钟表重合公式
- 格式:doc
- 大小:36.00 KB
- 文档页数:4
时钟追及问题全部公式1. 基本公式- 分针速度:分针60分钟转一圈,一圈为360^∘,所以分针每分钟走360÷60 = 6^∘。
- 时针速度:时针12小时转一圈,12×60 = 720分钟转360^∘,所以时针每分钟走360÷720 = 0.5^∘。
- 两针速度差:6 - 0.5=5.5^∘2. 时钟追及问题的通用公式- 追及时间=路程差÷速度差。
在时钟问题中,路程差通常是两针之间的角度差。
3. 题目解析- 例1:3点多少分时,时针与分针重合?- 分析:3点时,时针与分针的角度差为90^∘(因为时针指向3,分针指向12,每一大格为30^∘,3点时分针和时针间隔3大格)。
- 设x分钟后时针与分针重合,根据追及时间=路程差÷速度差,这里路程差为90^∘,速度差为5.5^∘每分钟。
- 则x=(90)/(5.5)=(180)/(11)≈16.36分钟,所以3点(180)/(11)分时针与分针重合。
- 例2:2点多少分时,时针与分针成100^∘角?- 分析:2点时,时针与分针的角度差为60^∘。
有两种情况,一种是分针还没有追上时针且与时针成100^∘角,此时路程差为100 - 60 = 40^∘;另一种是分针超过时针后与时针成100^∘角,此时路程差为60+100 = 160^∘。
- 当路程差为40^∘时,设x分钟后时针与分针成100^∘角(第一种情况),根据追及时间=路程差÷速度差,x=(40)/(5.5)=(80)/(11)≈7.27分钟。
- 当路程差为160^∘时,设y分钟后时针与分针成100^∘角(第二种情况),y=(160)/(5.5)=(320)/(11)≈29.09分钟。
4点钟后,从时针和分针第一次成90度角到第二次成90度,经过了多长时间?方法一:时针的角速度是30度/h分针的角速度是360度/h时针先比分针多90度,过X小时后分针反比时针多90度.时针走了30X度,分针走了360X度,或是180度+30X度即:360X=180+30XX=6/11(小时) 约32分43.72秒方法二:解:分针每分转6度,时针每分转0.5度。
设共经过x分钟。
6x=120+0.5x+90x=38又2/11答:共经过38又2/11分钟。
设第一次成90度是4点A分,第二次成90度是4点B分120+6A/12-6A=90,A=60/116B-120-6B/12=90,B=420/11B-A=420/11-60/11=360/114点钟后,从时针到分针第二次成90度的角,共经过多少分钟?解:因时针的速度为每分钟走0.5度,分针的速度为每分钟走6度.(1)设从4点钟开始走用时M分钟后表上的时针和分针的夹角是90度,(这时,时针和分针第次一成90度)因为4点整时,表上的时针和分针的夹角是120度,于是得, (120+0.5M)-6M=90,解得M=60/11(2)时针到分针第二次成90度,不应超过5点,故我们假设5点整时,时针和分针逆时针走用了N分钟表上的时针和分针的夹角是90度,因为5点整时,表上的时针和分针的夹角是210度,于是得,(210+0.5N)-6N=90,解得N=240/11于是有:60-M-N=60-240/11-60/11=360/11故共经360/11分钟时针和分针第二次成90度.解:设经过x分钟。
6x-(30*4+0.5x)=90求得x=360/11所以过360/11分钟后,时分针第二次成90度。
对于时针分针秒针重合问题的求解以12小时为例,问题为:从开00:00:00到闭12:00:00时间段内,时针分针秒针重合的次数有多少次?各是何时?因为00:00:00和12:00:00都是此问题的解,考虑到周期的原因,故把两个端点只取一个做成求解区间。
四、时钟问题解法与算法公式解题关键:时钟问题属于行程问题中的追及问题。
钟面上按“时”分为12大格,按“分”分为60小格。
每小时,时针走1大格合5小格,分针走12大格合60小格,时针的转速是分针的,两针速度差是分针的速度的,分针每小时可追及。
1、二点到三点钟之间,分针与时针什么时候重合?分析:两点钟的时候,分针指向12,时针指向2,分针在时针后5×2=10(小格)。
而分针每分钟可追及1-=(小格),要两针重合,分针必须追上10小格,这样所需要时间应为(10÷)分钟。
解:(5×2)÷(1-)=10÷=10(分)答:2点10分时,两针重合。
2、在4点钟至5点钟之间,分针和时针在什么时候在同一条直线上?分析:分针与时针成一条直线时,两针之间相差30小格。
