硅及其化合物
- 格式:doc
- 大小:313.50 KB
- 文档页数:13
硅及其化合物教案第一章:硅及其化合物的概述1.1 硅的物理性质硅的原子序数、电子排布硅的晶体结构、硬度、熔点、沸点1.2 硅的化学性质硅的氧化性、还原性硅与氧的化合物(二氧化硅)1.3 硅的应用领域半导体材料、光导纤维、玻璃制造等第二章:二氧化硅的制备与性质2.1 二氧化硅的制备方法焦炭还原石英砂、氧化铝制备二氧化硅2.2 二氧化硅的物理性质颜色、硬度、熔点等2.3 二氧化硅的化学性质与碱、酸的反应、水化物等第三章:硅酸盐的制备与性质3.1 硅酸盐的制备方法烧结法、熔融法等3.2 硅酸盐的物理性质熔点、硬度、溶解性等3.3 硅酸盐的化学性质水解反应、酸碱性、氧化还原性等第四章:硅酸盐的应用领域4.1 玻璃制造平板玻璃、瓶子玻璃、光学玻璃等4.2 陶瓷制造日常生活陶瓷、工业陶瓷等4.3 水泥制造普通水泥、矿渣水泥、火山灰水泥等第五章:硅及其化合物的分析方法5.1 原子吸收光谱法测定硅及其化合物的含量5.2 质谱法测定硅及其化合物的结构5.3 X射线荧光光谱法测定硅及其化合物的组成第六章:硅酸盐材料的制备工艺6.1 玻璃制备工艺原料的选择与处理熔融过程成型与退火6.2 陶瓷制备工艺原料的加工与混合成型与干燥烧结过程6.3 水泥制备工艺原料的破碎与磨粉配料与混合煅烧与球磨第七章:硅酸盐材料的性能测试7.1 玻璃性能测试硬度测试透光率测试热稳定性测试7.2 陶瓷性能测试抗压强度测试抗弯强度测试导热系数测试7.3 水泥性能测试凝结时间测试强度测试耐久性测试第八章:硅酸盐材料的应用领域8.1 玻璃材料的应用光伏玻璃电子玻璃8.2 陶瓷材料的应用建筑陶瓷电子陶瓷生物陶瓷8.3 水泥材料的应用建筑工程道路建设海洋工程第九章:硅及其化合物的环境影响与可持续发展9.1 硅及其化合物的环境污染酸雨粉尘污染废水排放9.2 硅及其化合物的环境影响对生态系统的影响对人类健康的影响9.3 硅及其化合物的可持续发展节能减排循环经济第十章:硅及其化合物的未来发展趋势10.1 新型硅材料的研究与应用纳米硅材料有机硅材料复合硅材料10.2 硅及其化合物在新能源领域的应用太阳能电池锂离子电池燃料电池10.3 硅及其化合物的跨学科研究材料科学化学工程环境科学重点和难点解析重点环节1:硅的物理性质和化学性质硅的晶体结构、硬度、熔点、沸点等物理性质的理解和记忆。
高一硅及硅的化合物知识点硅(Si)是元素周期表中的第14号元素,属于非金属元素。
硅及其化合物在日常生活和工业生产中具有重要的应用价值。
本文将介绍关于硅及其化合物的知识点。
一、硅的基本性质硅是一种无色、硬度较高、脆性较大的固体物质。
它具有较高的熔点和沸点,不溶于水和大多数常见的溶剂,但能溶于热的氢氟酸和碱性溶液。
硅是一种良好的导热材料,同时具有半导体特性,因此在电子行业中有广泛应用。
二、硅的化合物及应用1. 硅石(SiO2):也称为二氧化硅,是硅最常见的氧化物。
硅石在自然界中广泛存在,常见于石英、石英砂等形式。
它是制备硅金属的重要原料,也用于制备玻璃、陶瓷等材料。
2. 硅酸盐:是一类以硅酸根离子(SiO4^4-)为主的化合物。
硅酸盐在岩石、矿石和土壤中普遍存在,如长石、石英等。
它们具有重要的地质作用,也用于制备建筑材料、陶瓷等。
3. 二氧化硅凝胶:是一种由硅酸盐制备得到的多孔固体材料,具有很高的比表面积和孔隙度。
它被广泛应用于催化剂、吸附剂、保温材料等领域。
4. 硅油:是一种由聚硅氧烷链构成的有机硅化合物,具有良好的润滑性、绝缘性和耐热性。
硅油常用于机械设备的润滑、电子元器件的封装等。
5. 硅树脂:是一类由有机硅聚合物构成的高分子材料,常用于制备塑料、胶黏剂等。
硅树脂具有良好的耐高温性能和化学稳定性,广泛应用于航空航天、电子、汽车等领域。
6. 硅橡胶:是一种由聚硅氧烷和填充剂组成的弹性材料,具有优异的耐高温、耐候性和绝缘性。
硅橡胶常用于制备密封件、隔振垫等。
7. 硅材料在半导体工业中的应用:由于硅具有半导体特性,因此在半导体工业中,硅被广泛应用于制备集成电路、太阳能电池等。
三、硅及其化合物的重要性硅及其化合物在现代工业和科技领域具有重要的地位和应用价值。
硅材料的独特性能使其成为电子行业中不可或缺的材料,半导体工业的发展离不开硅材料。
此外,硅化合物在建筑材料、化工原料、橡胶和塑料等领域也起着重要作用。
硅及其化合物硅单质1..物理性质带有 光泽的 色固体,熔点 (1410℃),硬度 、有 性,单质硅有 和 两种,结构与金刚石类似,硅是良好的 材料2.化学性质 硅和碳一样最外层 个电子,其原子即 又 电子,常温下化学性质 。
单质硅属于原子晶体。
自然界中,由于硅具有亲氧性,所以自然界中硅以化合物的形式存在。
特性:硅与NaOH 的反应: Si + 2NaOH + H 2O = Na 2SiO 3 + 2 H 2 ↑硅与氢氟酸的反应:Si + 4HF = SiF 4 + 2 H 2 ↑ 单质硅的用途:二氧化硅Si 与O 按 的比例组成的 状原子晶体。
3:物理性质 SiO 2 溶于水,熔点 ,硬度 。
4:化学性质 (化学稳定性很 ,与水不反应。
)(1)与氢氟酸反应 (雕刻玻璃)(特性)【与其它酸不反应】★氢氟酸能否用玻璃试剂瓶盛装?★(2)具有 性氧化物的通性:①与生石灰反应:②与烧碱溶液反应: ★盛NaOH 溶液的试剂瓶用橡胶塞而不用玻璃塞★原因 6:用途硅酸1:硅酸的性质硅酸在水中的溶解度,酸性 H2CO3。
白色不溶性胶体,俗称硅胶。
2:硅酸的制备(强酸制弱酸,可溶性酸制不溶性酸)硅酸的制备原理:可溶性硅酸盐+酸:如Na2SiO3+HCl=Na2SiO3+CO2+H2O=★用二氧化硅和水行吗?★3:用途:“硅胶”干燥剂,催化剂载体等硅酸盐(大多溶于水,化学性质稳定。
)1.硅酸钠溶于水,其水溶液俗称。
用于制备硅酸和作。
2.硅酸盐组成的表示:(二氧化硅和氧化物的组合)表示方法(1) 将硅酸盐中所有元素都写成氧化物。
氧化物的书写顺序:活泼金属氧化物较活泼金属氧化物二氧化硅水(2) 氧化物之间以“·”隔开。
(3) 在氧化物前面按化学式中的比例添加上数字。
