相互独立的事件的概率
- 格式:ppt
- 大小:357.01 KB
- 文档页数:22
概率计算的独立性概率计算的独立性是概率论的一个重要概念,指的是在某些条件下,两个或多个事件的发生与其他事件无关。
它在数学、统计学、经济学和其他领域都有广泛的应用。
在这篇文章中,我们将探讨概率计算的独立性的含义、性质以及它在现实生活中的应用。
首先,让我们来了解概率计算的独立性的含义。
简而言之,当两个或多个事件的发生与其他事件无关时,我们称它们是相互独立的。
数学上,我们可以用以下公式来表示独立事件的概率:P(A∩B) = P(A) ×P(B)。
其中,P(A∩B)表示事件A和事件B同时发生的概率,P(A)和P(B)分别表示事件A和事件B单独发生的概率。
独立性的性质有以下几点。
首先,如果事件A和事件B是独立的,那么它们的补事件(即不发生的事件)也是独立的。
其次,任意多个事件的并集也是独立的,即若事件A1到An互相独立,则它们的并集也是独立的。
最后,如果事件A和事件B是独立的,并且事件C与事件A、B互不相交,那么事件C与事件A、B的并集也是独立的。
概率计算的独立性在实际生活中有许多应用。
其中之一是赌博和博弈论。
在赌博中,计算独立事件的概率可以帮助人们制定合理的下注策略,从而增加获胜的机会。
例如,在掷硬币的游戏中,每次掷硬币的结果都是相互独立的。
所以,如果我们知道正面和反面出现的概率都是50%,那么我们可以根据这个信息来计算获胜的概率。
另一个应用是市场调查和统计学。
在市场调查中,人们经常需要根据样本数据来预测总体的情况。
如果样本数据是随机且相互独立的,那么我们可以使用概率计算的独立性来进行推断。
例如,如果我们想预测一个城市的人口中男性和女性的比例,我们可以使用随机抽样方法来获取样本数据。
如果抽样过程中每个人都是相互独立的,那么我们可以用这些数据来估计总体的情况。
此外,概率计算的独立性还可以在信号处理、通信系统和信息论中得到应用。
在这些领域,我们经常需要计算信号的传输概率。
如果信号是相互独立的,那么我们可以利用独立性的性质来简化计算过程。
事件相互独立的公式
事件a(或b)是否发生对事件b(a)发生的概率没有影响,这样的两个事件叫做相互独立事件。
设a,b是两事件,如果满足等式p(a∩b)=p(ab)=p(a)p(b),则称事件a,b相互独立,简称a,b独立。
设a,b是试验e的两个事件,若p(a)\ue0,可以定义p(b∣a).一般,a的发生对b发生的概率是有影响的,所以条件概率p(b∣a)≠p(b),而只有当a的发生对b发生的概率没有影响的时候(即a与b相互独立)才有条件概率p(b∣a)=p(b)。
这时,由乘法定理p(a∩b)=p(b∣a)p(a)=p(a)p(b)。
因此设a,b就是两事件,如果满足用户等式子p(a∩b)=p(ab)=p(a)p(b),则表示事件a,b相互单一制,缩写a,b单一制.
注:
1、p(a∩b)就是p(ab)
2、若p(a)\ue0,p(b)\ue0则a,b相互独立与a,b互不相容不能同时成立,即独立必相容,互斥必联系.