在4点钟的时候,分针指向12,时针指向4,分针在时针后5×4=20(小格)。
因分针比时针速度快,要成直线,分针必须追上时针(20小格)并超过时针(30小格)后,才能成一条直线。
因此,需追及(20+30)小格。
解:(5×4+30)÷(1-)=50÷=54(分)答:在4点54分时,分针和时针在同一条直线上。
3、在一点到二点之间,分针什么时候与时针构成直角?分析:分针与时针成直角,相差15小格(或在前或在后),一点时分针在时针后5×1=5小格,在成直角,分针必须追及并超过时针,才能构成直角。
所以分针需追及(5×1+15)小格或追及(5×1+45)小格。
解:(5×1+15)÷(1-)=20÷=21(分)或(5×1+45)÷(1-)=50÷=54(分)答:在1点21分和1点54分时,两针都成直角。
4、星期天,小明在室内阳光下看书,看书之前,小明看了一眼挂钟,发现时针与分针正好处在一条直线上。
时钟问题—两针重合时钟问题—两针重合含义:钟面上的分针追上时针与之重合。
这种追击,总是分针追时针,追击速度为分针每分钟前进的6度减去时针每分钟前进的0.5度,等于5.5度。
由于钟面是圆形,追击分为分针在后和在前两种情况:(1)分针在后顺向追击(顺向夹角÷5.5)=追击时间(2)分针在前不能后退只能跨越“12”再继续追击反向角度:(360-顺向夹角)÷5.5=追击时间例1:从时针指向“5”开始,经过多少分钟两针重合(分针追上时针)解答:分针:0×6=0时针:5×30+0×0.5=150(分针在后时针在前)(150-0)÷5.5=150÷5.5 =300/11(分)≈27分钟答:大约经过27分钟两针重合(此时钟面显示约5时27分)例2:从3:40开始,经过多少分钟两针第一次重合(相遇、分针追上时针)解答:分针:40×6=240时针:3×30+40×0.5=110240-110=130(分针在前时针在后)(360-130)÷5.5=460/11(分)≈42(分)3时40分+42分=4时22分答:大约经过42分钟两针重合(此时钟面显示约:4时22分)例3:从6时20分开始,经过多少分钟两针重合(分针追上时针)解答:分针:20×6=120时针:6×30+20×0.5=190(分针在后时针在前)(190-120)÷5.5=70÷5.5 =140/11(分)≈13(分)13+20=33(分)答:大约经过13分钟两针重合(此时钟面显示约6时33分)例4:从1:20开始,经过多少分钟两针第一次重合?解答:分针:20×6=120时针:1×30+20×0.5=40(分针在前时针在后)120-40=80(360-80)÷5.5=560/11(分)≈51(分)1时20分+51分=2时11分答:经过约51分钟两针第一次重合(此时钟面显示约为2时11分)。
时钟问题时钟问题是研究钟面上时针和分针关系的问题。
钟面的一周分为60分格,当分针走60格时,时针正好走5格,所以时针的速度是分针的5÷60=112,我们可以将分针的速度看成是1格/分,时针就是112格/分。
分针每走60÷(1-560)=56511(分),与时针重合一次。
时钟问题变化多端,也存在着不少的学问。
这里列出一个基本公式:在初始时刻需追赶的格数÷(1-112)=追及时间(分钟)。
其中,1-112为分针每分钟比时针多走的格数,即速度差。
〖经典例题〗例1、如图1,在时钟盘面上,1点45分时的时针与分针之间的夹角是多少?【分析】将时钟盘面分成12个分格,那么在1点45分,分针必落在9这个位置上,而时钟针不在1这个位置上,而是在1和2之间的某个位置上,也就是要求出从1点到1点45分,45分钟的时间时针转过的角度。
时针走60分钟转过360°÷12=30°,那么走45分钟,转过300×4560=22.50。
而且从1点45分时时钟盘面上时针、分针的位置易知,从9点整到13点整之间包含有4个大格。
那么此时时针与分针的夹角是这两部分角度的和:30×4+22.50=142.50。
例2、在10点与11点之间,钟面上时针和分针在什么时刻垂直?【分析】分两种情况进行讨论。
(1)在顺时针方向上分针与时针成270°角:在顺时针方向上当分针与时针成270°时,分针落后时针60×(270÷360)=45(个)格,而在10点整时分针落后时针5×10=50(个)格。
因此,在这段时间内,分针要比时针多走50-45=5(个)格,而每分钟分针比时针多走(1-1 12)个格,因此所用的时间为:5÷(1-112)=5511(分钟)。