Na2SiO3 (硅酸钠)表示为 CaMg3Si4O12(石棉)表示为 KAlSi3O8(长石)表示为3.用途:(玻璃,水泥,陶瓷等)4.制取水泥、玻璃的原料及反应巩固练习1.高岭土的组成可表示为Al2(Si2Ox)(OH)y,其中x、y的数值分别为()A、7,2B、5,4C、6,3D、3,62.将过量的CO2通入下列溶液中,出现浑浊的是()A、CaCl2溶液B、石灰水C、饱和Na2CO3溶液D、硅酸钠溶液3.下列离子方程式不正确的是( )A.石英与烧碱溶液反应:SiO2+2OH-=SiO32-+H2OB.向小苏打溶液中加入过量的澄清石灰水:Ca2++OH++HCO3-=CaCO3↓+H2OC.向氢氧化钠溶液中通入过量CO2:CO2+2OH-=CO32-+H2OD.晶体硅与NaOH溶液反应:Si+2OH-+H2O=SiO32-+2H2↑4.下列说法正确的是()A、因SiO2不溶于水,故H2SiO3不是SiO2对应的酸,或者说SiO2不是H2SiO3的酸酐B、CO2通入Na2SiO3溶液中可以得到原硅酸C、因为高温时SiO2与Na2CO3反应生成CO2,故硅酸的酸性比碳酸强D 、硅的性质稳定,所以在自然界中可以以游离态存在 5.下列物质中,可做光导纤维重要原料的有( )A.石灰石B.玻璃C.二氧化硅D.6.SiO2+3C高温SiC+2CO 反应中,还原剂与氧化剂物质的量之比为( )A.3∶5B.5∶3C.1∶2D.2∶17.下列说法正确的是( )A.SiO2B.CO2C.SiO2D.高温时SiO2可和Na 2CO 3反应放出CO 2,是制造玻璃的反应之一,生成的Na 2SiO 38.熔融烧碱应选用的器皿是( )A 、石英坩埚B 、普通玻璃坩埚C 、铁制坩埚D 、陶瓷坩埚 9.欲观察H 2燃烧的颜色,燃烧管的材料最好是采用( )A 、Na 玻璃B 、钾玻璃C 、铜管D 、石英玻璃 10.生产水泥、普通玻璃都要用到的主要原料是( )A 、黏土B 、石灰石C 、纯碱D 、石英 11、在一定条件下,下列物质不能与二氧化硅反应的是( )①焦炭 ②纯碱 ③碳酸钙 ④氢氟酸 ⑤浓硝酸 ⑥烧碱溶液 ⑦氧化钙 ⑧氮气 A .③⑤⑦⑧ B .⑤⑦⑧ C .⑤⑧ D .⑤ 12、能证明碳酸比硅酸的酸性强的实验事实是( ) A .CO 2通入Na 2SiO 3溶液中有胶状沉淀生成B .干冰(CO 2)是由分子组成的,而SiO 2是由原子直接组成的C .高温下能发生反应:Na 2CO 3+SiO 2高温Na 2SiO 3+CO 2↑D .CO 2溶于水生成碳酸,而SiO 2却不溶于水13、下列变化中,不可能通过一步反应实现的是( )A .Na 2SiO 3→H 2SiO 3B .SiO 2→Na 2SiO 3C .H 2SiO 3→SiO 2D .SiO 2→H 2SiO 3 14.下列离子方程式,正确的是 ( )A .澄清石灰水中通入过量二氧化碳:Ca2++2OH - +CO 2 = CaCO 3↓+H 2OB .碳酸钠溶液中加入二氧化硅:CO 32- +SiO 2 = SiO 32- +CO 2↑C .二氧化硅与烧碱溶液反应:SiO 2 +2OH - = SiO 32-+H 2OD .硅酸与烧碱溶液中和:H 2SiO 3+2OH - = SiO 32-+2H 2O15.二氧化硅属于酸性氧化物,理由是( ) A .Si 是非金属元素B .SiO 2对应的水化物是可溶性弱酸C .SiO 2与强碱反应生成盐和水D .SiO 2不能与酸反应16.下列离子在水溶液中能大量共存的是( ) A .H +、K +、HCO 3-、Ca2+B .OH -、Na +、Mg 2+、HCO 3-C .Na +、H +、Cl -、NO 3-D .Na +、SiO 32-、H +、Cl-17.某无色溶液中加入过量盐酸有沉淀产生,过滤后向滤液中加入过量氨水又有沉淀产生,下列溶液中符合此条件的是( )A. Ag+、Al3+、K+ B. SiO32-、AlO2-、K+C. Ag+、Cu2+、Na+ D.Ag+、Ba2+、 Na+ 18.下列关于二氧化硅的说法中,错误的是()A.二氧化硅也叫硅酐B.二氧化硅分子由一个硅原子和两个氧原子构成C.不能用二氧化硅跟水直接作用制取硅酸D.二氧化硅既能与氢氟酸反应,又能与烧碱反应,所以它是两性氧化物19.现有Na2SiO3、CaCO3、SiO2三种白色粉末,只用一种试剂就可以将它们鉴别开,它是()A.纯水 B.盐酸 C.硝酸银溶液 D.碳酸钠溶液20.下列关于碳和硅的叙述中不正确的是()A.金刚石和晶体硅都是原子晶体 B.地壳中硅元素比碳元素含量多C.自然界里碳元素化合物比硅元素化合物种类多 D.碳和硅的氧化物都是分子晶体21.下列不是水玻璃用途的是()A.肥皂填料B.木材防火剂C.纸板黏胶剂D.建筑装饰材料24.下列物质晶体中,不存在分子的是()A.二氧化硅 B.二氧化硫 C.二氧化碳 D.二硫化碳22、用二氧化硅和金属氧化物的形式表示硅酸盐的组成,不正确的是()A.钙沸石[Ca(Al2Si3O10·3H2O)] CaO·Al2O3·3SiO2·3H2OB.镁橄榄石[Mg2SiO4] 2Mg·SiO2C.正长石[KAlSi3O8] K2O·Al2O3·3SiO2D.高岭石[Al2(Si2O5)(OH)4] Al2O3·2SiO2·2H2O23、下列关于硅的说法不正确的是()A.硅是非金属,但它的单质是灰黑色且有金属光泽的固体B.硅的导电性能介于金属和绝缘体之间,是良好的半导体材料C.硅的化学性质不活泼,常温下不与任何物质起反应D.当加热到一定温度时,硅能与氧气、氯气等非金属反应24、可以用来做半导体材料的是()A.二氧化硅 B.粗硅 C.高纯硅 D.硅酸盐25、硅在太阳能发电过程中具有重要作用,有关硅的说法中不正确的是()A.硅的化学性质稳定,常温下不与酸、碱反应B.自然界中硅贮量丰富,易于开采C.高纯度的硅可被用于制造计算机芯片D.自然界中硅主要以二氧化硅的形式存在,SiO2是光导纤维的主要成分26.下列物质的主要成分不是SiO2的是()A.石英B.水晶C.金刚砂D.玛瑙27.下列说法正确的是()A.SiO2溶于水显酸性B.CO2通入水玻璃可得硅酸C.SiO2是酸性氧化物,它不溶于任何酸D.SiO2晶体中不存在单个SiO2分子28.下列物质不与二氧化硅反应的是()A.烧碱B.氢氟酸C.硝酸D.生石灰29.石墨炸弹爆炸时,能在方圆几百米范围内撒下大量的石墨纤维,造成输电线、电厂设备损坏。
硅及其化合物硅是一种重要的非金属元素,化学符号为Si。
它是地壳中第二丰富的元素,仅次于氧。
硅是许多矿物的主要成分,包括石英,云母,长石和堇青石。
硅也是许多岩石,沙子和土壤的主要成分之一。
硅及其化合物在工业和先进技术应用中更是扮演着举足轻重的角色。
硅及其化合物有着广泛的应用。
硅的纯度较高时具有重要的半导体特性,因此在电子工业中得到了广泛的应用。
晶体管,集成电路,太阳能电池板等电子产品都离不开硅。
此外,硅还可以制成玻璃纤维,被用于制造轻质、高性能的复合材料。
硅还是高级建筑材料的重要组成部分,许多现代化建筑都采用硅材料进行制造。