难推展:设a,b,c就是三个事件,如果满足用户
p(ab)=p(a)p(b),p(bc)=p(b)p(c),p(ac)=p(a)p(c),p(abc)=p(a)p(b)p(c),则表示事件
a,b,c相互单一制
更一般的定义是,a1,a2,……,an是n(n≥2)个事件,如果对于其中任意2个,任意3个,…任意n个事件的积事件的概率,都等于各个事件概率之积,则称事件a1,a2,……,an 相互独立。
概率与统计中的独立事件与条件概率概率与统计是一门研究事物发生概率和规律的学科,独立事件和条件概率是其中的两个重要概念。
独立事件指的是两个或多个事件之间互不影响,而条件概率则是在已知某个事件发生的前提下,另一个事件发生的概率。
以下将对概率与统计中的独立事件和条件概率进行详细阐述。
一、独立事件独立事件是指两个或多个事件之间没有相互影响的情况。
在概率与统计中,我们用P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。
如果两个事件A和B相互独立,那么事件A和B同时发生的概率就等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) × P(B)。
例如,假设有一枚公平的硬币,掷硬币的结果有两个可能性,正面和反面,分别记为事件A和事件B。
如果事件A表示掷硬币结果为正面的概率,事件B表示掷硬币结果为反面的概率,那么根据独立事件的定义,我们可以得到P(A∩B) = P(A) × P(B) = 1/2 × 1/2 = 1/4,即事件A和事件B同时发生的概率为1/4。
二、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率用P(A|B)表示,读作“在事件B发生的条件下,事件A发生的概率”。
条件概率的计算公式为P(A|B) = P(A∩B)/P(B)。
举例来说,假设有一批产品,其中10%的产品有缺陷,现在随机抽取一件产品,事件A表示这件产品有缺陷,事件B表示这件产品是某个特定品牌的产品。
如果已知这件产品是该品牌的产品,我们想要知道它有缺陷的概率,即求解P(A|B)。
根据条件概率的定义,我们可以通过计算P(A∩B)/P(B)来得到答案。
假设该品牌的产品有总体占比为20%,即P(B) = 0.2。
又已知有缺陷的产品占总体的10%,即P(A∩B) = 0.1,将这些数据代入条件概率的计算公式,我们可以得到P(A|B) = P(A∩B)/P(B) = 0.1/0.2 = 0.5。
相互独立事件同时发生的概率知识要点:1.对于事件A、B,如果事件A(或B)是否发生对事件B(或A)发生的概率没有影响,则称这样的两个事件为相互独立事件.2.相互独立事件的概率乘法公式:设事件A、B相互独立,把A、B同时发生的事件记为(A·B),则有P(A·B)=P(A)·P(B).上述公式可以推广如下:如果事件A1,A2,……,A n相互独立,那么这n个事件都发生的概率等于每个事件发生的概率的积.即P(A1·A2·……·A n)=P(A1)·P(A2)·……·P(A n).3.如果事件A在一次试验中发生的概率是P,那么它在n次独立重复试验中恰好发生k次的概率:P n(k)=P k(1-P)n-k.实际上,它就是二项展开式[(1-P)+P]n的第(k+1)项.要求:1.掌握相互独立事件的概率乘法公式,会用它计算一些事件的概率.2.掌握计算事件在n次独立重复试验中恰好发生k次的概率.典型题目例1.加工某种零件先后需经历三道工序,已知第一、二、三道工序的次品率分别为2%、3%、5%.假定各道工序互不影响,问加工出来的零件的次品率为多少?解:设A1、A2、A3分别表示三道工序得到次品的事件,由题设知,它们是相互独立的事件,而加工得到次品是指以上三个工序中至少有一个工序是次品,即次品事件A=.∴P(A)=0.02×0.97×0.95+0.98×0.03×0.95+0.98×0.97×0.05+0.02×0.03×0.95+0.02×0.97×0.05+0.98×0.03×0.05+0.02×0.03×0.05=0.09693.例2.某商人购进光盘甲、乙、丙三件,每件100盒,其中每件里面都有1盒盗版光盘.这个商人从这3件光盘里面各取出1盒光盘卖给了李四,求:(1)李四恰好买到1盒盗版光盘的概率;(2)李四至少买到1盒盗版光盘的概率.解:(1)记从甲、乙、丙三件光盘里面各取出1盒光盘,得到非盗版光盘的事件分别为A、B、C,则事件·B·C、A··C、A·B·是互斥的;事件、B、C,A 、、C,A、B、彼此之间又是相互独立的.