大学物理化学热力学第一定律
- 格式:pptx
- 大小:1.16 MB
- 文档页数:50
热力学第一定律一、基本概念1.系统与环境敞开系统:与环境既有能量交换又有物质交换的系统。
封闭系统:与环境只有能量交换而无物质交换的系统。
(经典热力学主要研究的系统)孤立系统:不能以任何方式与环境发生相互作用的系统。
2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、体积V等。
根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。
广度性质:广度性质的值与系统中所含物质的量成正比,如体积、质量、熵、热容等,这种性质的函数具有加和性,是数学函数中的一次函数,即物质的量扩大a倍,则相应的广度函数便扩大a倍。
强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。
注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。
二、热力学第一定律热力学第一定律的数学表达式:对于一个微小的变化状态为:dU=公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。
它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。
或者说dU与过程无关而δQ和δW却与过程有关。
这里的W既包括体积功也包括非体积功。
以上两个式子便是热力学第一定律的数学表达式。
它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。
三、体积功的计算1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。
将一定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。
当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境之间可以自由移动的界面。
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA 。
热 Q:体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能与焓只就是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T)p (2)等容热容:C v =δQ v /dT = (∂U/∂T)v 常温下单原子分子:C v,m =C v,m t =3R/2常温下双原子分子:C v,m =C v,m t +C v,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V)T ](∂V/∂T)p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 与ΔU:ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=VT p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T V T S ⎪⎭⎫ ⎝⎛∂∂ C p =T pT S ⎪⎭⎫⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap,fus,sub 。
物理化学知识点总结(热力学第一定律).doc物理化学知识点总结(热力学第一定律)摘要:热力学第一定律是热力学的基础之一,它描述了能量守恒的原理。
本文将对热力学第一定律进行详细的阐述,包括其定义、数学表达式、应用以及在物理化学中的重要作用。
关键词:热力学第一定律;能量守恒;物理化学;系统;状态函数一、引言热力学是研究能量转换和能量传递规律的科学。
热力学第一定律,也称为能量守恒定律,是理解和分析热力学过程的关键。
二、热力学第一定律的定义热力学第一定律指出,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式,或者从一个系统转移到另一个系统。
在封闭系统中,能量的总量保持不变。
三、热力学第一定律的数学表达式对于一个封闭系统,热力学第一定律可以用以下数学表达式表示:[ \Delta U = Q - W ]其中,( \Delta U ) 是系统内能的变化,( Q ) 是系统吸收的热量,( W ) 是系统对外做的功。
四、系统与状态函数在热力学中,系统是指我们研究的对象,它可以是封闭的或开放的。
状态函数是描述系统状态的物理量,如温度、压力、体积等,它们只与系统的状态有关,而与系统状态变化的过程无关。
五、热力学第一定律的应用理想气体的等体过程在等体过程中,体积保持不变,系统对外不做功,热力学第一定律简化为 ( \Delta U = Q )。
理想气体的等压过程在等压过程中,压力保持不变,系统对外做膨胀功,热力学第一定律可以表示为 ( \Delta U = Q + W )。
理想气体的等温过程在等温过程中,温度保持不变,理想气体的内能不发生变化,热力学第一定律简化为 ( 0 = Q - W )。
六、热力学第一定律与能量转换热力学第一定律不仅适用于热能和机械能之间的转换,还适用于其他形式的能量,如电能、化学能等。