硅及其化合物还可以用于电石炼制,酸碱度调节,净水,制造生物玻璃,电磁兼容,烷氧基化,表面处理,电解铝,蓄电池,磷酸盐地肥料等领域。
硅的常见化合物有二氧化硅,硅酸盐,硅胶等。
二氧化硅是一种无色无味的化合物,化学式为SiO2。
它是一种高温高压下常见的结晶态形式,即石英。
石英极为硬度,耐高温和耐腐蚀。
被广泛用作制造窗户,试管,透镜等的材料。
硅酸盐是一种广泛存在于天然矿物中的化合物,主要由硅和氢氧根等组成。
硅酸盐具有多种用途。
一些硅酸盐可以用作建筑材料(例如石膏和石灰岩),还可用作玻璃制造的原材料。
硅胶是一种高性能,多孔性的材料,由二氧化硅制成。
它具有良好的抗湿性,被广泛用于防潮、干燥、过滤等领域。
除了应用广泛,硅及其化合物对环境和健康也有一定的影响。
二氧化硅是大气污染的一个主要因素。
当柴油或汽油燃烧时,二氧化硅将被放出,进入大气并产生雾霾。
在家庭和工业燃烧中也会产生许多有害物质,包括二氧化硅。
硅化合物在某些情况下也可以导致中毒,例如硅化氢在高浓度下对呼吸道会产生刺激作用。
因此,在工业生产和使用硅及其化合物的过程中需要注意环境保护和职业安全。
总之,硅及其化合物在现代化社会中扮演着重要的角色。
从电子行业到建筑工业,从化工到农业,硅及其化合物都广泛应用,改变着我们的生活方式和工作方式。
虽然硅及其化合物的应用给生态环境和健康带来了一些负面影响,但是通过长期的科技创新和环保技术发展,这些问题可以得以逐步解决。
硅及其化合物知识结构硅(Si)是地壳中含量第二高的元素,占地壳质量的27.7%,仅次于氧。
在自然界中,硅以硅石(SiO2)的形式存在于石英、玉髓、辉石等矿石中。
硅具有许多重要的特性和广泛的应用,因此对硅及其化合物的研究具有重要意义。
1.硅的物理性质:-硅是一种灰色固体,具有金属和非金属的双重性质。
-具有较高的熔点和沸点,熔点为1414℃,沸点为3265℃。
-硅是一种半导体材料,具有良好的导电性能。
2.硅的化学性质:-硅与氧反应生成二氧化硅(SiO2),是硅的主要氧化物。
Si+O2→SiO23.硅的化合物:-硅在化合物中常以四价态存在,形成四个共价键。
-硅的氢化物:硅的氢化物是一类重要的化合物,如硅烷(SiH4),其化学式为SiH4、硅烷是一种无色有刺激性气体,可由硅与氢反应生成。
Si+2H2→SiH4-硅的卤化物:硅的卤化物包括氟化硅(SiF4)、氯化硅(SiCl4)、溴化硅(SiBr4)和碘化硅(SiI4)。
其中,氯化硅是最重要的一种。
Si+2Cl2→SiCl4-硅的硫化物:硅的硫化物包括二硫化硅(SiS2)和四硫化硅(SiS4)等。
其中,二硫化硅是一种重要的半导体材料,可用于制造光学器件和红外线传感器。
Si+S2→SiS2-硅的氧化物:硅的氧化物主要有二氧化硅(SiO2)和三氧化硅(SiO3)等。
其中,二氧化硅是最常见的氧化物,广泛应用于玻璃、陶瓷、光纤等领域。
Si+O2→SiO24.硅的应用:-硅在电子工业中广泛应用于制造半导体器件,如晶体管、集成电路等。
-硅还可用于制造光纤,用于光通信和光传感器等领域。
-硅的氧化物二氧化硅可用于制造玻璃、陶瓷等材料。
-硅的硅化物可用于制造太阳能电池、LED等光电器件。
-硅的硅烷可用于制造高纯硅材料和化学气相沉积。
总结起来,硅及其化合物的知识结构主要包括硅的物理性质和化学性质,硅的化合物的种类和反应方程式,以及硅的广泛应用领域。
通过深入研究硅及其化合物,我们可以更好地理解和应用这一重要元素。
硅及其化合物TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】硅及其化合物1、硅硅(Si)物理性质灰黑色,有金属光泽,硬而脆的固体,是半导体,具有较高的硬度和熔点。
化学性质与氟气反应Si+2F2=SiF4与氢氟酸反应Si + 4HF = SiF4↑+ 2H2↑与强碱溶液反应Si + 2NaOH + H2O = Na2SiO3 + 2H2↑与氧气反应Si + O2 SiO2粗硅工业制取SiO2 + 2C 高温Si + 2CO↑存在硅元素在地壳中的含量排第二,仅次于氧,是构成矿物和岩石的主要成分。
硅在地壳中全部以化合态形式存在,没有游离态的硅。
用途太阳能电池、计算机芯片以及良好的半导体材料等。
2、二氧化硅二氧化硅(SiO2)空间结构SiO2直接由原子构成,不存在单个SiO2分子。
一个硅连接四个氧原子,一个氧连接两个硅原子,硅、氧原子个数比为2:1.物理性质坚硬难熔的固体,硬度、熔点都很高。
纯净的晶体俗称水晶化学性质与碱性氧化物反应SiO2+ CO2高温 CaSiO3与强碱溶液反应SiO2 + 2NaOH = Na2SiO3 + H2O(碱溶液不能在使用磨口玻璃塞的试剂瓶中)与碳酸盐反应SiO2 + Na2CO3高温 Na2SiO3 + CO2↑ SiO2 + CaCO3高温CaSiO3 + CO2↑与氢氟酸反应SiO2 + 4HF = SiF4↑+ 2H2O(利用此反应,氢氟酸能雕刻玻璃;氢氟酸不能用玻璃试剂瓶存放,应用塑料瓶)存在石英、水晶、玛瑙、硅石、沙子用途光导纤维、玛瑙饰物、石英坩埚、石英钟、仪器轴承、玻璃和建筑材料等。
3、硅酸硅酸(H2SiO3)物理性质不溶于水的白色胶状物,能形成硅胶,吸附水分能力强。
化学性质与强碱溶液反应H2SiO3 + 2NaOH = Na2SiO3 +2H2O加热H2SiO3 H2O + SiO2实验室制取原理H2SiO3是一种弱酸,酸性比碳酸还要弱,但SiO2不溶于水,故不能直接由SiO2溶于水制得,而用可溶性硅酸盐与酸反应制取:(强酸制弱酸原理)Na2SiO3+CO2+H2O=H2SiO3↓+Na2CO3(此方程式证明酸性:H2SiO3<H2CO3)Na2SiO3 + 2HCl = H2SiO3↓+ 2NaCl用途硅胶作干燥剂、催化剂的载体。
1硅及其化合物主干知识梳理 一、 硅1、 物理性质: 晶体硅是灰黑色、有金属光泽、硬而脆的固体。
熔沸点很高,硬度也很大。
是良好的半导体材料。
2、 化学性质: 与氟气反应: Si+2F 2=SiF 4与氢氟酸反应: Si+4HF=SiF 4↑+2H 2O与强碱溶液反应: Si+2NaOH+H 2O=Na 2SiO 3+2H 2↑与氯气反应加热_: Si+2Cl 2△SiCl 4 与氧气反应加热: Si+O 2△SiO 2 2 、 制 法:高温 SiO 2+2C===Si+2CO ↑ (含杂质的粗硅)高温 Si+2Cl 2==SiCl 4高温 SiCl 4 +2H 2==Si+4HCl ↑ 这样就可得到纯度较高的多晶硅。
二、二氧化硅 1物理性质:熔点高,硬度大,不溶于水。