所以P(·B·C+A··C+A·B·)=P(·B·C)+P(A··C)+P( A·B·)=P()·P(B)·P(C)+P(A)·P()·P(C)+P(A)·P(B)·P()=0.01×0.99×0.99+0.99×0.01×0.99+0.99×0.99×0.01≈0.03.(2)事件A、B、C的设法同第(1)小题.因为P(A·B·C)=P(A)·P(B)·P(C)=0.99×0.99×0.99=0.993,所以1-P(A·B·C)=1-0.993≈0.03.例3.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.8. 计算:(1)两人都击中目标的概率;(2)其中恰有1人击中目标的概率;(3)至少有一人击中目标的概率.分析:此题有三问,要依层次来解.解:(1)记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B.显然,“两人各射击一次,都击中目标”就是事件:A·B,又由于事件A与B相互独立,∴P(A·B)=P(A)·P(B)=0.8×0.8=0.64.(2)“两人各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A·),另一种是甲未击中乙击中(即·B),根据题意这两种情况在各射击一次时不可能同时发生,即事件A·与·B是互斥的,所以所求概率为:P=P( A·)+P(·B)=P(A)·P()+P()·P(B)=0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32.(3)解法1:“两人各射击一次,至少有一人击中目标”的概率为:P=P(A·B)+[P(A·)+P(·B)]=0.64+0.32=0.96.解法2:“两人都未击中目标”的概率是:P(·)=P()·P()=(1-0.8)×(1-0.8)=0.2×0.2=0.04.∴至少有一人击中目标的概率为:P=1-P(·)=1-0.04=0.96.点评:由(3)可见,充分利用(1)、(2)两问的结果解题很简单.但是(3)的解法2也告诉我们,即使是不会求(1)、(2),也可独立来解(3).在考试中要特别注意这一点.例4.某种大炮击中目标的概率是0.3,最少以多少门这样的大炮同时射击一次,就可以使击中目标的概率超过95%?解:设需要n门大炮同时射击一次,才能使击中目标的概率超过95%,n门大炮都击不中目标的概率为×0.30×0.7n=0.7n.至少有一门大炮击中目标的概率为1-0.7n.根据题意,得1-0.7n>0.95,即0.7n<0.05, nlg0.7<lg0.05,n>≈8.4.答:最少以9门这样的大炮同时射击一次,就可使击中目标的概率超过95%.例5.要制造一种机器零件,甲机床的废品率是0.04,乙机床的废品率是0.05,从它们制造的产品中,各任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中恰有一件废品的概率;(3)其中至多有一件废品的概率;(4)其中没有废品的概率;(5)其中都是废品的概率.分析:应先确定所应用的每一事件的概率,以便求解.解:依题意可知:显然,这两个机床的生产应当看作是相互独立的.设A=“从甲机床抽得的一件是废品”,B=“从乙机床抽得的一件是废品”.则P(A)=0.04, P()=0.96, P(B)=0.05, P()=0.95.由题意可知,A与B,与B,A与,与都是相互独立的.(1)“至少有一件废品”=A·B +·B+A·P(A·B +·B+A·)=1-P(·)=1-P()·P()=1-0.96×0.95=0.088.(2)“恰有一件废品”=·B+A·.P(·B+A·)=P(·B)+P(A·)=P()·P(B)+P(A)·P()=0.96×0.05+0.04×0.95=0.048+0.038=0.086.(3)“至多有一件废品”=A·+·B+·P(A·+·B+·)=P(A·)+P(·B)+P(·)=P(A)·P()+P()·P(B)+P()·P()=0.04×0.95+0.96×0.05+0.96×0.95=0.998.另外的解法是:“至多有一件废品不发生”=“两件都是废品”=A·BP(A·+·B+·)=1-P(A·B)=1-P(A)·P(B)=1-0.04×0.05=0.998.(4)“其中无废品”=“两件都是成品”=·P(·)=P()·P()=0.96×0.95=0.912.(5)“其中全是废品”=A·BP(A·B)=P(A)·P(B)=0.04×0.05=0.002.点评:本例有很强的综合性,学习中要注意认真体会加以理解掌握之.例6.已知射手甲命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是.问三人同时射击目标,目标被击中的概率是多少?解:设甲命中目标为事件A,乙命中目标为事件B,丙命中目标为事件C,则击中目标表示事件A、B、C中至少有一个发生.但应注意,A、B、C这三个事件并不是互斥的,因为目标可能同时被两人或三人击中,因此,可视目标被击中的事件的对立事件是目标未被击中,即三人都未击中目标,它可以表示为,而三人射击结果相互独立.所以P()=P()·P()·P()=[1-P(A)]·[1-P(B)]·[1-P(C)]=(1-)(1-)(1-)=.所以,目标被击中的概率是1-P()=1-.。
