汽轮机为什么要测量轴向位移
- 格式:doc
- 大小:39.00 KB
- 文档页数:1
汽轮机轴系监测系统概述汽轮机轴系监测系统作为热工保护内容的一部分,是实现汽轮机组运行自动化的机组运行自动化的基础,是保证汽轮机组安全经济运行的必备装置。
汽轮机轴系监视保护项目主要包括:汽轮机振动的监测、转子轴向位移监测、转速监测、缸胀及胀差监测、偏心监测等。
由于各个汽轮机机组的形式、结构以及组成不尽相同,因而不同形式的汽轮机所配置的监视和保护装置,其项目和要求也不尽相同。
汽轮机轴系监测(TSI)系统基本参数(一)、动态运行(振动)参数1.振幅振幅是表示机组振动严重程度的一个重要指标,它可以用位移、速度或加速度表示。
根据振幅的监测,可以判断“机器是否平稳运转”。
以前对机组振动的检测,只能测得机壳振幅,虽然机壳振幅能表明某些机械故障,但由于机械结构、安装、运行条件以及机壳的位置等,转轴与机壳之间存在着阻抗,所以机壳的振动并不能直接反映转轴的振动情况,因为机壳振动不足以作为机械保护的合适参数,但是机壳振动通常作为定期监测的参数,能及早发现叶片共振等高频振动的故障现象。
由于接近式传感器能够直接测量转轴的振动状态,所以能够提供机组振动保护的重要参数,把接近式电涡流传感器永久的安装在轴承架上,便能随时观测到转轴相对于轴承座的振幅。
振动幅值一般以峰—峰密耳位移值或峰—峰微米位移值表示。
一台运行正常的机组的振幅值都是稳定在一个允许的限定值。
一般来说,振幅值的任何变化都表明机械状态有了改变。
机组的振幅无论增加或减少,操作和维修人员均应对机组作进一步调查分析。
2.频率汽轮发电机组等旋转机械的振动频率(每分钟周期数),一般用机械转速的倍数来表示,因为机械振动频率多以机械转速的整数倍和分数倍形式出现的。
这是表示振动频率的一种简单的方法,只把振动频率表示为转速的一倍、二倍或1/2倍等,而不用把振动频率分别表示为每分钟周期数或赫兹。
在汽缸测量中,振幅和频率是可供测量和分析的惟一主要参数,所以频率分析在汽缸振幅测量中是很重要的。
汽轮机轴向位移和胀差传感器安装探讨缪水宝【摘要】轴向位移和胀差是直接反映汽轮机动静间隙的两个最重要的技术参数,也是两项重要保护,传感器安装的正确与否直接影响汽轮机能否正常可靠运行.探讨汽轮机轴向位移、胀差传感器的安装、调试过程以及机组运行中存在的一些问题,分析提出解决对策,保证机组安全稳定运行.【期刊名称】《山东电力技术》【年(卷),期】2018(045)010【总页数】5页(P57-61)【关键词】轴向位移;胀差;安装;调试【作者】缪水宝【作者单位】芜湖发电有限责任公司,安徽芜湖 241009【正文语种】中文【中图分类】TK36;TK2680 引言在高参数、大容量汽轮发电机组中,轴向位移和胀差是直接反映汽轮机动静间隙的两个最重要的技术参数,也是两项重要保护。
目前,由于许多机组的轴系机械安装零位和监测保护系统的电气零位不统一,经常发生检修后的机组因胀差、轴向位移监测系统传感器的零位锁定不当,导致该系统在机组启动后,测量误差较大,甚至无法正常监测和投入保护的情况,只能停机处理。
检修后机组轴向位移大小与胀差传感器的安装正确与否直接影响机组的正常运行[1]。
汽轮机监测仪表系统(Turbine Supervisory Instrumentation,TSI)是一种连续监测汽轮发电机组转子和汽缸机械工作参数的监控系统,能连续、准确、可靠地监视机组在启动、运行和停机过程中的重要参数变化,为记录表提供输出信号,并在被测参数超出预置的运行极限时发出报警信号,必要时采取自动停机保护。
