汽轮机轴位移定位
- 格式:doc
- 大小:43.50 KB
- 文档页数:7
汽轮机轴位移胀差传感器的零位锁定摘要汽轮机是现代化工业发展的重要设备之一,而传感器则是其核心部件之一。
轴位移胀差传感器是汽轮机中常用的一种传感器,用于监测轴的位移和胀差,从而保证汽轮机的安全运行。
对于轴位移胀差传感器的准确读数,零位锁定是一个十分重要的环节。
本文将介绍轴位移胀差传感器的工作原理、常见的零位漂移原因、以及如何通过零位锁定来消除漂移现象,提高传感器的精度和稳定性。
轴位移胀差传感器的工作原理传感器结构轴位移胀差传感器通常由传感器本体、弹性元件、机械部件、电子电路和输出信号等组成。
其中,传感器本体和弹性元件构成传感器的感应部分,机械部件则承担传递和支撑作用,而电子电路则通过接收和处理信号,将测量结果转换成电信号输出。
工作原理轴位移胀差传感器在工作时,通过感应部分感应轴的位移和胀差,将感应的力、位移或位移-胀差等转换为电信号输出。
传感器弹性元件是测量部分的核心,它承载着测量力,将测量力转变成位移,再将位移量转换成电信号。
传感器的位移测量是通过内置的敏感电阻或是电容,采用电压、电流或是电容等检测方式实现的,从而将信号输出到仪表或是控制系统中。
零位漂移的原因轴位移胀差传感器在使用过程中,往往会受到各种因素的影响,导致其输出的信号出现不准确的情况。
其中,零位漂移是比较常见的一种。
零位漂移是指传感器在没有力的作用下,其输出信号发生变化的一种情况。
主要的原因包括:1.环境温度的变化:传感器所在环境的温度变化会导致传感器的机械结构发生变形,从而引起零位漂移现象。
2.机械结构的变形:传感器中的弹性元件或其他机械结构可能由于长期使用或外力作用而发生变形,从而导致零位漂移现象。
3.湿度、压强和磁场等环境因素:环境中湿度、压强、磁场等因素的变化会影响传感器的工作状态,进而导致零位漂移。
零位锁定的方法为了解决零位漂移问题,传感器需要进行零位锁定。
零位锁定是通过电子电路实现对传感器的标定,对传感器输出信号的零点进行调整,消除零位漂移现象,提高传感器的准确度和稳定性。
轴向位移又叫串轴,就是沿着轴的方向上的位移。
总位移可能不在这一个轴线上,我们可以将位移按平行、垂直轴两个方向正交分解,在平行轴方向上的位移就是轴向位移。
轴向位移反映的是汽轮机转动部分和静止部分的相对位置,轴向位移变化,也是静子和转子轴向相对位置发生了变化。
全冷状态下一般以转子推力盘紧贴推力瓦为零位。
向发电机为正,反之为负,汽轮机转子沿轴向向后移动的距离就叫轴向位移。
影响轴向位移的因素1).负荷变化. 2).叶片结垢严重. 3).汽温变化. 4).蒸汽流量变化. 5).高压轴封漏汽大,影响轴承座温度的升高. 6).频率变化. 7).运行中叶片断落. 8).水冲击. 9).推力轴瓦磨损或损坏. 10).抽汽停用,轴向推力变化. 11).发电机转子窜动.12).高压汽封疏汽压调节变化. 13).真空变化.14).电气式轴位移表受频率,电压的变化影响.15).液压式轴位移表受主油泵出口油压,油温变化等影响.轴向位移大如何消除如果是机组运行中轴向位移偏大,那就降负荷,这样就能减少轴向位移。
机组停机后应该用千斤顶检查转子产生轴向位移的原因,比如推力瓦块的推力间隙是否过大,轴承是否定位不良,找到原因并消除。
还有就是检查轴向位移的测量回路是否存在问题。
☻汽轮机轴向位移-零点定位到底是在推力盘靠在工作瓦上的时候还是靠在非工作瓦上的时候来确定的,还是两边都行?定完位后还要给推回中间位置吗?1.是平衡盘靠在推力瓦工作面上,因为汽轮机正常运行时,转子就在这个位置上。
2.我们厂轴向位移定零位是推力盘紧靠工作瓦块自然回松后作为基准点。