纯净的SiO 2晶体无色透明的固体。
2化学性质:①酸性氧化物a 、在常温下与强碱反应,生成盐和水。
例如:SiO 2+2NaOH=Na 2SiO 3+H 2Ob 、在高温下与碱性氧化物反应生成盐。
例如:SiO 2+CaO 高温CaSiO 3 ②弱氧化性:高温下被焦炭还原SiO 2+2C △Si+2CO ↑SiO 2+3C △SiC+2CO ↑(焦炭过量)③特殊反应:a 、与HF 反应 :4HF+ SiO 2= SiF 4↑+2H 2O 氢氟酸是唯一可以与的SiO 2反应的酸。
b 、与Na 2CO 3 和CaCO 3反应:Na 2CO 3+SiO 高温Na 2SiO 3+CO 2↑CaCO 3+SiO 高温CaSiO 3+CO 2↑与CO 的比较2SiO 2是由Si 原子和O 原子以原子个数比为2∶1组成的空间立体网状晶体。
SiO 2晶体与金刚石结构相似,具有高硬度、高熔沸点特征。
(说明:SiO 2晶体结构:不存在单个的SiO 2分子,是由Si 原子和O 原子以2:1组成的空间立体网状晶体。
每个Si 原子与4个O 原子相连,每个O 原子与两个Si 原子相连。
合物及硅其化、硅1(Si)硅灰黑色,有金属光泽,硬而脆的固体,是半导体,具有较高的硬度和熔点。
物理性质SiFSi+2F与氟气反应=42化与氢氟酸反应↑Si + 4HF = SiF↑+ 2H24学与强碱溶液反应SiO + 2H↑Si + 2NaOH + HO = Na2223性质与氧气反应Si + O SiO22高温粗硅工业制取Si + 2CO↑SiO + 2C 2硅元素在地壳中的含量排第二,仅次于氧,是构成矿物和岩石的主要成分。
硅存在在地壳中全部以化合态形式存在,没有游离态的硅。
太阳能电池、计算机芯片以及良好的半导体材料等。
用途、二氧化硅2)二氧化硅(SiO2分子。
一个硅连接四个氧原子,一个SiOSiO空间结构直接由原子构成,不存在单个222:1.氧连接两个硅原子,硅、氧原子个数比为坚硬难熔的固体,硬度、熔点都很高。
纯净的晶体俗称水晶物理性质与碱性氧化物反化高温CaSiO+ CO SiO 322学应性SiO + 2NaOH = NaSiO + HO(碱溶液不能在使用磨口玻璃塞的试剂瓶中) 与强碱溶液反应2232质高温高温SiO + NaCO NaSiO + CO↑SiO + CaCO CaSiO+ 3 22233322与碳酸盐反应CO↑2与氢氟酸反应SiO + 4HF = SiF↑+ 2HO (利用此反应,氢氟酸能雕刻玻璃;氢氟酸不能用242玻璃试剂瓶存放,应用塑料瓶)石英、水晶、玛瑙、硅石、沙子存在光导纤维、玛瑙饰物、石英坩埚、石英钟、仪器轴承、玻璃和建筑材料等。
用途3、硅酸硅酸(HSiO)32不溶于水的白色胶状物,能形成硅胶,吸附水分能力强。
物理性质与强碱溶液反化HSiO+ 2NaOH = NaSiO+2HO23 23 2应学.性加热HSiO HO + SiO2实验室制取原理HSiO是一种弱酸,酸性比碳酸还要弱,但SiO不溶于水,故不能直接由223SiO溶于水制得,而用可溶性硅酸盐与酸反应制取:(强酸制弱酸原理)2NaSiO+CO+HO=HSiO↓+NaCO(此方程式证明酸性:HSiO<HCO)332223332222NaSiO+ 2HCl = HSiO↓+ 2NaCl3 322用途硅胶作干燥剂、催化剂的载体。
引言概述:硅及其化合物是一类重要的无机材料,广泛应用于电子、光电、能源等领域。
本文将探讨硅及其化合物的性质和用途,以便更好地了解其在科学研究和工业生产中的重要性。
正文内容:一、硅的性质和用途1.硅的物理性质:重量轻、熔点高、导热性好等,适合用于高温和高压的环境。
2.硅的化学性质:稳定性高、不易与其他元素发生反应,具有较好的耐腐蚀性。
3.硅的用途:a.电子工业:硅是半导体材料的主要成分,用于制造集成电路、太阳能电池等。
b.建筑和材料工业:硅酸盐水泥、硅酸盐玻璃等的生产中,硅起着重要作用。
c.化工工业:硅油、硅胶等化工产品的生产和应用。
d.制陶业:硅是制作陶瓷的主要原料之一。
e.冶金工业:硅用于合金制备,如不锈钢、铸铁等。
二、硅化合物的性质和用途1.二氧化硅(硅石):a.物理性质:高熔点、高热稳定性、高绝缘性等。
b.用途:塑料工业:作为增强剂和填充剂,提高塑料的强度和硬度。
医药工业:用于制备药品包衣材料,改善药品溶解速度。
食品工业:作为食品添加剂,提高食品的流动性和稳定性。
光电工业:用于制备光学玻璃、光纤等器件。
2.硅化氢:a.物理性质:易燃、有毒、具有强烈的刺激性气味。
b.用途:电子工业:作为清洁气体,用于半导体制造过程中的清洗和溅射。
化学工业:用于有机合成反应,如氢化、羟基化等。
3.硅酸盐:a.物理性质:熔点高、硬度大、抗压性好。
b.用途:建筑工业:用于制备石膏板、瓷砖等建筑材料。
陶瓷工业:硅酸盐陶瓷具有较好的抗高温性能,可用于制作高温耐磨部件。
化学工业:用于制备玻璃纤维、光纤等。
4.硅烷:a.物理性质:易燃、有毒,容易水解二氧化硅。
b.用途:化学工业:用于有机合成反应,如取代反应、还原反应等。
表面处理:用于表面涂层,改善材料的表面性能。
5.硅酮:a.物理性质:耐热性好、导电性能优异。
b.用途:电子工业:用于制备太阳能电池、发光二极管等电子器件。
电池工业:用于制造锂离子电池等高性能电池。
总结:硅及其化合物是一类重要的无机材料,具有广泛的应用领域。
硅及其化合物知识点硅的基本概念硅是一种化学元素,化学符号为Si,原子序数为14。
它是地壳中含量第二多的元素,仅次于氧。
硅是一种非金属元素,具有半导体性质,广泛应用于电子工业。
硅的原子结构类似于碳,具有四个价电子,因此它可以形成四个共价键。
硅与氧结合形成二氧化硅(化学式SiO2),是一种常见的无机化合物,也是地壳中最主要的成分之一。
硅的化合物通常由硅原子与其他元素的化合物组成,如硅酸盐、硅烷等。
硅化合物在材料科学、电子工业、化学工业等领域具有重要的应用价值。
硅的性质和用途硅的物理性质:•硅是一种银白色晶体,具有金属光泽。
•硅是一种半导体材料,其导电性介于导体和绝缘体之间。
•硅具有较高的熔点和沸点,熔点约为1414℃,沸点约为3265℃。
硅的化学性质:•硅在常温下与大多数酸和碱不发生反应。
•硅可以与氧反应形成二氧化硅,与氟反应形成氟化硅等。
硅的应用:•电子工业:硅是半导体材料的主要成分,广泛用于制造集成电路、太阳能电池等。
•材料科学:硅的高熔点和耐高温性能使其在高温合金、陶瓷材料等方面有广泛应用。
•化学工业:硅化合物被广泛用于制造硅胶、硅橡胶、硅油等化学产品。
•建筑工业:硅酸盐是建筑材料中常见的成分,如水泥、玻璃等。