此外,还能提供用于故障诊断的各种测量数据[2]。
其中TSI监测的重要参数就包括对轴向位移和胀差测量、监视,其工作原理是利用涡流传感器将其与被测表面的位移转换成电压信号送至前置放大器,经整形放大后,输出0~24 V DC电压信号,送至TSI卡件进行信号处理。
输出开关量信号至汽轮机紧急停机系统(Emergency Trip System,ETS)实现保护功能,同时送出4~20 mA模拟量信号至汽轮机数字电液控制系统(Digital Electric Hydraulic Control System,DEH);通道故障、报警等开关量信号至分散控制系统(Distributed Control System,DCS)进行画面显示以及光字牌报警。
轴向位移又叫串轴,就是沿着轴的方向上的位移。
总位移可能不在这一个轴线上,我们可以将位移按平行、垂直轴两个方向正交分解,在平行轴方向上的位移就是轴向位移。
轴向位移反映的是汽轮机转动部分和静止部分的相对位置,轴向位移变化,也是静子和转子轴向相对位置发生了变化。
全冷状态下一般以转子推力盘紧贴推力瓦为零位。
向发电机为正,反之为负,汽轮机转子沿轴向向后移动的距离就叫轴向位移。
影响轴向位移的因素1).负荷变化. 2).叶片结垢严重. 3).汽温变化. 4).蒸汽流量变化. 5).高压轴封漏汽大,影响轴承座温度的升高. 6).频率变化. 7).运行中叶片断落. 8).水冲击. 9).推力轴瓦磨损或损坏. 10).抽汽停用,轴向推力变化. 11).发电机转子窜动.12).高压汽封疏汽压调节变化. 13).真空变化.14).电气式轴位移表受频率,电压的变化影响.15).液压式轴位移表受主油泵出口油压,油温变化等影响.轴向位移大如何消除如果是机组运行中轴向位移偏大,那就降负荷,这样就能减少轴向位移。
机组停机后应该用千斤顶检查转子产生轴向位移的原因,比如推力瓦块的推力间隙是否过大,轴承是否定位不良,找到原因并消除。
还有就是检查轴向位移的测量回路是否存在问题。
☻汽轮机轴向位移-零点定位到底是在推力盘靠在工作瓦上的时候还是靠在非工作瓦上的时候来确定的,还是两边都行?定完位后还要给推回中间位置吗?1.是平衡盘靠在推力瓦工作面上,因为汽轮机正常运行时,转子就在这个位置上。
2.我们厂轴向位移定零位是推力盘紧靠工作瓦块自然回松后作为基准点。
3.实际工作中,转子轴向位移零位定位可以有三种方案:①汽轮机转子推力盘贴死推力瓦工作面的状态下定位;②推力盘贴死推力瓦非工作面的状态下定位;③推力盘处于推力轴承工作瓦与非工作瓦之间,不贴死任何一面的情况下定位。
汽轮机转子轴向位移的保护值一般为正、负向各1.0毫米,而推力轴承的推力总间隙一般只有0.25至0.38左右,因此,推力盘处在什么状态下定轴向零位,对汽轮机轴位移的影响不大。
火力发电厂汽轮机轴位移监测系统异常分析1 前言现在300MW、600MW的火力发电机组,为了提高效率,汽轮机的动静叶之间的间隙设计的都很小,其轴向间隙是靠转子的推力盘及推力轴承固定的。
汽轮机高速运转过程中,轴向间隙不当,汽轮机动、静部分就会磨损,转子前后窜动,造成推力瓦块温度升高损坏,严重时就会损坏汽轮机大轴,造成严重事故。
所以要对汽轮机的轴向间隙进行监视,一旦间隙达到危险值,就要停机,避免发生事故。
然而在现场实际测量中,轴向位移测量受到很多因素的影响。
2 电涡流传感器测量原理传感器系统的工作原理是电涡流效应。
当接通传感器系统电源时,前置器内会产生一个高频电流信号,该信号通过延伸电缆送到探头头部,在头部周围会产生一个交变磁场H1。