第七节 相互独立事件同时发生的概率一、基本知识概要:1.相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,那么称事件A ,B 为相互独立事件。
注: 如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也是相互独立的。
两个相互独立事件A 、B 同时发生的概率为:P (A ·B )=P (A )·P (B );如果事件A 1,A 2,…n A 彼此独立,则P (A 1·A 2·…n A )=P (A 1)·P (A 2)·…P (n A );2.事件的积:设事件A 、B 是两个事件,A 与B 同时发生的事件叫做事件的积,记作A ·B 。
(此概念可推广到有限多个的情形)3.独立重复试验(又叫贝努里试验):在同样的条件下重复地、各次之间相互独立地进行的一种试验。
n 次独立重复试验中事件A 恰好发生k 次的概率记为P n (k ),设在一次试验中事件A 发生的概率为P ,则P n (k )=k n k k n P P C --)1(。
二、重点难点: 对相互独立事件、独立重复试验的概念的理解及公式的运用是重点与难点。
三、思维方式: 分类讨论,逆向思维(即利用P (A )=1-P (A ))四、特别注意:1.事件A 与B(不一定互斥)中至少有一个发生的概率可按下式计算:P(A+B)=P(A)+P(B)-P(AB)。
特别地,当事件A 与B 互斥时,P(AB)=0,于是上式变为P(A+B)=P(A)+P(B)2.事件间的“互斥”与“相互独立”是两个不同的概念:两事件互斥是指两个事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一事件发生的概率没有影响.五、例题:例1.(2004年广州模拟题)某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张。
互斥事件和独立事件的概率及条件概率【知识要点】1.一般地,设A、B为两个事件,若A、B不可能同时发生,则A、B 为.P(A∪B)=P(A)+P(B).2.一般地,设A、B为两个事件,且P(B|A)==条件概率具有以下性质:(1) ;(2)如果事件B和C是两个互斥事件,则P(B∪C|A)=.3.互相独立事件:事件A(或B)是否发生对事件B(或A)发生的没有影响,即P(B|A)=P(B),P(A|B)=P(A),这样的两个事件叫做相互独立事件.4.如果两个事件A与B相互独立,那么事件A与B,A与B,A与B也都是事件.5.设事件A发生的概率为p,则在n次独立重复试验中事件A发生k次的概率为.6.两个相互独立事件A、B同时发生的概率为P(A·B)=.【基础检测】1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.恰有1个白球与恰有2个白球B.至少有1个白球与都是白球C.至少有1个白球与至少有1个红球D.至少有1个白球与都是红球2.同时掷3枚均匀硬币,至少有2枚正面向上的概率为( )A.0.5 B.0.25 C.0.125 D.0.3753.甲、乙两位同学独立地解决一道数学试题,他们答对的概率分别是0.8和0.9,则甲、乙都答对的概率为.4.袋中有5个球,其中3个白球,2个黑球,现不放回的每次抽取一个球,则在第一次抽到白球的条件下,第二次抽到白球的概率为.5.一位学生每天骑车上学,从他家到学校共有5个交通岗.假设他在每个交通岗遇到红灯是相互独立的,且每次遇到红灯的概率为13,则他在上学途中恰好遇到3次红灯的概率为,他在上学途中至多遇到4次红灯的概率为.典例分析:例1.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入2只苍蝇(此时笼子里共有8只蝇子,其中6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只往外飞,直到2只苍蝇都飞出,再关闭小孔.