3.实际工作中,转子轴向位移零位定位可以有三种方案:①汽轮机转子推力盘贴死推力瓦工作面的状态下定位;②推力盘贴死推力瓦非工作面的状态下定位;③推力盘处于推力轴承工作瓦与非工作瓦之间,不贴死任何一面的情况下定位。
汽轮机转子轴向位移的保护值一般为正、负向各1.0毫米,而推力轴承的推力总间隙一般只有0.25至0.38左右,因此,推力盘处在什么状态下定轴向零位,对汽轮机轴位移的影响不大。
火力发电厂汽轮机轴位移监测系统异常分析1 前言现在300MW、600MW的火力发电机组,为了提高效率,汽轮机的动静叶之间的间隙设计的都很小,其轴向间隙是靠转子的推力盘及推力轴承固定的。
汽轮机高速运转过程中,轴向间隙不当,汽轮机动、静部分就会磨损,转子前后窜动,造成推力瓦块温度升高损坏,严重时就会损坏汽轮机大轴,造成严重事故。
所以要对汽轮机的轴向间隙进行监视,一旦间隙达到危险值,就要停机,避免发生事故。
然而在现场实际测量中,轴向位移测量受到很多因素的影响。
2 电涡流传感器测量原理传感器系统的工作原理是电涡流效应。
当接通传感器系统电源时,前置器内会产生一个高频电流信号,该信号通过延伸电缆送到探头头部,在头部周围会产生一个交变磁场H1。
如果在磁场H1范围内没有金属导体材料接近,则发射到这一范围内的能量会全部释放;反之,如果有金属导体材料接近探头头部,则交变磁场H1将在导体的表面产生电涡流场,该电涡流场也会产生一个方向与H1相反的交变磁场H2.由于H2的反作用,就会改变探头头部线圈高频电流的幅度和相位,即改变了线圈的有效阻抗。
这种变化即与电涡流效应有关,又与静磁学效应有关,即与金属的电导率、磁导率、几何形状、线圈几何参数、励磁电流频率以及线圈到到金属导体的距离等参数有关。
3 轴位移出现异常原因3.1 被测体表面平整度对传感器的影响不规则的被测体表面,会给实际测量带来附加误差,因此对被测体表面应该平整光滑,不应存在凸起、洞眼、刻痕、凹槽等缺陷,一般要求位移测量被测表面粗糙度要求在0.4~1.6μm 。
3.2 轴位移零位不准机组的轴位移机械安装零位和监测系统保护零位不统一。
检修后经常发生机组因轴位移监测系统传感器的零位设置不当,使系统测量误差较大,检修后机组的轴位移传感器的零位设置直接影响到启机后轴位移监测系统能否正常工作。
轴位移定位基本是根据机组厂家设计的要求来定,我厂#3机组是将转子推向工作面来定位零位。
汽轮机胀差和轴向位移的关系说到汽轮机胀差和轴向位移,这俩货啊,真是让人又爱又恨。
爱的是它们能告诉我们汽轮机内部的运行状态,恨的是一旦它们出了问题,那可真是头疼不已。
咱们先说说胀差吧。
胀差,说白了就是汽轮机转子和汽缸之间的相对膨胀量。
转子膨胀得比汽缸多了,那就是正胀差;汽缸膨胀得比转子多了,那就是负胀差。
这个数值啊,可重要了,要是胀差超限了,热工保护就得动作,主机就得脱扣,动静部分一碰,设备可就完了。
我记得有一次,咱们厂的汽轮机启动时,胀差就往正方向使劲窜。
那阵子,我急得跟热锅上的蚂蚁似的,围着汽轮机转来转去。
最后还是老赵有经验,他一看,说:“这暖机时间太短了,升速也太快,得慢慢来。
”咱们一听,赶紧调整了启动方案,这才把胀差给稳住了。
再来说说轴向位移吧。
轴向位移,又叫串轴,就是汽轮机转动部分和静止部分在轴向上的相对位置变化。
全冷状态下,一般以转子推力盘紧贴推力瓦为零位,向发电机方向移就是正值,反方向就是负值。
这个位移啊,它反映的是汽轮机内部动静部分的位置关系,一旦位移大了,动静部分就可能摩擦碰撞,那可就麻烦大了。
有一次,咱们机组负荷变化大,轴向位移也跟着变。
我当时一看那表,心里就咯噔一下,赶紧叫来小李:“小李,你看看这轴向位移怎么这么大?”小李一看,也是一脸紧张:“师傅,这负荷变化太大了,得赶紧调整。
