隧道洞外控制测量
- 格式:doc
- 大小:327.50 KB
- 文档页数:18
第八章洞外GPS控制测量对隧洞贯通的误差影响分析8.1 隧洞洞外控制测量的方法及特点8.1.1 隧洞性质及用途根据隧洞的性质和用途,隧洞的分类可分为:公路隧洞、铁路隧洞、水工隧洞、过江(河)隧洞等多种工程隧洞。
在水利工程中,较为常见的隧洞形式是输水隧洞,也就是在山体中或地下开凿的过水洞,其主要由进水口、洞身和出口段组成。
进出口布置、洞线选择以及洞身断面的形状和尺寸,受地形、地质、地应力、枢纽布置、运用要求和施工条件等因素所制约,需要通过技术经济比较后确定。
一般情况下隧洞断面大小不一,施工工序多,干扰大,施工条件差,工期较长。
隧洞控制测量包括洞外和洞内两部分,每一部分又可分为高程和平面控制。
洞外平面控制测量常采用三角网(三角锁的形式较为常见)、电磁波测距导线或GPS网。
隧洞控制测量的主要目的在于,保障隧洞的正确贯通,即确保两个或两个以上的掘进工作面在预定地点正确衔接连通。
精度要求主要取决于隧洞贯通精度的要求、隧洞长度与形状、开挖面的数量以及施工方法等。
图8.1 隧洞开挖方式(a、b、d为平洞;c为竖井;e为斜井)隧洞属于地下工程,一般情况下隧洞进行相向开挖,有时为了加快施工进度,需要增加工作面,在隧洞中心线上增开竖井,或者在适当的地方向中心线开挖平洞或斜洞,有几个洞口同时相向或相背开挖(图8.1)。
开挖时互相不通视,要求在洞轴线的某一点贯通,这样需要严格控制开挖的方向和高程。
因此隧洞施工测量的基本任务是:建立平面和高程施工控制网,标定隧洞中心线,指示开挖方向,确定坡度,保证按规定的精度贯通,使隧洞断面几何形状符合设计要求。
8.1.2 洞外控制测量布设的方法及特点洞外控制测量一般布设成独立网。
进行地面控制测量的目的,是为了确定隧洞洞口位置,并为确定中线掘进方向和高程放样提供依据,它包括平面控制测量和高程控制测量。
(1)洞外控制网布设步骤1)收集资料需要收集的资料很多,包括在该区的大比例尺地形图、路线的平面图、以前的地面控制资料,以及气象、水文、交通资料等等。
隧道地面控制测量一、洞外平面控制测量的建立洞外平面控制测量的主要任务,是测定两相向开挖洞口各控制点的相对位置,并与洞外线路中线点相联系,以便根据洞口控制点进洞,使隧道能以设计的精度按照设计的位置修建,保证以规定精度正确贯通。
在施工前期,隧道洞口附近已经布设了基础控制网、线路控制网、线路水准基点控制点,但点位密度还无法满足隧道施工控制测量要求,另外原有控制网的精度是按铁路类型、设计时速、轨道类型确定的,而隧道控制网的精度是根据隧道贯通精度确定的,精度要求可能高于CPⅠ、CPⅡ网和水准基点网的精度,因此,隧道施工时应根据隧道贯通长度、辅助坑道布置、隧道宽度、线路曲线半径等因素,以线路控制网CPⅠ、CPⅡ和水准基点网为依据,以满足贯通精度、轨道铺设精度为目标,设计并建立相应的隧道施工平面、高程控制网。
隧道洞外平面控制测量方法有:GNSS测量、导线测量、三角形网测量及其组合测量方法。
1.隧道洞外控制等级选用隧道洞外控制测量的等级划分、适用长度和精度要求可参考表7.1.1,公路洞外导线控制测量技术参照表7.1.2规定。
表7.1.1 隧道平面控制测量技术要求(铁路隧道)表7.1.2 隧道平面控制测量等级(公路隧道)2.导线测量目前,全站仪已普及使用,则导线测量建立洞外平面控制测量已成为主要方法。
导线法平面控制就是用导线连接进出口中线控制点,按精密导线方法实测和计算,求得隧道两端洞口中线控制点间的相对位置,作为引测进洞和洞内测量的依据。
对于曲线隧道,还应将两切线上控制点纳入导线,通过导线精确求算隧道所在曲线转向角,以确定曲线各要素。
通过导线获取两端洞口控制点与交点的相对位置。
精密导线布设要求及观测方法已在前面阐述。
施工控制网导线布设要求:洞外平面控制网应沿两洞口连线方向布设成多边形组合图形,构成闭合检核条件,每个导线环由4~6条边构成,导线网图形简单。
导线边长应根据隧道长度和辅助坑道数量及分布情况,结合地形条件和仪器测程确定,宜采用长边导线。
