用STM32定时器通常需要以下步骤:3.1 初始化定时器在使用定时器之前,需要初始化定时器的相关参数,包括计数器的计数范围、分频系数等。
通常可以通过寄存器的设置来完成初始化工作。
使用HAL库的话,可以使用HAL_TIM_Base_Init()函数进行初始化。
3.2 配置定时器的工作模式定时器可以根据需求配置为不同的工作模式,常见的模式包括单脉冲模式、连续模式、PWM输出模式等。
可以使用TIM_CR1、TIM_CR2等寄存器进行配置。
使用HAL库的话,可以使用相应的函数进行配置。
3.3 配置定时器的中断和DMA定时器可以配置中断和DMA功能,在特定的条件下触发相应的中断或DMA请求。
可以使用TIM_DIER寄存器进行配置。
使用HAL库的话,可以使用相应的函数进行配置。
3.4 启动定时器在配置完成后,需要启动定时器开始计数。
可以使用TIM_CR1寄存器进行配置。
使用HAL库的话,可以使用相应的函数进行配置。
3.5 处理定时器中断如果配置了定时器中断,当定时器达到设定的计数值时,会触发中断。
在中断服务函数中可以根据需求进行相应的处理。
3.6 设置定时器输出如果配置了定时器的通道输出模式,可以在定时器计数到一定值时,通过通道输出相应的信号。
可以使用TIM_CCR1、TIM_CCR2等寄存器进行配置。
3.7 停止定时器如果需要停止定时器的计数,可以使用TIM_CR1寄存器进行配置。
Cortex-M3 的高级控制定时器目录摘要 (2)ABSTRACT (3)1绪论 (4)1.1Cortex-M3的背景及意义 (4)1.2高级控制定时器的意义 (4)2STM32 系列的体系结构 (6)2.1Cortex-M3 处理内核 (6)2.2嵌套向量中断控制器 (6)2.3两个可选组件 (6)2.4总线接口 (7)2.5调试接口 (7)3高级控制定时器 (8)3.1高级控制定时器的简介 (8)3.2高级控制定时器的功能描述 (8)3.3高级控制定时器的寄存器种类 (12)4STM32系列开发工具 (14)4.1Keil MDKE具................................................ .144.2Keil MDK 的安装 (14)5高级控制定时器实验设计 (19)5.1实验的目的 (19)5.2实验源代码的注解 (19)5.3实验运行及结果 (22)5.4 实验现象的分析 (24)结束语 (25)参考文献 (26)致谢 (27)STM32系列(Cortex-M3 )高级控制定时器摘要本文主要介绍STM3系列中Cortex-M3处理器,开发环境Keil MDK以及EduKit-M3实验平台。
Cortex-M3 处理器使用了 ARM v7-M 体系结构,是一个可综合的、高度可配置的处理器。
它也是一个低功耗的处理器,具有门数少 , 中断延迟小 , 调试容易等特点。
Cortex-M3 处理器的特性,使它适合很大范围的应用,主要包括:价格敏感的设备——通用MCU智能玩具、个人电子设备,低功耗设备一一 Zigbee、PAN(BlueTooth )、医疗电子设备,高性能设备——超低价格手机、汽车应用、大容量存储设备。
STM32微处理器基于ARM核,所以很多基于ARM嵌入式开发环境都可用于STM3开发平台。
开发工具都可用于STM32开发。
选择合适的开发环境可以加快开发进度,节省开发成本。
STM32定时器定时时间配置总结STM32系列微控制器内置了多个定时器模块,它们可以用于各种定时功能,如延时、周期性触发、脉冲计数等。
在使用STM32定时器之前,我们需要进行定时时间配置,本文将总结一下STM32定时器定时时间配置的相关知识,包括定时器工作模式、定时器时钟源选择、定时器时钟分频、定时器计数器重载值以及定时器中断配置等内容。
首先,我们需要选择定时器的工作模式。
STM32定时器支持多种工作模式,包括基本定时器模式、高级定时器模式、输入捕获模式和输出比较模式等。
基本定时器模式适用于简单的定时和延时操作,输入捕获模式适用于捕获外部事件的时间参数,输出比较模式适用于产生精确的PWM波形。
根据具体的应用需求,选择合适的工作模式。
其次,我们需要选择定时器的时钟源。
STM32定时器的时钟源可以选择内部时钟源(如系统时钟、HCLK等)或外部时钟源(如外部晶体)。
内部时钟源的稳定性较差,适用于简单的定时操作,而外部时钟源的稳定性较好,适用于要求较高的定时操作。
然后,我们需要选择定时器的时钟分频系数。
定时器的时钟分频系数决定了定时器的时钟频率,从而影响了定时器的计数速度。
我们可以通过改变时钟分频系数来调整定时器的计数速度,从而实现不同的定时时间。
时钟分频系数的选择需要考虑定时器的最大计数周期和所需的定时精度。
接着,我们需要配置定时器的计数器重载值。
定时器的计数器从0开始计数,当计数器达到重载值时,定时器将重新开始计数。
通过改变计数器重载值,可以实现不同的定时时间。
计数器重载值的选择需要考虑定时器的时钟频率和所需的定时时间。
最后,我们需要配置定时器的中断。
定时器中断可以在定时器计数达到重载值时触发,用于通知CPU定时器已经计数完成。
在定时器中断中,我们可以执行相应的中断服务程序,比如改变一些IO口的状态,实现定时操作。
通过配置定时器的中断使能和中断优先级,可以实现不同的中断操作。
需要注意的是,不同型号的STM32微控制器的定时器模块可能略有不同,具体的配置方法和寄存器设置也可能不同,请参考相应的数据手册和参考手册进行具体操作。