”咱们俩手忙脚乱地调整了一番,总算是把轴向位移给稳住了。
说到胀差和轴向位移的关系啊,这俩货还真是互相影响。
胀差变化时,轴向位移也跟着变;轴向位移变化时,胀差也必然受影响。
就像是两个好哥们儿,形影不离的。
有一次,咱们机组停机惰走过程中,由于泊桑效应的影响,胀差往负方向窜得厉害。
我当时一看那胀差指示器,心里就凉了半截。
赶紧叫来老王:“老王,你看看这胀差怎么成这样了?”老王一看,也是一惊:“这泊桑效应太厉害了,得赶紧采取措施。
”咱们俩赶紧商量了一番,采取了相应的措施,这才把胀差给稳住了。
而这时,轴向位移也跟着发生了变化,咱们又赶紧调整了一番。
汽轮机是以高温、高压蒸汽作为动力的高速旋转机械,为了防止汽轮机转子与隔板组件发生摩擦和碰撞,叶片和喷嘴之间、轴封动静部分之间以及叶轮与隔板之间必须保持适当的轴向间隙。
当汽轮机转子润滑油系统故障而导致油膜破坏后,机组负荷猛增或猛减、水冲击或动叶结垢等都将会增加转子轴向推力,造成推力瓦乌金烧熔,使转子发生窜动,轴向位移增大,进而使汽轮机的动静部分发生摩擦、碰撞,将会造成如叶片断裂、主轴弯曲等严重事故。
因此,大型汽轮机必须设置轴向位移监视与保护装置,当轴向位移超过报警值时,发出报警信号,提醒运行人员注意并及时采取措施;当轴向位移超过危险值时,保护装置动作,紧急停机。
1 轴向位移测量系统轴向位移测量装置主要由测量盘和位移传感器检测系统组成。
测量盘是安装在汽轮机转子上随转子一起移动的部件。
汽轮机在受热或冷却时,转子和汽缸都会发生变形移动,为了准确地测量汽轮机转子的移动位移,以避免汽缸变形量的影响,要恰当地选择测量盘的安装位置。
根据API670标准要求,测量盘与位移传感器的距离应小于305 mm。
因为如果距离过大,由于汽缸热膨胀的影响,所测得的间隙不能反映转子的轴向位移量。
在汽轮机整个安装系统中,高压缸与中压缸连接处是汽缸的膨胀死点,此处的汽缸膨胀量可以忽略不计,而且此处的温度不受蒸汽温度的影响,便于监测探头的安装和调整,因此选择此连接处作为轴向位移测量装置的安装位置,具体如图1所示。
测量盘的直径应根据所选择的传感器的大小来决定。
若传感器线圈几何尺寸确定,则线圈激励出的磁场范围是一定的,因而在被测体表面形成的涡流区也是一定的,因此被测体感应区域应大于传感器线圈直径的2.5倍。
测量系统采用的是美国Bently3500系列,其探头传感器和检测卡件分别是:11 mm 探头、前置器、3500-42M 卡件和监视调整软件。
作为汽轮机保护的重要信号,出于容错和信号误动的考虑,探头传感器一般采用3支,并安装在同一支架上,分别送入3块检测卡件,进行信号处理和逻辑运行,最终向DCS 系统输出轴向位移显示值。
关于汽轮机转子的轴向定位问题张国旺2015年11月29日一、关于“规范”中对转子轴向定位的要求:在《DL/T5210.3-2009 电力建设施工质量验收及评价规程第3部分:汽轮发电机组》的“表4.4.7通流部分间隙测量调整”中讲到了“转子定位尺寸K值”“用塞尺或楔形塞尺检查”,“最小轴向通流间隙”在“转子按K值定位后,分别在半实缸及全实缸状态下顶推转子进行测量”。
在《DL 5190.3-2012 电力建设施工技术规范第3部分:汽轮发电机组》中也明确规定:“4.7.11 通流部分间隙的测量应符合下列规定:1)通流部分间隙应符合图纸要求,测量后的记录应比对制造厂的出厂记录;2)测量通流间隙前应先按制造厂提供的第一级喷嘴与转子叶轮间的间隙值对转子进行定位,定位时,转子推力盘应紧贴工作面;3)第一次测定时应使车头侧危急遮断器的飞锤向上;第二次测量时,顺转子运行方向旋转90°,每次应测量左右两侧的间隙;4)转子最终定位后应测取汽缸外部上汽封端面与该转子上外露的精密加工面的距离尺寸作为汽缸轴向位置定位的依据,测量部位应作出标记。