硅的化合物1. 二氧化硅(SiO2)二氧化硅是最常见的硅化合物,也是硅的主要氧化物。
它存在于自然界中的石英、石英砂、石英石等矿物中。
二氧化硅具有高熔点、高硬度和良好的绝缘性能,因此被广泛用于制造玻璃、陶瓷、光纤等。
2. 硅酸盐硅酸盐是一类含有硅酸根离子(SiO4)的化合物。
常见的硅酸盐包括长石、石英、云母等。
硅酸盐在建筑材料、陶瓷等方面有广泛应用。
3. 硅烷(SiH4)硅烷是一种由硅和氢组成的化合物,化学式为SiH4。
它是一种无色、有毒的气体,在常温下不稳定,容易分解。
硅烷被广泛用于制造光纤、半导体材料等。
4. 硅酸(H4SiO4)硅酸是一种无机酸,化学式为H4SiO4。
它是一种无色、无味的液体,具有较强的腐蚀性。
硅及其化合物含量计算公式硅是地壳中第二多的元素,其化合物在工业生产中有着广泛的应用。
在许多工业生产过程中,需要准确地计算硅及其化合物的含量,以确保生产质量和成本控制。
本文将介绍硅及其化合物含量的计算公式,并探讨其在工业生产中的应用。
硅的化合物主要包括二氧化硅、硅酸盐等。
在工业生产中,常常需要对原材料中硅及其化合物的含量进行准确的计算。
这不仅可以帮助生产企业控制成本,还可以确保产品质量。
因此,了解硅及其化合物含量的计算方法至关重要。
首先,我们来看一下硅及其化合物含量的计算公式。
对于硅的化合物,通常可以使用以下计算公式:含量(%)=(样品中硅的质量 / 样品总质量)×100%。
其中,含量表示硅及其化合物的质量含量,单位为百分比;样品中硅的质量表示样品中硅元素的质量,单位为克;样品总质量表示整个样品的质量,单位为克。
这个计算公式非常简单,只需要知道样品中硅的质量和整个样品的质量,就可以轻松地计算出硅及其化合物的含量。
在实际应用中,可以通过化学分析、光谱分析等方法来确定样品中硅的质量,然后代入公式进行计算。
在工业生产中,硅及其化合物含量的计算通常与原材料的采购、生产工艺的优化等环节密切相关。
例如,在玻璃制造行业,需要对原材料中二氧化硅的含量进行准确的计算,以确保玻璃制品的质量。
此外,在建筑材料、陶瓷、电子元器件等行业,对硅及其化合物含量的计算也具有重要意义。
除了硅的化合物含量的计算公式外,还有一些特殊情况需要特别注意。
例如,对于一些含有多种元素的复杂样品,需要进行化学分析来确定硅的含量。
此外,还需要考虑到硅的化合物在样品中的存在形式,以及可能存在的杂质等因素。
总之,硅及其化合物含量的计算公式是工业生产中非常重要的一部分。
通过准确地计算硅及其化合物的含量,可以帮助生产企业控制成本、提高产品质量,从而获得更好的经济效益。
同时,也可以促进硅及其化合物在工业生产中的更广泛应用,推动相关行业的发展。
在未来,随着工业技术的不断进步,硅及其化合物含量的计算方法也将不断完善和提高。
硅及其化合物知识点总结硅是一种非金属元素,化学符号为Si,原子序数为14。
它是地壳中含量第二多的元素,占地壳质量的27.7%。
硅具有许多重要的物理和化学性质,广泛应用于电子、光学、化工等领域。
硅化合物是由硅和其他元素形成的化合物,具有多样的结构和性质。
硅具有明显的半导体特性,被广泛应用于电子行业。
由于硅原子的外层电子结构为2s22p6,其中有4个价电子,因此硅的价带和导带之间的能隙较小。
这使得硅在适当的条件下能够导电。
硅通过掺杂来调节其导电性能,常见的掺杂元素有磷、硼等。
掺杂后的硅可以用来制造半导体器件,如晶体管、二极管、太阳能电池等。
硅还具有良好的光学特性,能够在可见光和红外光范围内透明。
它的折射率高,适用于光学器件的制造。
硅也是光纤的重要材料之一,能够传输光信号,并广泛应用于通信领域。
除了在电子和光学领域的应用,硅还被广泛用于化工工业。
硅化合物是由硅和其他元素形成的化合物,具有多样的结构和性质。
其中,最常见的硅化合物是二氧化硅(SiO2)。
二氧化硅是一种无机化合物,具有良好的热稳定性、耐腐蚀性和绝缘性。
它被用作玻璃、陶瓷、水泥等材料的主要成分。
此外,二氧化硅还可用于制备硅胶、硅藻土等吸附材料。
硅还可以形成与氧、氢、氮等元素的化合物。
硅氧烷是由硅和氧形成的化合物,具有类似于有机化合物的结构和性质。
硅氧烷可以用作涂料、密封剂、防水剂等材料的添加剂,提供物理和化学性能的改善。
硅氧烷还可以用作生物医学领域的材料,如人工关节、牙科材料等。
硅还可以形成与碳形成的化合物,即有机硅化合物。
有机硅化合物具有碳硅键,具有独特的化学性质和应用价值。
其中,硅烷是最简单的有机硅化合物,由硅和氢形成。
硅烷具有良好的稳定性和低毒性,被广泛应用于涂料、粘合剂、密封剂等行业。
有机硅化合物还包括硅烷类、硅醇类、硅氧烷类等,具有广泛的应用领域。
硅及其化合物具有广泛的应用领域。
硅作为半导体材料,在电子行业具有重要地位;硅化合物在光学、化工等领域发挥着重要作用。
晶体硅通常呈正四面体排列,每一个硅原子位于正四面体的顶点,并与另外四个硅原子以共价键紧密结合。
这种结构可以延展得非常庞大,从而形成稳定的晶格结构。
无定性硅不存在这种延展开的晶格结构,原子间的晶格网络呈无序排列。
换言之,并非所有的原子都与其它原子严格地按照正四面体排列。
由于这种不稳定性,无定形硅中的部分原子含有悬空键(dangling bond)。
硅及其化合物一.硅gu ī是一种化学元素,它的化学符号是Si ,旧称矽。
原子序数14,相对原子质量28.09,元素周期表上IVA 族的类金属元素。
它极少以游离态在自然界出现,而是以复杂的硅酸盐或二氧化硅的形式,广泛存在于岩石、砂砾、尘土之中 硅在宇宙中的储量排在第八位。
在地壳中,它是第二丰富的元素,构成地壳总质量的26.4%,仅次于第一位的氧(49.4%)。
1. 晶体硅 (1) 晶体硅为灰黑色,无定形硅为黑色,密度2.32-2.34克/立方厘米,熔点1414℃,沸点2900℃,晶体硅属于原子晶体,硬而脆有金属光泽,有半导体性质。
硅的化学性质比较活泼,在高温下能与氧等多种元素化合,不溶于水、硝酸和盐酸,溶于氢氟酸和碱液,用于制造合金如硅铁、硅钢等,单晶硅是一种重要的半导体材料,用于制造大功率晶体管、整流器、太阳能电池等。
结晶型的硅是暗黑蓝色的,很脆,是典型的半导体。
化学性质非常稳定。
在常温下,除氟化氢、氟气和强碱以外,很难与其他物质发生反应。
(2)硅的晶体结构:立体网状结构(与金刚石结构一样)各方向承受压力大,每一个硅原子位于正四面体的顶点,眼神得立体网状结构2. 硅的结构特点既不易失去e -,也不易得e -,以共用电子对的形式与其他原子结合化合价一般为四价(+4,-4)3. 硅的化学性质 (1) 低温下,化学性质稳定,只能与氢氟酸(弱酸),氟气,强碱溶液反应。