STM32开发板按键控制实验/STM32CubeMX之定时器控制微秒延时实验说明通过按键控制LED灯的开关实验环境硬件:STM32F407-PZ6808L开发板STM32仿真器软件:Winddows7 64位操作系统内存8GBKeil5安装后需要添加Keil.STM32F4xx_DFP.2.7.0.packStm32CubeMx安装后将STM32Cube_FW_F4_V1.13.0文件夹复制到C: \ Users \ Administrator \ STM32Cube \ Repository文件夹中。
文档:STM32F407-PZ6808L开发板原理图.pdf实验现象按开发板上的K_RIGHT键D2灯亮,按K_DOWN键D2灯灭。
实验步骤1.打开STM32F407-PZ6808L开发板原理图找到LED灯模块D2链接引脚LED2LED2 低电平灯亮高电平灯灭找到LED2 在STM32F407ZGT6核心板的链接引脚在PDF阅读器上搜索找到LED2引脚引脚为PF10查找按键K_RIGHT和K_DOWN在核心板上的引脚先查找按键模块分别对应K1和K2然后在核心板上查找K1和K2的引脚名称名称是PE2和PE3分析:按下K1则D2灯亮,按下K2则D2灯灭。
K1和K2按下后,引脚是低电平。
判断PE2和PE3引脚的信号来确定K1和K2是否按下,若为低电平,在为按下,若为高电平,则为放开。
PE2和PE2引脚为输入类型。
PF10引脚为输出类型2.打开STM32CubeMX建立工程(1)设置类型STM32F407ZGTx LQFP144(2)设置引脚类型Peripherals->SYS->Debug设置为Serial Wire(仿真使用)注意:一定设置,否则以后不能使用仿真器。
找到PF10,由于是控制LED灯,设置为输出类型(GPIO_Output),同理,设置PE2和PE3类型,为GPIO_Input(3)对PE2和PE3mode进行设置依次选择【Configuration】——GPIO将GPIO Pull-up/Pull-down设置为Pull-up(4)设置工程Project Settings->Project Name设置为KEYToolchain /IDE 设置为MDK-ARM V5通过向导,自动生成初始化代码,然后通过Keil5打开工程3.先编译工程在main.c中添加代码uint8_t Check_Key(){if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_2)==GPIO_PIN_RESET || HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_3)==GPIO_PIN_RESET){HAL_Delay(10);if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_2)==GPIO_PIN_RESET){return 1;}if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_3)==GPIO_PIN_RESET){return 2;}}return 0;}在main函数中uint8_t key;key=Check_Key();switch(key){case 1:HAL_GPIO_WritePin(GPIOF, GPIO_PIN_10, GPIO_PIN_RESET);break;case 2:HAL_GPIO_WritePin(GPIOF, GPIO_PIN_10, GPIO_PIN_SET);break;}编译4.链接仿真器仿真调试然后按开发板上的复位键,测试。
基于arm的单片机应用及实践--stm32案例式教学1. 引言1.1 概述本文以ARM架构为基础,探讨了单片机在实际应用中的一些案例和实践。
特别着重介绍了STM32单片机系列,并通过案例式教学的方式,引导读者逐步了解和掌握这一领域的知识。
通过具体的实践项目,读者可以深入了解ARM单片机的工作原理、开发环境准备以及基础应用等方面内容。
1.2 文章结构本文共分为5个部分。
首先是引言部分,对文章进行概括和说明。
然后是ARM 单片机基础知识部分,介绍ARM架构简介、单片机概述和分类以及STM32系列简介等内容。
接下来是STM32开发环境准备部分,详细讲解开发板选型和准备工作、开发环境搭建步骤以及开发工具介绍和配置等方面内容。
紧接着是STM32基础应用实践部分,通过GPIO控制实验案例、中断编程实践案例、定时器应用案例等具体示例,帮助读者理解并运用所学知识。
最后是结论与展望部分,在总结实践过程中遇到的问题和经验的基础上,进行思考并展望了单片机教学的未来发展方向与重点。
1.3 目的本文旨在通过以STM32单片机为例的案例式教学,帮助读者深入理解ARM架构和单片机的工作原理,并具备开发环境准备以及一些基础应用实践的能力。
同时,通过对实践过程中遇到问题的分析和总结,为单片机教学提供一些借鉴与参考,拓展教学内容和方法。
以上是“1. 引言”部分内容的详细写作,请核对。
如有需要修改或补充,请告知。
2. ARM单片机基础知识:2.1 ARM架构简介:ARM(Advanced RISC Machine)是一种采用精简指令集(RISC)架构的处理器。
ARM架构以其低功耗、高性能和灵活性而被广泛应用于嵌入式系统中,特别是在单片机领域。
ARM处理器的指令集在设计上更加简洁,并且能够提供高效的运算能力。
2.2 单片机概述和分类:单片机是一种封装了微处理器内核、存储器、IO口以及各种外设接口等功能于一个芯片上的集成电路。
它独立地完成各种任务,无需依赖其他外部电路。