4.7.12 速度级与转向导叶环上半部的最小轴向间隙,可采用前后顶动汽轮机转子的方法进行。
测量时应拆除可能阻挡转子前后位移的部件,并防止顶坏设备。
4.7.13 转子轴向窜动的最终记录,在完成汽机扣盖工作后,以热工整定轴向位移指示时测定的数据为准。
4.7.14 通流部分间隙及汽封轴向间隙不合格时,应由制造厂确定处理方案。
”二、关于转子定位尺寸K值的定义:一般地讲,对单汽缸结构的小汽轮机来说,转子定位尺寸K值就是制造厂提供的第一级静叶(喷嘴)与动叶之间的轴向间隙;对多汽缸结构的汽轮机来说,在制造厂提供的安装说明书中,对每一个汽轮机的转子都提供了一个确定的K值,即是各汽缸第一级静叶(喷嘴)与动叶之间的轴向间隙,对于对分双流结构的汽缸(如对分双流结构的低压缸)其转子的K 值,通常是指汽缸调阀端的第一级静叶与动叶之间的轴向间隙。
汽轮机轴位移、胀差传感器的零位锁定一、前言汽轮机监测系统(Turbine Supervisory Instrumentation)简称TSI,是一种可靠的能连续不断地测量汽轮机发电机转子和汽缸的机械工作参数的监控系统,可用于显示机组的运行状况,提供输出信号给记录仪;并在超过设定的运行极限时发出报警。
另外,还能提供使汽机自动停机以及用于故障诊断的测量。
在全球众多TSI设备的制造厂家中,美国本特利·内华达公司(Bently Nevada)在该领域的不断发展与创新以及其在旋转和往复式机械中保护和管理的丰富经验使其在汽轮机行业尤其是中国的汽轮机市场一直占有重要份额。
〔关键词〕汽轮机胀差轴位移零位锁定在高参数,大容量汽轮发电机组中,轴位移和胀差是直接反映汽轮机动静间隙的两项最重要的技术参数,也是两项重要保护。
如果轴系机械安装零位和监测保护系统的电气零位不统一,会发生因胀差、位移监测系统传感器的零位锁定不当,使该系统在机组启动后,测量误差较大,甚至无法正常监测和投入保护的严重事故。
因此,机组的轴位移、胀差传感器的零位锁定是直接影响机组启动后,胀差、位移监测系统能否正确反映汽轮机组的动静间隙,从而可靠投入保护的一项重要工作。
1 胀差、位移监测系统的测量原理胀差、位移监测系统都是利用电涡流传感器的输出电压与其被测金属表面的垂直距离在一定范围内成正比的关系,将位移信号转换成电压信号送至监测仪表,从而实现监测和保护的目的。
现以垞城电厂135 MW机组中N135-13.24/535/535型汽轮机组为例,对美国本特利内华达公司生产的3500-45斜坡式胀差和 3500/42轴位移监测系统的测量原理进行阐述(轴位移、胀差的测量探头采用本特利3300系列330703-00-05-10-02-00,11mm 及330851-02-000-030,25mm电涡流传感器)。
1.1 本特利3500-45斜坡式胀差监测系统工作原理在机组正常运行中,胀差传感器固定在缸体上,而传感器的被测金属表面铸造在转子上,因此,汽缸和转子受热膨胀的相对差值称为“胀差”( 一般将转子的膨胀量大于汽缸的膨胀量产生的差值做为“正胀差”,反之为“负胀差”)。