(2)在顺时针方向上分针与时针成90°角:在顺时针方向上当分针与时针成90°角时,分针落后时针60÷(90÷360)=15个格,因此在这段时间内,分针要比时针多走50-15=35个格,所以所用的时间为:35÷(1-112)=38211(分钟)。
时针分针重合规律1. 问题描述时针和分针在不同的时间点上是否会重合?如果会,重合的规律是什么?这个问题引起了人们的兴趣和好奇心。
本文将深入探讨时针与分针的重合问题,通过数学建模和分析来寻找规律。
2. 分析与建模为了分析时针和分针的重合问题,我们首先需要对时钟进行建模。
我们可以把时钟圆盘视为一个以中心为原点的二维坐标系。
时钟圆盘的半径为R,在该坐标系中表示为一个单位线段。
通过该建模,我们可以将时针和分针的位置表示为一个二维向量。
设时钟的时间为t小时m分钟,时针和分针的位置分别用矢量Hi和Mi表示,其中:Hi = (R * cos(π/6 * (t + m/60)), R * sin(π/6 * (t + m/60)))Mi = (R * cos(π/30 * m), R * sin(π/30 * m))为了简化问题,我们可以将时针和分针的位置向量标准化为单位向量。
标准化后的向量表示时针和分针在坐标系中的方向。
标准化时针和分针向量分别用hi和mi表示,其中:hi = (cos(π/6 * (t + m/60)), sin(π/6 * (t + m/60)))mi = (cos(π/30 * m), sin(π/30 * m))3. 分析时针与分针的夹角为了研究时针与分针的重合问题,我们需要分析时针与分针之间的夹角。
设时针和分针的夹角为θ,则有:cosθ = hi·mi(hi和mi的点积)根据向量的点积公式,我们有:cosθ = cos(π/6 * (t + m/60)) * cos(π/30 * m) + sin(π/6 * (t + m/60)) * sin (π/30 * m)= cos(π/6 * (t + m/60) - π/30 * m)根据余弦函数的周期性,我们可以得到:θ = π/6 * (t + m/60) - π/30 * m + 2kπ(k为整数)4. 时针与分针的重叠条件为了判断时针和分针是否重合,我们需要找到重合角度的条件。
时针分针重合问题公式时针分针重合问题公式在时针和分针上,我们经常会遇到它们重合的情况。
这种情况可以转化为一个简单的数学问题,通过一些公式的运用,我们可以准确地计算出它们相遇的时间点。
以下是一些相关公式和举例解释:1. 时针走过的角度时针一小时走过30度(360度/12小时),它每分钟走过的角度可以通过以下公式计算:时针每分钟的角度 = 30度 / 60 = 度2. 分针走过的角度分针一小时走过360度,它每分钟走过的角度可以通过以下公式计算:分针每分钟的角度 = 360度 / 60 = 6度3. 时针和分针的角度差当时针和分针重合时,它们的角度差是0度。
通过以下公式可以计算它们重合时的所需时间:时针和分针重合时的时间 = 时针和分针的角度差 / 每分钟角度差4. 示例解释假设当前时间是12点,我们来计算时针和分针何时会重合。
首先,计算时针和分针的角度差:时针和分针的角度差 = 0度 - 0度 = 0度然后,计算时针和分针重合时的时间:时针和分针重合时的时间 = 0度 / (度/分钟) = 0分钟因此,在12点时,时针和分针已经重合。
再举一个例子,假设当前时间是3点15分,我们来计算时针和分针何时会重合。
首先,计算时针和分针的角度差:时针和分针的角度差 = 180度 - 90度 = 90度然后,计算时针和分针重合时的时间:时针和分针重合时的时间 = 90度 / (度/分钟) = 180分钟 = 3小时因此,在3点15分后的3小时,时针和分针将会重合。
通过以上公式和示例,我们可以准确地计算时针和分针的重合时间。
这些公式为我们解决时针分针重合问题提供了一个简单而有效的方法。
5. 公式总结根据以上解释和示例,我们可以总结出时针分针重合问题的相关公式:1.时针每分钟的角度 = 30度 / 60 = 度/分钟2.分针每分钟的角度 = 360度 / 60 = 6度/分钟3.时针和分针的角度差 = 时针所在位置的角度 - 分针所在位置的角度通过这些公式,我们可以根据当前时刻计算出时针和分针何时会重合。
时针分针重合规律时针分针重合规律是指在一个12小时的时间周期内,时针和分针在什么时候会重合。
这个问题涉及到时钟的运行原理和数学计算,下面我将详细解释这个规律。