Si+2F 2==SiF 4(SiF 4是无色、有毒、有刺激性臭味的气体,易潮解,在潮湿空气中可产生浓烟雾。
硅及其化合物方程式硅是一种非金属元素,其化学符号为Si。
硅在自然界中广泛存在,当被氧化时,硅可以形成二氧化硅(SiO2),这是一种非常重要的化合物,用于制造玻璃、水晶、陶瓷等。
硅化合物是指硅与其他元素形成的化合物,其中最常见的包括硅氧烷(SiH4)和硅酸(H4SiO4)。
以下是硅及其化合物的方程式:1.硅的制备方程式:将硅矿石(SiO2)与碳在高温下还原,可以制备出硅。
SiO2(s) + 2C(s) → Si(s) + 2CO(g)2.二氧化硅的制备方程式:二氧化硅是一种广泛应用的化合物,可以通过燃烧或加热硅酸盐制备。
SiO2(s) + 2C(s) → Si(s) + 2CO(g)CaSiO3(s) + 2HCl(aq) → SiO2(s) + CaCl2(aq) +H2O(l)3.硅氧烷的制备方程式:硅氧烷是一种无色、有毒的气体,可以通过硅和氢气的反应制备。
Si(s) + 2H2(g) → SiH4(g)4.硅酸的制备方程式:硅酸是一种无色、无味、易溶于水的化合物,可以通过硅酸盐的水解制备。
Na2SiO3(s) + H2SO4(aq) → H4SiO4(aq) + Na2SO4(aq)5.硅水化物的制备方程式:硅水化物是一种白色粉末,可以通过硅氧烷和水的反应制备。
SiH4(g) + 2H2O(l) → Si(OH)4(s) + 4H2(g)6.硅化氢的制备方程式:硅化氢是一种无色、有毒的气体,可以通过硅和氢气的反应制备。
Si(s) + 4H2(g) → SiH4(g)7.八甲基环四硅氧烷的制备方程式:八甲基环四硅氧烷是一种有机硅化合物,可以通过硅氧烷和甲基氯化物反应制备。
SiH4(g) + 4(CH3)Cl(g) → (CH3)8Si4O4(s) + 4HCl(g)8.硅藻土的制备方程式:硅藻土是一种天然的无机无机材料,可以从淡水或海水中提取。
SiO2 + nH2O → SiO2·nH2O总之,硅及其化合物在生活中起着重要作用,广泛应用于玻璃、水晶、陶瓷、半导体等领域。
硅及其化合物知识总结1.硅单质(Si)(1)存在:硅是一种亲氧元素,在自然界中以化合态存在,在地壳中的含量仅次于氧。
(2)物理性质:晶体硅是灰黑色固体,硬度大,熔、沸点高,具有金属光泽。
(3)化学性质:常温下能与F 2、HF 、NaOH 反应;加热时能与H 2化合生成不稳定的氢化物SiH 4,还能与Cl 2、O 2化合分别生成SiCl 4、SiO 2。
涉及的化学方程式如下:2:Si +O 2=====△SiO 22:Si +2F 2===SiF 42:Si +2Cl 2=====△SiCl 4②与氢氟酸反应:Si +4HF===SiF 4↑+2H 2↑。
③与NaOH 溶液反应:Si +2NaOH +H 2O===Na 2SiO 3+2H 2↑(4)用途:①良好的半导体材料;②太阳能电池;③计算机芯片。
(5)高纯硅的制备①SiO 2+2C=====高温Si(粗)+2CO ↑(1800~2000℃)②③2.二氧化硅(SiO 2)(1)存在与形态SiO 2的存在形态有结晶形和无定形两大类。
自然界中的二氧化硅,存在于沙子、水晶、玛瑙,石英等中。
(2)结构SiO 2是由Si 原子和O 原子按个数比1∶2直接构成的立体网状结构的晶体。
(3)二氧化硅与二氧化碳都是酸性氧化物,二者的性质与用途比较性质与用途二氧化硅二氧化碳物理性质硬度大,熔、沸点高,不溶于水熔、沸点低,可溶于水化学性质与水反应不反应CO 2+H 2OH 2CO 3与酸反应(只与HF 反应)氢氟酸用于刻蚀玻璃:SiO 2+4HF===SiF 4↑+2H 2O不反应与碱反应(如NaOH)SiO 2+2NaOH===Na 2SiO 3+H 2O(盛碱液的试剂瓶不能用玻璃塞)CO 2+2NaOH===Na 2CO 3+H 2O 或CO 2+NaOH===NaHCO 3与盐反应(如Na 2CO 3)SiO 2+Na 2CO 3=====高温Na 2SiO 3+CO 2↑CO 2+Na 2CO 3+H 2O===2NaHCO 3与碱性氧化物反应与CaO 反应:SiO 2+CaO=====高温CaSiO 3与Na 2O 反应:CO 2+Na 2O===Na 2CO 3与碳反应2C +SiO 2=====高温Si +2CO ↑C +CO 2=====高温2CO 主要用途制光学仪器、石英玻璃;水晶和玛瑙可制作饰品;常用来制造通讯材料——光导纤维;以SiO 2为主要成分的沙子是基本的建筑材料化工原料、灭火剂;干冰用作制冷剂,人工降雨3.硅酸(H 2SiO 3)(1)物理性质:难溶于水的白色胶状物质。
引言概述:硅及其化合物是高中化学中的重要内容之一。
硅是地壳中含量第二多的元素,具有广泛的分布和应用。
硅及其化合物在工业生产和日常生活中起着重要的作用。
本文将从硅的性质以及硅化物的用途方面进行详细阐述。
正文内容:一、硅的性质1. 原子结构:硅的原子结构以及与碳的结构相似性;2. 物理性质:硅的物理性质,如颜色、硬度、熔点等;3. 化学性质:硅的化学性质,包括与氧化物的反应以及与非金属元素的反应;4. 合金化性质:硅的合金化性质,对于提高金属材料的硬度和耐热性有重要作用;5. 合成及应用:硅的合成方法以及在光电子、电子器件等领域的应用。
二、有机硅化合物1. 有机硅化合物的概念及特点:有机硅化合物与有机化合物的区别以及存在的特殊性质;2. 单体及聚合物:有机硅化合物的单体结构及其聚合反应;3. 特殊有机硅化合物:硅油、硅胶、硅橡胶等特殊有机硅化合物的制备与用途;4. 有机硅化合物的应用:有机硅化合物在医药、化妆品、建材等方面的广泛应用;5. 有机硅化合物的发展:有机硅化合物在新材料、新能源等领域的发展前景。
三、无机硅化物1. 硅酸盐:硅酸盐的构成、晶体结构以及各种硅酸盐的性质;2. 硅酸盐的合成:硅酸盐的合成方法以及在建材、陶瓷等领域的应用;3. 硅酸盐的用途:硅酸盐在水泥、玻璃等行业中的重要作用;4. 硅酸盐的改性:对硅酸盐进行改性可以增加其特殊性能,例如增强材料的强度和耐火性等;5. 硅酸盐的矿石资源及可持续利用:硅酸盐矿石的分布以及对环境的影响。
四、二氧化硅及其化合物1. 二氧化硅的结构和性质:二氧化硅的三维结构以及其特殊的热稳定性;2. 二氧化硅的制备:二氧化硅的制备方法,如溶胶-凝胶法和熔融法等;3. 二氧化硅的应用:二氧化硅在电子器件、光纤以及陶瓷等领域的广泛应用;4. 硅酸盐玻璃:硅酸盐玻璃的特点及其在光学仪器、建筑和容器制造等方面的应用;5. 二氧化硅的纳米材料:二氧化硅纳米材料的独特性质及其在催化、传感等领域的应用。