汽轮机轴位移、胀差传感器的零位锁定1,测量前, 先对推力轴承, 外壳,球面瓦枕, 调整垫片,工作瓦片,非工作瓦片,固定垫圈,支持销钉, 转子推力盘等部件进行详细检查,瓦片装上后应能自由活动, 各部件的接触面应无毛刺, 飞边及其它杂物.2,测量时停止汽缸及转子上进行其它工作, 并向轴颈及推力盘上浇透平油.3,装好千分表两块, 一块装在转子的台肩或推力盘上测量转子的总串动量, 另一块装在推力瓦外壳上,作监视推力瓦外壳前后窜动用; 表装卡要和转子轴线平行,否则测量会有误差.4,拴好钢丝绳, 进行盘车,同时用橇杠或专用工具将转子分别尽量的推向工作瓦片侧及非工作瓦片侧, 并记录表的两次读数,则两次读数的差值即为推力间隙.5,推力间隙与动静部分的间隙是相互关联的, 推力轴承是用来保持转子与汽缸轴向对位置的, 所以在测量及调整推力间隙时,应考虑到当转子推向工作瓦片侧时,动静间隙(叶轮与前方隔板的间隙)的最小值, 应大于推力间隙.6,测量推力间隙应考虑到主轴承轴线与推力平面的不垂直度, 可能影响推力间隙沿圆周不一致, 导致瓦块负荷分配不均匀,引起运行中推力瓦片的温度不一致,有时甚至相差甚大. 如出现这一情况,检修中必须细致检查综合瓦的垂直度, 并适当微调整上下左右瓦块厚度间隙, 重新负荷分配.同的汽轮机,对轴向位移的零点要求不同,有的以大轴推向工作面为零点,有的要求以推力间隙的中间位置为零点,具体要根据机组的设计要求。
以下的安装调试方法适合以推力间隙的中间位置为零点的机组:(以电涡流原理的探头为例)1、首先让机务人员测定轴向推力间隙。
(假定为Dmm)2、机务人员用千斤顶将大轴推向工作面。
3、将轴向位移探头的移动导轨移动至中间位置。
4、调整探头在支架上的位置(用万用表监视间隙电压)使间隙电压显示-10V ,然后将轴向位移探头固定在支架上并锁紧。
5、手动沿导轨移动探头支架,使间隙电压显示“X"V后,将支架锁定在导轨上。
汽轮机轴位移、胀差传感器的零位锁定1,测量前,先对推力轴承,外壳,球面瓦枕,调整垫片,工作瓦片,非工作瓦片,固定垫圈,支持销钉,转子推力盘等部件进行详细检查,瓦片装上后应能自由活动,各部件的接触面应无毛刺,飞边及其它杂物.2,测量时停止汽缸及转子上进行其它工作,并向轴颈及推力盘上浇透平油.3,装好千分表两块,一块装在转子的台肩或推力盘上测量转子的总串动量,另一块装在推力瓦外壳上,作监视推力瓦外壳前后窜动用;表装卡要和转子轴线平行,否则测量会有误差. 4,拴好钢丝绳,进行盘车,同时用橇杠或专用工具将转子分别尽量的推向工作瓦片侧及非工作瓦片侧,并记录表的两次读数,则两次读数的差值即为推力间隙.5,推力间隙与动静部分的间隙是相互关联的,推力轴承是用来保持转子与汽缸轴向对位置的,所以在测量及调整推力间隙时,应考虑到当转子推向工作瓦片侧时,动静间隙(叶轮与前方隔板的间隙)的最小值,应大于推力间隙.6,测量推力间隙应考虑到主轴承轴线与推力平面的不垂直度,可能影响推力间隙沿圆周不一致,导致瓦块负荷分配不均匀,引起运行中推力瓦片的温度不一致,有时甚至相差甚大.如出现这一情况,检修中必须细致检查综合瓦的垂直度,并适当微调整上下左右瓦块厚度间隙,重新负荷分配.同的汽轮机,对轴向位移的零点要求不同,有的以大轴推向工作面为零点,有的要求以推力间隙的中间位置为零点,具体要根据机组的设计要求。
以下的安装调试方法适合以推力间隙的中间位置为零点的机组:(以电涡流原理的探头为例)1、首先让机务人员测定轴向推力间隙。
(假定为D㎜)2、机务人员用千斤顶将大轴推向工作面。
3、将轴向位移探头的移动导轨移动至中间位置。
4、调整探头在支架上的位置(用万用表监视间隙电压)使间隙电压显示-10V ,然后将轴向位移探头固定在支架上并锁紧。
5、手动沿导轨移动探头支架,使间隙电压显示“X”V后,将支架锁定在导轨上。
(间隙电压“X”算法:设探头的灵敏度为aV/㎜。
X=-10+(-0.5D)* a6、此时二次表应显示轴向位移值为:0.5D㎜说明:如果机组设计是以大轴推向工作面为零点,那么取消上面的第5步即可。
〔摘要〕胀差、轴位移是汽轮机监测保护系统最重要的两项技术参数,从理论和实际调试两方面阐述了如何正确地锁定本特利3300系统胀差、轴位移传感器的测量零位;并就如何避免实际安装调试中经常出现的问题,提出了可靠的解决方法,从而为减少因传感器零位锁定不当造成的测量、保护动作误差提供参考。