如果在磁场H1范围内没有金属导体材料接近,则发射到这一范围内的能量会全部释放;反之,如果有金属导体材料接近探头头部,则交变磁场H1将在导体的表面产生电涡流场,该电涡流场也会产生一个方向与H1相反的交变磁场H2.由于H2的反作用,就会改变探头头部线圈高频电流的幅度和相位,即改变了线圈的有效阻抗。
这种变化即与电涡流效应有关,又与静磁学效应有关,即与金属的电导率、磁导率、几何形状、线圈几何参数、励磁电流频率以及线圈到到金属导体的距离等参数有关。
3 轴位移出现异常原因3.1 被测体表面平整度对传感器的影响不规则的被测体表面,会给实际测量带来附加误差,因此对被测体表面应该平整光滑,不应存在凸起、洞眼、刻痕、凹槽等缺陷,一般要求位移测量被测表面粗糙度要求在0.4~1.6μm 。
3.2 轴位移零位不准机组的轴位移机械安装零位和监测系统保护零位不统一。
检修后经常发生机组因轴位移监测系统传感器的零位设置不当,使系统测量误差较大,检修后机组的轴位移传感器的零位设置直接影响到启机后轴位移监测系统能否正常工作。
轴位移定位基本是根据机组厂家设计的要求来定,我厂#3机组是将转子推向工作面来定位零位。
汽轮机是以高温、高压蒸汽作为动力的高速旋转机械,为了防止汽轮机转子与隔板组件发生摩擦和碰撞,叶片和喷嘴之间、轴封动静部分之间以及叶轮与隔板之间必须保持适当的轴向间隙。
当汽轮机转子润滑油系统故障而导致油膜破坏后,机组负荷猛增或猛减、水冲击或动叶结垢等都将会增加转子轴向推力,造成推力瓦乌金烧熔,使转子发生窜动,轴向位移增大,进而使汽轮机的动静部分发生摩擦、碰撞,将会造成如叶片断裂、主轴弯曲等严重事故。
因此,大型汽轮机必须设置轴向位移监视与保护装置,当轴向位移超过报警值时,发出报警信号,提醒运行人员注意并及时采取措施;当轴向位移超过危险值时,保护装置动作,紧急停机。
1 轴向位移测量系统轴向位移测量装置主要由测量盘和位移传感器检测系统组成。
测量盘是安装在汽轮机转子上随转子一起移动的部件。
汽轮机在受热或冷却时,转子和汽缸都会发生变形移动,为了准确地测量汽轮机转子的移动位移,以避免汽缸变形量的影响,要恰当地选择测量盘的安装位置。
根据API670标准要求,测量盘与位移传感器的距离应小于305 mm。
因为如果距离过大,由于汽缸热膨胀的影响,所测得的间隙不能反映转子的轴向位移量。
在汽轮机整个安装系统中,高压缸与中压缸连接处是汽缸的膨胀死点,此处的汽缸膨胀量可以忽略不计,而且此处的温度不受蒸汽温度的影响,便于监测探头的安装和调整,因此选择此连接处作为轴向位移测量装置的安装位置,具体如图1所示。
测量盘的直径应根据所选择的传感器的大小来决定。
若传感器线圈几何尺寸确定,则线圈激励出的磁场范围是一定的,因而在被测体表面形成的涡流区也是一定的,因此被测体感应区域应大于传感器线圈直径的2.5倍。
测量系统采用的是美国Bently3500系列,其探头传感器和检测卡件分别是:11 mm 探头、前置器、3500-42M 卡件和监视调整软件。
作为汽轮机保护的重要信号,出于容错和信号误动的考虑,探头传感器一般采用3支,并安装在同一支架上,分别送入3块检测卡件,进行信号处理和逻辑运行,最终向DCS 系统输出轴向位移显示值。
关于汽轮机转子的轴向定位问题张国旺2015年11月29日一、关于“规范”中对转子轴向定位的要求:在《DL/T5210.3-2009 电力建设施工质量验收及评价规程第3部分:汽轮发电机组》的“表4.4.7通流部分间隙测量调整”中讲到了“转子定位尺寸K值”“用塞尺或楔形塞尺检查”,“最小轴向通流间隙”在“转子按K值定位后,分别在半实缸及全实缸状态下顶推转子进行测量”。