一、时钟的运行原理时钟是一种用来测量时间的装置,它由一个固定在表盘上的时针、分针和秒针组成。
这些指针围绕表盘上的中心轴旋转,以不同的速度表示小时、分钟和秒钟。
1. 时针:用于显示小时数,每12小时转动一圈。
2. 分针:用于显示分钟数,每60分钟转动一圈。
3. 秒针:用于显示秒数,每60秒转动一圈。
二、重合规律当时针和分针重合时,表示分钟数为整点。
我们可以通过以下步骤来推导出重合规律:1. 假设在整点时刻(例如12:00、1:00、2:00等),两个指针是重合的。
2. 在整点之后,随着时间的流逝,分针相对于时针会先走过几个刻度。
假设这个差距为x刻度。
3. 当分针走过x刻度后,两个指针再次重合。
此时,时针已经走过了一段时间,假设为y小时。
4. 根据时钟的运行原理,可以得出以下等式:y = x / 11。
因为时针每走一圈,分针需要走12个刻度,所以相对于时针来说,分针每走一个刻度,时针只走1/12个刻度。
5. 根据上述等式,我们可以计算出在整点之后的任意时间点,两个指针重合的时间间隔。
三、具体计算方法根据上述推导过程,我们可以使用以下公式来计算重合的时间间隔:1. 首先确定整点时刻(例如12:00、1:00、2:00等)。
2. 然后确定当前时间与整点时刻之间的分钟数差值(例如当前时间是12:30,则差值为30分钟)。
3. 将差值代入公式 y = x / 11 中计算出 y 的值。
4. 最后将 y 的小时部分加到整点时刻的小时数上,并将 y 的分钟部分转换成对应的分钟数。
这样就得到了两个指针重合的时间。
举例说明:假设当前时间是3:45,则整点时刻为3:00。
计算差值:45 - 0 = 45分钟。
代入公式:y = 45 / 11 ≈ 4.09。
将整点时刻的小时数3加上y 的整数部分4,得到7;将y的小数部分0.09转换成对应的分钟数,得到5。
关于时针和分针重合问题的解法
公式为:x/5=(x+a)/60
时针的角速度是每小时360/12 度。
分针的角速度是每小时360 度。
从0点开始,设时间为t,t<12(12小时内)。
分针走过的“总路程”(总度数)对360取余数,与时针路程相同即重合。
由于时针与分针各自都匀速运动,所以显然,以后每隔1小时零分钟,时针与分针都会重合一次。
因而,在0:00与12:00之间,时针与分针重合的时刻有:
0点0分,1点分,2点分;
3点分,4点分,5点分;
6点分,7点分,8点分。
扩展资料:
钟表每12小时,时针转一bai圈,分针转12圈,即分针11次追上时针,所以取0:00为起点,上半天把时钟分为11等分即可。
钟表通常是以内机的大小来区别的。
按国际惯例,机芯直径超过80毫米、厚度超过30毫米的为钟;直径不大于20毫米或机芯面积不大于314平方毫米的,称为女表。
手表是人类所发明的最小、最坚固、最精密的机械之一。
4点钟后,从时针和分针第一次成90度角到第二次成90度,经过了多长时间?
方法一:
时针的角速度是30度/h
分针的角速度是360度/h
时针先比分针多90度,过X小时后分针反比时针多90度.
时针走了30X度,分针走了360X度,或是180度+30X度
即:360X=180+30X
X=6/11(小时) 约32分43.72秒
方法二:
解:分针每分转6度,时针每分转0.5度。
设共经过x分钟。
6x=120+0.5x+90
x=38又2/11
答:共经过38又2/11分钟。
设第一次成90度是4点A分,第二次成90度是4点B分
120+6A/12-6A=90,A=60/11
6B-120-6B/12=90,B=420/11
B-A=420/11-60/11=360/11
4点钟后,从时针到分针第二次成90度的角,共经过多少分钟?
解:因时针的速度为每分钟走0.5度,分针的速度为每分钟走6度.
(1)设从4点钟开始走用时M分钟后表上的时针和分针的夹角是90度,(这时,时针和分针第次一成90度)因为4点整时,表上的时针和分针的夹角是120度,于是得, (120+0.5M)-6M=90,解得M=60/11
(2)时针到分针第二次成90度,不应超过5点,故我们假设5点整时,时针和分针
逆时针走用了N分钟表上的时针和分针的夹角是90度,因为5点整时,表上的时针和分针的夹角是210度,于是得,
(210+0.5N)-6N=90,解得N=240/11
于是有:60-M-N=60-240/11-60/11=360/11
故共经360/11分钟时针和分针第二次成90度.