在高参数,大容量汽轮发电机组中,轴位移和胀差是直接反映汽轮机动静间隙的两项最重要的技术参数,也是两项重要保护。
目前,由于许多机组的轴系机械安装零位和监测保护系统的电气零位不统一,经常发生检修后的机组因胀差、位移监测系统传感器的零位锁定不当,使该系统在机组启动后,测量误差较大,甚至无法正常监测和投入保护,只能停机处理。
因此,检修后机组的轴位移、胀差传感器的零位锁定是直接影响机组启动后,胀差、位移监测系统能否正确反映汽轮机组的动静间隙,从而可靠投入保护的一项重要工作。
1 胀差、位移监测系统的测量原理胀差、位移监测系统都是利用涡流传感器的输出电压与其被测金属表面的垂直距离在一定范围内成正比的关系,将位移信号转换成电压信号送至监测仪表,从而实现监测和保护的目的。
现以300 MW机组中N300-16.7/538/538型汽轮机组为例,对美国本特利内华达公司生产的3300/46斜坡式胀差和3300/20轴位移监测系统的测量原理进行阐述(轴位移、胀差的测量一次元件均采用本特利7 200系列81724-00-07-10-02涡流传感器)。
1.1 本特利3300/46斜坡式胀差监测系统工作原理在机组正常运行中,胀差传感器固定在缸体上,而传感器的被测金属表面铸造在转子上,因此,汽缸和转子受热膨胀的相对差值称为“胀差”( 一般将转子的膨胀量大于汽缸的膨胀量产生的差值做为“正胀差”,反之为“负胀差”)。
根据“输出电压与被测金属表面距离成正比”的关系,该差值被涡流传感器测得,并利用转子上被测表面加工的8。
斜坡将传感器的测量范围进行放大,其换算关系为:δ=L×Sin8。
式中δ:传感器与被测斜坡表面的垂直距离;L:胀差。
如果传感器的正常线性测量范围为4.00 mm(即δ=4.00mm),则对应被测胀差范围L为:L=δ/Sin8。
=4.00/Sin8。
=28.74mm由上式可知:胀差传感器利用被测表面8。
的斜坡将其4.00 mm的正常线性测量范围扩展为28.74 mm的线性测量范围,从而满足了对0~20 mm的实际胀差范围的测量。
传感器将其与被测斜坡表面的垂直距离转换成直流电压信号送至前置放大器进行整形放大后,输出0~24V DC电压信号至3300/46斜坡式胀差监测器,分别将A、B传感器输入的信号进行叠加运算后进行胀差显示,并输出开关量信号送至保护回路进行报警和跳闸保护。
同时输出0~10V DC、1~5 V DC或4~20 mA模拟量信号至记录仪。
安装原理见图1。
(A、B:81724-00-07-10-02型涡流传感器)图1 传感器安装及信号传递原理图1.2 本特利3300/20轴位移监测系统测量原理由于本特利3300/20轴位移监测系统出厂设计为:当测量回路开路或机组的轴向位移达到报警或跳闸值时均会发出报警和跳闸信号,故一般采用4只传感器,分别送入两个3300/20轴位移监测器,两两相“与”后,再将两个监测器的开关量信号输出相“或”做为跳机保护条件较为可靠。
现以一只传感器为例说明其工作原理。
单只轴向位移传感器的工作原理与单只胀差传感器的工作原理一样。
都是利用涡流传感器将其与被测表面的位移转换成电压信号送至前置放大器,经整形放大后,输出0~24V DC电压信号,送至3300/20监测器进行信号处理,输出开关量信号至汽轮机跳闸保护系统实现保护功能。
同时送出4~20 mA、0~1 0V DC、或1~5V DC模拟量信号至记录仪。
图2为信号传递原理图。