隧道洞内外导线测量方法及注意事项隧道洞内外导线测量方法及注意事项一、隧道导线点布设1、洞外平面控制网一般采用GPS测量,每个洞口应沿洞口连线的方向布设4个控制点,形成大地四边形,点间尽量相互通视,点间的距离不小于300m为宜(规范中无明确规定),各点间的距离相差不宜过大,一般相邻点间边长之比不能超过1:3。
并且有不少于2个点与隧道洞口通视,作为与洞内传递方向的洞外联系边,且该联系边长度不宜小于300m。
洞外控制点连线以与隧道中心线方向平行或垂直为宜,以减小点位误差对贯通面横向误差影响。
点位的埋设应稳定,便于长期保存。
布点时还应注意进洞联系边的俯仰角不应过大,规范要求:GPS控制网进洞联系边最大俯仰角不宜大于5°,导线网、三角形网的最大俯仰角不宜大于15°。
2、洞外水准点一般每个洞口应埋设不少于2个以上的水准点。
水准点应尽可能与洞口等高,两水准点间的高差应以水准测量1~2站即可联测为宜。
水准点应埋设在洞口附近不受施工影响的地方,且便于与隧道洞内联测为宜。
3、洞内导线一般大于1、5km的隧道应布设双导线,形成多边形闭合环,每个闭合环一般由4~6条边构成。
导线点间距一般在200m 左右,不宜过长或过短。
相邻导线边长不宜相差太大,相邻边长之比不能超过1:3。
一般导线点离障碍物的距离不宜小于0、2m。
4、洞内水准点一般200m~500m设置一对,应选择在稳定便于长期保存。
隧道洞内外导线测量方法及注意事项 隧道洞内、外导线布设示意图洞外控制点洞外控制点洞外控制点洞外控制点洞口投点进洞方向线,距离不小于300m进洞方向线,距离不小于300m洞内导线,间距控制在200m左右二、隧道导线测量方法与注意事项1、隧道导线测量主要内容:洞外平面、高程测量,洞口投点测量,进洞联系测量,洞内导线、高程测量。
2、洞外平面、高程测量2、1洞外平面GPS测量:洞外平面测量目前一般均采用GPS测量,按要求布设好各洞口控制点,按照规范要求的测量等级、精度与方法组织测量即可,测量计算方法项目用的较小,不详细叙述。
隧道洞内外导线测量方法及注意事项一、隧道导线点布设1、洞外平面控制网一般采用GPS测量,每个洞口应沿洞口连线的方向布设4个控制点,形成大地四边形,点间尽量相互通视,点间的距离不小于300m为宜(规范中无明确规定),各点间的距离相差不宜过大,一般相邻点间边长之比不能超过1:3。
并且有不少于2个点与隧道洞口通视,作为与洞内传递方向的洞外联系边,且该联系边长度不宜小于300m。
洞外控制点连线以与隧道中心线方向平行或垂直为宜,以减小点位误差对贯通面横向误差影响。
点位的埋设应稳定,便于长期保存。
布点时还应注意进洞联系边的俯仰角不应过大,规范要求:GPS控制网进洞联系边最大俯仰角不宜大于5°,导线网、三角形网的最大俯仰角不宜大于15°。
2、洞外水准点一般每个洞口应埋设不少于2个以上的水准点。
水准点应尽可能与洞口等高,两水准点间的高差应以水准测量1~2站即可联测为宜。
水准点应埋设在洞口附近不受施工影响的地方,且便于与隧道洞内联测为宜。
3、洞内导线一般大于1.5km的隧道应布设双导线,形成多边形闭合环,每个闭合环一般由4~6条边构成。
导线点间距一般在200m 左右,不宜过长或过短。
相邻导线边长不宜相差太大,相邻边长之比不能超过1:3。
一般导线点离障碍物的距离不宜小于0.2m。
4、洞内水准点一般200m~500m设置一对,应选择在稳定便于长期保存。
隧道洞内、外导线布设示意图洞外控制点洞外控制点洞外控制点洞外控制点洞口投点进洞方向线,距离不小于300m进洞方向线,距离不小于300m洞内导线,间距控制在200m左右二、隧道导线测量方法和注意事项1、隧道导线测量主要内容:洞外平面、高程测量,洞口投点测量,进洞联系测量,洞内导线、高程测量。
2、洞外平面、高程测量2.1洞外平面GPS测量:洞外平面测量目前一般均采用GPS测量,按要求布设好各洞口控制点,按照规范要求的测量等级、精度和方法组织测量即可,测量计算方法项目用的较小,不详细叙述。
隧道施工的基本要求一、隧道工程测量1、洞外控制测量1。
1隧道洞外平面控制,应符合测规的有关精度要求和作业要求。
高程控制应采用水准测量进行施测。