无机非金属材料的主角——硅【知识要点】一、硅1.物理性质晶体硅是一种色具有光泽,硬而脆的固体,熔沸点较高,能导电,是良好的材料。
在自然界中只能以化合态存在。
主要以二氧化硅和硅酸盐的形式存在。
其元素含量在地壳中居第位。
2.化学性质化学性质〔和碳相似〕——形成共价化合物,化学性质不活泼。
①常温下,不能强酸、强氧化性酸反应,只能与氟气、氢氟酸〔HF〕和烧碱等物质反应:方程式、、②加热条件下,能跟一些非金属单质〔氧气、氢气〕起反应。
〔3〕工业制法:〔焦炭在电炉中复原二氧化硅得到粗硅〕粗硅提纯后,可以得到可用作半导体材料的高纯硅。
〔3〕用途:①作半导体材料晶体管、集成电路、硅整流器和太阳能电池等;②制合金:含硅4%的钢具有良好的导磁性——变压器铁芯;含硅15%左右的钢具有良好的耐酸性——耐酸设备等。
二、二氧化硅1.物理性质硬度大,熔沸点高,不导电,不溶于水。
等的主要成分都是二氧化硅,它一般可用于制造光导纤维。
2.化学性质CO2SiO2与碱性氧化物反应与碱液反应与盐反应2Na2CO3+SiO2 CaCO3+SiO2与碳反应与H2O作用与酸反应〔一〕硅酸1. 物理性质2. 制备方法3. 化学性质4. 用途〔二〕硅酸盐〔1〕性质特征:性质稳定,熔点较高,大都溶于水。
〔2〕主要原料:黏土〔Al2O3·2SiO2·2H2O〕、石英〔SiO2〕和长石〔钾长石K2O·Al2O3·6SiO2或钠长石Na2O·Al2O3·6SiO2〕。
〔3〕主要制品:玻璃、水泥、陶瓷、砖瓦、水玻璃〔Na2SiO3的水溶液〕等。
水泥玻璃〔普通〕原料石灰石、粘土纯碱、石灰石、石英设备水泥回转窑玻璃熔炉反应复杂的物理化学变化Na2CO3+SiO2 Na2SiO3+CO2↑CaCO3+SiO2 CaSiO3+CO2↑主要成分3CaO·SiO22CaO·SiO23CaO·Al2O3Na2O·CaO·6SiO2特性水硬性〔加石膏调节硬化速度〕玻璃态物质〔在一定温度范围内软化〕非晶体要点精讲一、二氧化硅和硅酸【典型例题】例1.以下物质中,不能通过化合反应制取的是〔〕A.H2SiO3B.Fe(OH)3C.Fe(NO3)2D.CaSiO3例2.以下各组物质中不起反应的是〔〕A.SiO2与纯碱共熔B.CO2通入Na2SiO3溶液C.SiO2与大理石共熔D.SiO2和浓H2SO4共热例3.碳化硅〔SiC〕的一种晶体具有类似金刚石的结构,其中碳原子和硅原子的位置是交替的。
硅及其化合物的性质和(硅酮)应用作者:童丹璐【摘要】 硅及其化合物在物理性质及化学性质方面均具有其明显的特点,从而使其在电子、汽车、电气、建筑、纤维产业直至日常生活中均具有广泛应用。
本文将从硅及其化合物的性质和应用等方面进行全面的介绍,使读者对它们有更深入的了解。
【关键词】 硅 二氧化硅 硅酸盐 硅酸 硅酮(Silicon )的学名来自拉丁文Silex,意为燧石。
地壳中硅的含量极为丰富,其元素丰度在20%以上。
居地壳元素丰度第二位。
常温下硅的化学性质非常稳定,但在自然界中它却从不以单质形式出现。
自然界硅的存在形式主要是硅酸盐和二氧化硅。
硅酸盐在地壳的分布极广,其中包括云母石、长石、沸石及石榴石等矿物。
而遍布地表的粘土则是多种硅酸盐的集合体。
自然界的二氧化硅通常以晶体的形态出现。
花岗岩、正长岩、纹岩、石英岩、碧玉、红玉髓、蛋白石及燧石等的主要成分都是二氧化硅,并且几乎所有变质岩中都混有硅石。
此外,二氧化硅也是常见砂石的主要成分。
尽管硅的化合物(如硅酸盐和二氧化硅)早已为人们所熟知,但直到1823年,Berzelins 才用钾还原氧硅酸钾: Si KF K SiF K +→+6462,得到了硅单质。
是什么原因导致硅元素的提取如此困难?答案大致可分为以下两方面:其一,天然硅酸盐具有高度化学惰性,几乎不为一般化学试剂所侵蚀;其二,这类硅酸盐的组成与结构十分复杂,不易认识。
种种原因导致对硅元素的研究迟迟未能展开。
因此,严格地说,硅化学应属于近代化学之范畴。
天然硅由28Si,29Si 及30Si 三种稳定同位素组成,它们的同位素丰度分别为:28Si92.23%;29Si 4.67%;30Si 3.1%,平均原子量为28.086。
此外,已经发现的硅同位素还有25Si 、26Si 、27Si 、31Si 、32 Si 、33 Si 、35 Si 和36 Si 等八种放射性同位素。
自然界并不存在硅的放射性同位素,都是人工合成的。
基于硅的核稳定性,天然硅平均热中子吸收截面只有0.16靶。
由于硅的这一特性,核反应堆工艺中常利用硅合金作为铀棒与保护铝罐的焊接材料,借以增强铀棒的抗腐蚀性能。
常温下,硅单质的唯一存在形式是晶态固体,硅晶体属于立方晶系并具有金刚石型晶体结构。
这种晶体结构的特征是晶格中任一硅原子的周围都对称而等距的分布着另四个硅原子,这是硅单质常温下存在的唯一晶型。
硅单晶的颜色灰黑具有闪亮金属光泽。
由于所属晶型的牢固性及晶格中Si —Si 共价键的强度,硅晶体质地坚硬而有脆性(硅晶粒的硬度约与普通砂粒相当)。
硅晶粒在重击下容易碎裂,与金刚石的行为相近。
由于结构上的原因,硅单质的熔融与蒸发都比较困难,故相应的熔点及沸点很高。
硅同时兼有本征导体与非本征导体的性质。
所谓本征导体乃指高纯硅本身,即为一种半导体。
非本征半导体是指硅材料中由于掺入外来杂质而成为半导体,即所谓“外赋”半导体。
常用的掺杂元素有B ,Ga ,Al 与In (p 型杂质)以及As ,P 与Sb (n 型杂质)。
杂质浓度N(单位体积内杂原子数)与半导体导电率α=eN μ。
此处e 为电子电荷,μ为截流子迁移率。
常温下硅的化学性质极其稳定,纯硅或熔结的工业用硅可经久储存而不变质。
超纯硅样品虽经多年应用,仍能保持其闪亮,蓝灰色外观,不留刻痕,也不失去光泽。
然而处于高温,硅的性质立即变得十分活泼,它可以同空气中的氧甚至氮发生反应,生成相应的氧化物和氮化物。
当硅处于熔态时,它几乎能跟所有金属氧化物、硅酸盐以及铝酸盐发生反应,夺取这硅些化合物中的氧。
熔态硅与碳的反应也十分剧烈,且能与金属碳化物反应以夺取其中的碳。
熔态硅与氮以及大多数氮化物的反应也能顺利进行。
总之,熔态硅几乎能腐蚀所有常见耐温材料。
用不同方法制备的硅单质,由于所含杂质及硅自身分散度的不同,它们所表现出的化学性质也有明显的差别。
这些差别在硅跟无机酸的反应上尤为明显。
氢氟酸与硅的反应具有特殊重要性。
极纯的硅晶体几乎不跟包括氢氟酸在内的所有无机酸发生反应。