解:设经过x分钟。
6x-(30*4+0.5x)=90
求得x=360/11
所以过360/11分钟后,时分针第二次成90度。
对于时针分针秒针重合问题的求解
以12小时为例,问题为:从开00:00:00到闭12:00:00时间段内,时针分针秒针重合的次数有多少次?各是何时?
因为00:00:00和12:00:00都是此问题的解,考虑到周期的原因,故把两个端点只取一个做成求解区间。
先考虑时针和分针重合的情形:
假设某一时刻时针和00:00:00时针的顺时针方向夹角为x度,则此时分针和00:00:00时针的顺时针方向夹角为12x-n*360度(n为使12x-n*360大于0且小于等于360的最小自然数)。
那么根据条件就有方程:x=12x-n*360 (n同上)
则此方程解为:x=
360/11, 720/11, 1080/11, 1440/11, 1800/11, 2160/11, 2520/11, 2880/11, 3240/11, 3600/11, 3960/11
即约x=32.7, 65.5, 98.2, 130.9, 163.6, 196.4, 229.1, 261.8, 294.5, 327.3, 360对应的时间t(秒):t=x/360*12*60*60,约为:
3927.3, 7854.5, 11781.8, 15709.1, 19636.4, 23563.6, 27490.9, 31418.2, 35345.5, 39272.7, 43200.0
即1:5:27.3, 2:10:54.5, 3:16:21.8, 4:21:49.1, 5:27:16.4, 6:32:43.6, 7:38:10.9, 8:43:38.2, 9:49:5.5, 10:54:32.7, 12:0:0
考虑此时秒针位置,其对应的角度s(度)为:s=(t-floor(t,60))/60*360,(floor为取整函数),约为:
163.6, 327.3, 130.9, 294.5, 98.2, 261.8, 65.5, 229.1, 32.7, 196.4, 360
可见只有最后一个位置重合,即三针同为360度时,也即12:00:00时重合。
钟表重合公式------x/5=(x+a)/60 a
x/5=(x+a)/60这个式子大家推导和运用也说得不少了,我给出一个更简单的公式:X时Y分时两针重合的公式是:“Y=60X/11”或“X=11Y/60”.我们设X时Y分时两针重合,0时(12时)的刻度线为0度起点线.因为分针每分钟转360/60=6度,时针每分钟转360/720=0.5度,时针1小时转30度,所以X时Y分时,时针与0度起点线的夹角是:30X+0.5Y,X 时Y分时,分针与0度起点线的夹角是:6Y.两个角度相等时两针重合,所以30X+0.5Y=6Y,所以Y=60X/11.
运用这个公式,只要将小时数X代入,就可求出分数Y,从而就能计算出X时Y分时两针重合。
例如:X=5时,Y=300/11=27又3/11(分).即5时27又3/11分钟时两针是重合的。
与“x/5=(x+a)/60”结果一致,但更加简明。
不需要解方程了,只要求出一个代数式的值就行了。
再如X=3时,Y=16又4/11(分).即3时16又4/11分钟时也是重合的。
计算是不是很简便?
(“x/5=(x+a)/60”是一个关系式,这个式子应该求出X的表达式后运用才方便一点)
3时重合:
3点到4点,时针分针重合几次,什么时间重合?
解:我们设3时Y分时两针重合,0时(12时)的刻度线为0度起点线
因为分针每分钟转360/60=6度,时针每分钟转360/720=0.5度,时针1小时转30度 .
所以3时Y分时,时针与0度起点线的夹角是:90+0.5Y
3时Y分时,分针与0度起点线的夹角是:6Y
所以90+0.5Y=6Y
解得:Y=16又4/11
所以3时16又4/11 分时分针和时针重合
在3:45的时候分针和时针所呈的角度是多少度?
解:我们设0时(12时)的刻度线为0度起点线
因为分针每分钟转360/60=6度,时针每分钟转360/720=0.5度,时针1小时转30度
所以3时45分时,时针与0度起点线的夹角是:90°+0.5°*45=112.5°
3时45分时,分针与0度起点线的夹角是:6°*45=270°
所以此时时针与分针的夹角是
270°-112.5°=157.5°
4时交角90度:在4点和5点之间,几点几分时针和分针成90度角?
/question/81386111.html
解:我们设4时Y分时两针重合,0时(12时)的刻度线为0度起点线
因为分针每分钟转360/60=6度,时针每分钟转360/720=0.5度,时针1小时转30度
所以4时Y分时,时针与0度起点线的夹角是:120+0.5Y
4时Y分时,分针与0度起点线的夹角是:6Y
所以120+0.5Y-6Y=90
或6Y-(120+0.5Y)=90
解得:Y=5又5/11
或Y=38又2/11
所以4时5又5/11分或4时38又2/11分时夹角为90度。