1.2洞外控制测量应在每个洞口附近测设不少于三个平面控制点和两个水准点,作为洞内测量的起测依据。
1.3隧道水准测量的高程应利用一端洞口线路定测水准点的高程作为起始高程进行测量,并传算到隧道另一端洞口进行闭合。
2、洞内控制测量布设洞内导线应以洞口投点为起始点组成多边形闭合导线环。
导线边的边长应根据测量设计要求,并考虑通视条件,宜选择长边,在直线地段不宜少于200米,曲线地段不宜短于70米。
3、洞内施工测量及竣工测量3。
1洞内施工测量3。
1。
1用导线测设,中线点间距直线地段150~250米,曲线地段60~100米;应根据导线设立,其距离可用导线边长距离;用中线法进行洞内控制测量的隧道,中线点间距距离直线地段不宜短于100米,曲线地段不宜短于50米。
供衬砌用的临时点必须用经纬仪测定,其间距可视放样需要适当加密,以不大于10米为宜。
3.1。
2洞内施工用的水准点应根据洞外、洞内已设定的水准点按施工需要加设,并应经常复核,其精度可按中线复测精度执行。
待控测后该水准点应再作修正.为保证隧道底部按图纸所示的纵坡开挖并满足衬砌的正确放样,洞内每隔50米应设一个水准点,隧道中线测桩之间距,在直线上不得超过10米,在曲线上不得超过米。
3。
1。
3隧道的衬砌内轮廓应符合设计要求,在立模前应复核中线和高程,并放出横断面十字线方向,标出拱架顶、边墙底和起拱线高程。
立模后必须进行检查及校正,以确保无误。
3.1.4隧道贯通后,应将相向两方向测设的中线,各自向前延伸一适当距离,如贯通面附近有曲线始终点时,则应延伸至曲线以外的直线上一定距离,以确定中线调整。
3.1.5当隧道贯通后,中线及高程的实际贯通误差应在未衬砌地段进行调整。
该段的开挖及衬砌均应以调整后的中线、高程进行放样。
其调整方法按«测规»办理。
、隧道洞外控制测量————————————————————————————————作者:————————————————————————————————日期:隧道洞外控制测量QB/ZTYJGYGF-SD-0401-2011第五工程有限公司谯生有1 前言1.1工艺工法概况随着测量技术的发展和测量器具的更新,隧道洞外控制测量技术得到了日新月异的发展。
隧道平面洞外控制测量最初是通过铟钢线尺测量基线然后用高精度经纬仪测角布设三角锁进行控制测量,70年代以来,随着红外测距仪广泛应用于测量领域,精密导线测量逐渐取代劳动强度大的三角锁测量而成为隧道洞外控制测量的主要方法,90年代以后,GPS静态精密定位技术逐渐应用于隧道洞外平面控制测量,目前,隧道平面控制测量优先选用GPS技术,只有部分中短隧道洞外平面控制测量使用导线测量。
洞外高程控制测量长期以来一直采用几何水准测量的方法,红外测距仪、全站仪广泛使用后,光电测距三角高程广泛用于中长隧道高程控制测量,对于测量精度要求高的特长隧道目前仍然采用几何水准测量。
1.2工艺原理通过在各开挖洞口布设控制点,并采用相应的测量设备和技术方法测量控制点的坐标及高程,从而建立隧道各开挖面之间的空间几何关系,为洞内控制测量提供测量基准,确保隧道施工过程中测量控制及贯通精度。
2 工艺工法特点基于测量设备的更新换代,摒弃了选点困难劳动强度大的三角测量技术,优先采用GPS技术进行洞外平面控制测量,无需翻山越岭即可实现洞外平面控制测量,大大提高了测量效率,降低了测量成本。
根据隧道贯通精度要求,在满足贯通精度的条件下,洞外高程控制测量采用光电测距三角高程测量,对精度要求高的特长隧道、高速铁路隧道,洞外高程控制测量采用精密几何水准测量,既能满足精度要求,又能最大限度提高测量效率。
3 适用范围适用于铁路、公路、地铁、水利、水电、矿山等隧道工程洞外控制测量。
4 主要引用标准《铁路工程测量规范》TB10101《高速铁路工程测量规范》TB 10601 《城市轨道交通工程测量规范》GB50308 《公路勘测规范》JTG C10《水利水电工程测量规范(规划设计阶段)》SL 197 《工程测量规范》GB 50026 5 洞外控制测量施测方法洞外平面控制测量采用导线测量、GPS 测量施测,高程控制测量采用光电测距三角高程或几何水准测量施测。