在《DL 5190.3-2012 电力建设施工技术规范第3部分:汽轮发电机组》中也明确规定:“4.7.11 通流部分间隙的测量应符合下列规定:1)通流部分间隙应符合图纸要求,测量后的记录应比对制造厂的出厂记录;2)测量通流间隙前应先按制造厂提供的第一级喷嘴与转子叶轮间的间隙值对转子进行定位,定位时,转子推力盘应紧贴工作面;3)第一次测定时应使车头侧危急遮断器的飞锤向上;第二次测量时,顺转子运行方向旋转90°,每次应测量左右两侧的间隙;4)转子最终定位后应测取汽缸外部上汽封端面与该转子上外露的精密加工面的距离尺寸作为汽缸轴向位置定位的依据,测量部位应作出标记。
4.7.12 速度级与转向导叶环上半部的最小轴向间隙,可采用前后顶动汽轮机转子的方法进行。
测量时应拆除可能阻挡转子前后位移的部件,并防止顶坏设备。
4.7.13 转子轴向窜动的最终记录,在完成汽机扣盖工作后,以热工整定轴向位移指示时测定的数据为准。
4.7.14 通流部分间隙及汽封轴向间隙不合格时,应由制造厂确定处理方案。
”二、关于转子定位尺寸K值的定义:一般地讲,对单汽缸结构的小汽轮机来说,转子定位尺寸K值就是制造厂提供的第一级静叶(喷嘴)与动叶之间的轴向间隙;对多汽缸结构的汽轮机来说,在制造厂提供的安装说明书中,对每一个汽轮机的转子都提供了一个确定的K值,即是各汽缸第一级静叶(喷嘴)与动叶之间的轴向间隙,对于对分双流结构的汽缸(如对分双流结构的低压缸)其转子的K 值,通常是指汽缸调阀端的第一级静叶与动叶之间的轴向间隙。
抽凝式汽轮机的抽汽压力低对汽轮机会有什么影响?排汽压力的变化对汽轮机的经济性,安全性能影响很大,真空的提高,可以使汽轮机汽耗减少而获得较多的经济性,凝汽器真空越高,即排汽压力越低,蒸汽中的热能转变为机械能就愈多, 被循环水带走的热量愈少,凝汽器压力每降低1Kpa, 会使汽轮机负荷大约增加额定负荷的2%.真空也不是越高越好,真空越高,循环水泵消耗的能量越多.真空越高末级湿度越大,轴向推力增加.如果凝汽器真空恶化,排汽压力升高,蒸汽中的热能被循环水带走的热量就越多,热能损失越多,则同样的蒸汽流量,同样的初参数,负荷就不能带到额定值. 如保持额定负荷蒸汽流量增加,叶片将要过负荷,轴向推力增加,因此机组在运行中应尽量维持经济真空,以获得较好的经济性.电负荷低时带抽气对汽轮机有什么影响还是热量带不走,排气温度升高电负荷低时带抽气对汽轮机主要是对末级叶片影响比较大。
电负荷低时带抽气会使末级叶片温度过低造成末级叶片过负荷,造成因叶片应力过大而损坏。
要看是什么型式的汽轮机,如果是背压式汽轮机,由于其蒸气输出与电负荷成正比,所以如果电负荷低了,输出的蒸气也少,蒸气的温度也略高一些。
如果是凝气/抽汽式汽轮机,发电量少了,由于有凝结水系统存在,所以还是可以抽出额定容量的蒸气,参数也基本不变汽轮机的某一压力级抽气后,对于进入下一压力级的蒸汽参数有何影响?具体变化是什么?影响比较复杂,一般是总进汽、抽汽和排汽(即进入下一压力级的蒸汽)三种情况的叠加;但是进汽和抽汽是可以调节的,而排汽是不可以调节的。
具体变化是:汽轮机的的总进汽增加后,抽汽和排汽压力上升;汽轮机的的总进汽减少后,抽汽和排汽压力下降;汽轮机的的总进汽不变,抽汽增加后,排汽压力下降;汽轮机的的总进汽不变,抽汽减少后,排汽压力上升我们单位是25MW 的汽轮机发电机组,经常只带了0.5MW 左右的负荷,请问这样对汽机本身有什么影响?汽轮机长期低负荷运行,一是末几级叶片容易水蚀。