但是,以镁还原二氧化硅所获得的硅与氢氟酸反应剧烈(由硅—铝低共熔合金析出的硅甚至与浓硝酸也发生剧烈反应)。
盐酸与硅的反应取决于硅的纯度。
纯硅与盐酸无作用,但硅试样中如含有金属硅化物杂质(如Mg2Si),反应按下式进行: Mg2Si+4HCl=2MgCl2+SiH4硅可与各种金属、非金属反应生成化合物。
在所有金属元素中,仅有个别金属(如Hg 和Ti)与硅不发生作用,有一部分金属(如Al、Ga、Zn、Sn、Sb、Ag与Au)与硅生成低共熔合金,而绝大多数金属(主要是过渡金属Ti、Zr、Hf、V,Nb、Ta、Cr、Mo、W、Mn、Re、Y、La、Ce、Pr、Nd、Sm、Th、U、Np、Pn等)可与硅生成具有金属外观的金属间化合物。
此外,碱金属和碱土金属也易与硅形成金属化合物。
但这些金属硅化合物缺乏金属特征,而在某种程度上与硼化物和碳化物相似。
锗的性质最为特别,它可以与硅按任何比例形成接近理想行为的固态溶液。
而作为硅与非金属元素形成化合物的代表——SiC则是一种典型的原子化合物。
碳化硅这种化合物具有一定的复杂性。
首先,碳化硅存在两种晶态变体,α-SiC与β-SiC,其次是这两种晶态变体又含有多种晶型。
已知α-SiC含有18种六方晶型和23种正交晶型。
而β-SiC则为六方晶型,具有闪锌矿或准金刚石结构,工业碳化硅大多是α-SiC,它们通常是带有浅绿色或浅紫色彩的黑色晶体颗粒。
β-SiC往往形成于更高温度及真空条件下,它是浅黄色的透明晶体。
一般猜测,如果碳化硅是“绝对”纯净,α-SiC和β-SiC 有可能是无色晶体。
硅与氧的反应是硅的重要化学反应之一。
高温下硅与氧化合,在硅表面形成硅的重要氧化物——SiO2薄膜,[△H f=—842.4KJ/mol] Si+O2=Si O2地壳中二氧化硅(硅石)的含量高而分布广,其存在形态也多种多样——它是自然界物质以多形态存在的典型。
就纯二氧化硅而言,其存在物便有十余种之多。
天然二氧化硅的存在形态大致可分为以下几类:1.晶态。
属于这一形态的二氧化硅有石英,鳞石英和白硅石。
2.非晶态(无定形态)。
这类二氧化硅包括各种水化程度的无定形物质,其中主要有蛋白石和硅藻土等。
3.隐晶态。
这一形态的常见天然物有玉髓,玛瑙,碧玉,红玉髓,缟玛瑙及燧石等。
4.玻璃态。
属于这一形态的天然二氧化硅形成于大块陨石撞击地面时的超高压下。
这是一种质地致密的高密度物质,成为科石英。
常见的天然玻璃态二氧化硅是黑曜石。
不论何种形态的二氧化硅皆可溶于40%氢氟酸;无定形水合二氧化硅的溶解速最快,玻璃态次之,a—石英溶解最慢,溶解的产物是不同组成的SiF4+H2SiF06,其相对含量取决于溶解温度和氢氟酸的浓度。
所有碱性溶液均可腐蚀二氧化硅,但溶液的PH只有在超过13或14的情况下,腐蚀作用才有明显速度。
在二氧化硅化学反应时,有一颇有意义的方面值得重视,在二氧化硅从一种晶态向另一种晶态转变期间,它所参加的化学反应速度可以大大加快。
这是因为在转变期间,晶格离子或原子刚刚失去它们原先所在位置并正试图在另一晶态中寻觅新的晶格的位置,此际它们有可能暂时摆脱晶格力的束缚而表现出某种程度的液态反应特性,导致反应加速。
二氧化硅在其晶态转变时期的化学性质比它在其它时期所表现的更加活泼。
这一结论在陶瓷化学研究中可能有重要意义。
二氧化硅还能与其他氧化物反应。
而其与其它金属氧化物或准金属氧化物的反应较为复杂,但又是制造玻璃改善玻璃性能的重要反应。
与二氧化硅反应并可用于玻璃制造的氧化物主要有:B 2O 3,B 2O 3进入玻璃成分,降低硅酸盐玻璃熔点,极大的降低玻璃的膨胀系数,但也增加了玻璃的可溶性。
Al 2O 3,Al 2O 3的存在提高玻璃熔点及增大玻璃晶化倾向,但可增强玻璃对水及碱性溶液的抗腐蚀能力。
MgO ,MgO 有时代替部分氧化钙以扩大玻璃的可工作范围。
ZnO ,某些德国玻璃含有这一成分;这种玻璃具有高度抗化学腐蚀性能。
二氧化硅与其它氧化物反应的另一个实用方面是水泥,水泥是一种复杂的硅酸盐混合物。
工业上将石灰石,粘土与炉渣或页岩的混合物粉碎成一定粒度,然后送入转窑煅烧,去除水分和二氧化硅,并使混合物在一定程度上熔结,玻璃化。
熔块冷却后再粉碎至一定粒度,并与石膏粉(用以控制水泥凝固时间)混合,便得到一定标号的水泥。
二氧化硅通过一些反应可转化为硅的另一个重要化合物——硅酸盐,如:SiO 2+2NaOH=Na 2SiO 3+H 2O SiO 2+Na 2CO 3=Na 2SiO 3+CO 2,由于置换作用等多种原因,天然硅酸盐在化学组成上复杂多样,但各种硅酸根负离子的结构均建立在以下原理上:(1) 几乎所有硅酸盐的结构都由SiO 4四面体构成。
(SiP 2O 7的多形体除外)(2) 硅氧四面体可以由共顶角连接成更大的多聚单位。
(3) 可以共用共同顶点(即氧)的SiO 4四面体多于两个。
(4) SiO 4四面体绝不相互共边或共面。
由上可知,各类硅酸盐在结构上最有意义的差别在于SiO 4正四面体连接方式上的不同。
从这一角度出发,硅酸盐大体可分成以下几类:Ⅰ.具有独立硅氧阴离子团的硅酸盐;这类硅酸盐又有以下几种情况:① 阴离子团只含有一个SiO 4正四面体无任何氧原子与其它正四面体共享。
这类硅酸盐称为正硅酸盐或原硅酸盐,其阴离子团的形式为Si O 4-4典型天然矿物是橄榄石[(Mg ,Fe ,Mn )2SiO 4]。
这种矿物的结构特征是:Si 原子位于O 2-离子密堆积的正四面体空隙中央,而Mn 2-等离子则处于该密堆积的八面体空隙之中。
另一类结构相仿的天然矿物是粒硅镁石类矿物,其组成为[MgSiO 4]2∙[Mg (OH )2]2。
锆英石亦是人所共知的正硅酸盐,其组成为ZrSiO 4。
普通水泥的主要成分也是正硅酸盐。
从转窑煅烧出来的混合物含有Ca 2SiO 4,Ca 3Al 2O 6及Ca 2AlFeO 5。
② 阴离子团含两个SiO 4正四面体,但有一个氧原子为两个四面体所共享,形成阴离子团-4,称为焦硅酸盐阴离子。
天然硅酸盐中含独立-672O Si 的较为常见,如异极石(7224)(O Si OH Zn ∙),符山石,绿帘石())(()()742OH O SiO SiO CaFeAl ∙等。
③ 阴离子团含有三个或更多个SiO 4 正四面体,其中每一正四面体均有两个氧原子分别与另两个正四面体所共享,形成环状阴离子团。
-n n SiO 23)(含这种阴离子的天然硅酸盐以绿玉类矿物()18623O Si Al Be ∙最为人熟知。
Ⅱ.具有SiO 4正四面体无限长链的硅酸盐,其中每一个正四面体有两个氧原子分别与前后两个四面体共享,其负电荷沿长链分布,不形成环状阳离子。