(1、2、3、4:为81724-00-07-10-02型涡流传感器)图2 轴位移信号传递原理图2 胀差、位移监测系统传感器的零位锁定2.1 胀差、位移监测系统传感器的零位锁定必须参考的因素(1) 大轴推力瓦的间隙△值。
(2) 大轴位置(即大轴推力盘已靠在推力瓦的工作面或非工作面)。
(3) 胀差、位移监测器及传感器的校验数据。
现以N300-16.7/538/538型汽轮机组为例,分别介绍了3300/46胀差和33 00/20轴位移监测保护系统的零位锁定。
胀差、轴位移监测传感器均采用本特利3300系列81724-00-07-10-02型涡流传感器,其特性曲线如图3所示。
图3 涡流传感器特性曲线已知:△=0.36mm,胀差监测器量程为0~20 mm,轴位移监测器量程为+1.25 mm,大轴推力盘靠在工作面,位置如图4所示。
2.2 3300/46斜坡式胀差传感器的零位锁定步骤(1) 因3300/46监测器的设计量程为0~20 mm,而实际机组停运后会产生约0~2.50 mm的负胀差,因此,传感器安装零位对应监测器的显示为+2.50 mm。
由图3所示传感器的特性曲线可知,此种型号的传感器安装基准电压为10V DC,按此电压将A、B传感器分别固定,此时,3300/46监测器应显示为+10.00 mm,然后利用千分表和可调拖架将A、B传感器同时向图4所示的胀差方向调整7.5 0 mm,此时监测器的显示应为+2.50 mm。
(1、2、3、4:轴位移传感器;A、B:胀差传感器)图4 胀差、轴位移传感器安装示意图(2) 若大轴推力盘靠在工作面,等于将大轴从推力瓦的中间零位向机头推了1/ 2×△mm,应利用可调拖架将A、B传感器同时再向图4所示的胀差方向调整1/ 2×△mm后,将可调拖架锁定即可。
此时,A、B传感器的间隙δ1、δ2可按下式推算:δ1=δAO+(1/2×△+7.50)×Sin8。
δ2=δBO-(1/2×△+7.50)×Sin8。
式中:δAO、δBO为A、B传感器在安装基准电压10V DC安装时,传感器与其被测表面之间的间隙。
最终零位锁定后,应记录A、B传感器的输出电压。
此时,3300/46监测器应显示为+2.32 mm。
(3) 若推力盘靠在推力瓦的非工作面,则在完成第1步后,利用可调拖架将A、B传感器同时再向胀差的反方向(机头方向)调整1/2×△mm后,将可调拖架锁定即可。
此时,3300/46监测器应显示为+2.68 mm。
δ1、δ2可按下式推算:δ1=δAO-(1/2×△-7.50)×Sin8。
δ2=δBO+(1/2×△-7.50)×Sin8。
2.3 3300/20轴位移监测系统的零位锁定因4只轴位移传感器均无可调拖架,故以传感器的零位电压计算值锁定较为准确可靠。
已知:△=0.36mm,大轴推力盘靠在工作面,3300/20监测器量程为+1.25mm,传感器灵敏度F=4.00V/mm,零位安装电压VO=10.00V,则零位电压X的计算:X=VO-F×1/2×△=10-4.00×1/2×0.36=9.28V最终零位锁定后,3300/20监测器应显示为-0.18 mm。
注:若大轴推力盘靠在推力瓦非工作面,则X应按下式计算:X=VO+F×1/2×△最后,按照计算出的X值安装锁定传感器。
监测器应显示为+0.18mm。
3 现场安装调试中传感器零位锁定应注意的问题(1) 未考虑推轴间隙,表计则会产生1/2×△mm的测量误差。
(2) 将1/2×△mm的推轴间隙调反,表计则会产生△mm的测量误差。
(3) 胀差监测系统的零位锁定时,未考虑2.50 mm的负向胀差余量,造成零位锁定错误。
在实际生产中,若出现上述问题,均会导致监测系统产生很大的测量误差,使保护系统不能正常投入。
因此,在实际胀差、位移监测系统的零位锁定中,按照本文所述的零位锁定方法则可避免此类问题的发生。