(1)求笼内恰好剩下1只果蝇的概率;(2)求笼内至少剩下5只果蝇的概率;(3)求笼内至多剩下5只果蝇的概率.例2.甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人回答正确与否相互之间没有影响.(1)求甲队总分不低于2分的概率;(2)用A 表示“甲、乙两队总得分之和等于3”这一事件,B 表示“甲队总得分大于乙队总得分”这一事件,求P (AB ).离散型随机变量的分布列、期望与方差【知识要点】1.离散型随机变量的概念随着试验结果变化而变化的变量称为随机变量,通常用字母X、Y表示.如果对于随机变量可能取到的值,可以按一一列出,这样的变量就叫离散型随机变量.2.离散型随机变量的分布列(1)设离散型随机变量X可能取的值为x1,x2,…,x i,…,X取每一个值x i(i=1,2,…)的概率P(X=x i)=p i(i=1,2,…),则称下表为随机变量X的概率分布,简称X的①;②;(3)两点分布:(4)超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰好有X件次品,则事件{X=k}发生的概率为P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M,N∈N*,此时称分布列:(5)二项分布如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(ξ=k)=C k n p k·(1-p)n-k,其中k=0,1,2,…,n,此时称ξ服从二项分布,记为ξ~B(n,p),并称p为成功概率.3.离散型随机变量的期望与方差则称Eξ=为随机变量型随机变量取值的.把Dξ=叫做随机变量的方差,Dξ的算术平方根Dξ叫做随机变量ξ的,记作.随机变量的方差与标准差都反映了随机变量取值的.4.基本性质若η=aξ+b(a,b为常数),Eη=E(aξ+b)=;Dη=D(aξ+b)=;若ξ服从两点分布,则Eξ=,Dξ=,若X服从二项分布,即ξ~B(n,p),则Eξ=,Dξ=.【基础检测】1.口袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码,任取2个钢球;设X表示所取2球的号码之和,则X的所有可能的值的个数为( )A.25个B.10个C.7个D.6个2.设随机变量ξ的概率分布列为P(ξ=k)=ck+1,k=0,1,2,3,则c=.3.某批花生种子,每颗种子的发芽率为45,若每坎播下5颗花生种子,则每坎种子发芽颗数的平均值为颗,方差为.4.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=5.随机变量ξ的分布列为则Eξ=,=,=.6.有10张大小形状相同的卡片,其中8张标有数字2,2张标有数字5,从中随机抽取3张卡片,设3张卡片数字之和为X,求X的分布列、期望与方差.综合练习卷1.在区间[-π2,π2]上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A.13B.2πC.12D.232.设随机变量ξ的分布列为P (ξ=i )=a (13)i ,i =1,2,3,则a 的值为( )A .1 B.913 C.1113 D.27133.一份数学试卷由25个选择题构成,每个选择题有4个选项,其中有且仅有1个选项是正确的,每题选得正确得4分,不选或选错得0分,满分100分.小强选对任一题的概率为0.8,则他在这次考试中得分的期望为( )A .60分B .70分C .80分D .90分4.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次;则向上的数之积的数学期望是 .5.用三种不同的颜色给图中的3个矩形随机涂色,每个矩形只涂一种颜色,求: (1)3个矩形颜色都相同的概率为 ;(2)3个矩形颜色都不同的概率为 .6.某单位订阅《人民日报》的概率为0.6,订阅《参考消息》的概率为0.3,则它恰好订阅其中一份报纸的概率为 .7.(2011湖南)某商店试销某种商品20天,获得如下数据:品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至...3件,否则不进货...,将频率视为概率.(1)求当天商店不进货...的概率; (2)设X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望.8.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。