七、热力学第一定律在物理化学中的应用化学反应在化学反应中,热力学第一定律用于计算反应热,即反应过程中系统吸收或释放的热量。
热一定律总结一、 通用公式ΔU = Q + W绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0焓的定义式:H = U + pV ΔH = ΔU + Δ(pV )典型例题:思考题第3题,第4题。
二、 理想气体的单纯pVT 变化恒温:ΔU = ΔH = 0变温: 或或 如恒容,ΔU = Q ,否则不一定相等。
如恒压,ΔH = Q ,否则不一定相等。
C p , m – C V , m = R双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2典型例题:思考题第2,3,4题书、三、 凝聚态物质的ΔU 和ΔH 只和温度有关或典型例题:书ΔU = n C V,m d T T 2T1 ∫ ΔH = n C p, md T T2 T1∫ ΔU = nC V, m (T 2-T 1) ΔH = nC p, m (T 2-T 1)ΔU ≈ ΔH = nC p, m d T T 2T 1∫ΔU ≈ ΔH = nC p, m (T 2-T 1)四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)ΔU ≈ ΔH –ΔnRT(Δn :气体摩尔数的变化量。
如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。
kPa 及其对应温度下的相变可以查表。
其它温度下的相变要设计状态函数不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m计算。
或典型例题:作业题第3题五、化学反应焓的计算其他温度:状态函数法Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3α ββ α ΔH m (T ) αβΔH 1ΔH 3Δ H m (T 0)α β可逆相变K:ΔH = Q p = n ΔH mα βΔr H m =Δf H (生) – Δf H (反) = y Δf H m (Y) + z Δf H m (Z) – a Δf H m (A) – b Δf H m (B) Δr H m =Δc H (反) – Δc H (生) = a Δc H m (A) + b Δc H m (B) –y Δc H m (Y) – z Δc H m (Z)ΔH = nC p, m (T 2-T 1)ΔH = n C p, m d TT 2T1∫ΔU 和ΔH 的关系:ΔU = ΔH –ΔnRT (Δn :气体摩尔数的变化量。
太原理工大学物理化学热力学第一定律1.热力学第一定律与状态函数 (1)热力学第一定律 热力学第一定律即能量转化与守恒定律,其数学形式为: ΔU=Q+W 其中ΔU 为系统经历某一变化过程(process)热力学能(thermodynamic energy)的变化, Q 和 W 分别为伴随该过程系统与环境交换的热和功(包括体积功和非体积功) 。
热力学第一定 律揭示了ΔU,Q 和 W 之间的关系。
应用热力学第一定律可由 ΔU,Q 和 W 中的任意两个量求第三个量。
(2)状态函数 在热力学中,有一种非常重要的量——状态函数(state function) ,如热力学第一定律中的 热力学能 U,还有以后要介绍的焓 H(enthalpy) 、熵 S(entropy) 、亥姆霍兹函数 A(Helmholtz function)和吉布斯函数 G(Gibbs function)等,这些状态函数具有以下共性: ①系统的状态一定,所有状态函数都有定值; ②系统的状态函数变化值只与始终态有关,而与变化的途径(path)无关,即 ③对于循环过程,系统的状态函数变化值等于零,即 ∫ dM =0。
此外,对于状态函数还有如下关系: 对于组成不变的单相系统,任一状态函数 M 都是其他任意两个独立自变量(状态函数)x、 y 的单值函数,表示为 M=M(x、y),则∫M2M1dM = ∆M ;⎛ ∂M ⎞ ⎛ ∂M ⎞ dM = ⎜ ⎟ dx + ⎜ ⎜ ∂y ⎟ ⎟ dy ⎝ ∂x ⎠ y ⎝ ⎠x⎛ ∂M ⎞ ⎛ ∂x ⎞ ⎛ ∂y ⎞ ⎟ = −1 (循环关系式) ⎟ ⎜ ⎜ ⎟ ⎜ ⎜ ⎟ ⎝ ∂x ⎠ y ⎝ ∂y ⎠ M ⎝ ∂M ⎠ x∂2M ∂2M = (尤拉关系式) ∂x∂y ∂y∂x热力学在解决各种实际问题时,正是以状态函数的上述性质为基础的。
如利用上述性质②, 在计算一定始终态间的某状态函数增量时,为了简化问题,可以撇开实际的复杂过程,设计简 单的或利用已知数据较多的过程进行计算。
1.1 热力学第一定律1.1.1 热力学的研究对象1.热力学:研究能量相互转换过程中所遵循的规律的科学2.化学热力学:用热力学的基本原理来研究化学现象以及和化学有关的物理现象的科学3.研究的内容:研究化学变化的方向和限度。
4.热力学方法:研究对象是由大量质点(原子、分子、离子等)构成的宏观物质体系,所得结论是大量质点集体的平均行为,具有统计意义。
5.局限性:只能告诉我们在某种条件下,变化能否自动发生,发生后进行到什么程度,但不能告诉我们变化所需的时间以及具体的机理———可能性1.1.2 基本概念1.1.2.1 体系与环境1.体系: 所研究的对象。
(物系或系统)2.环境:体系以外并与体系密切相关的部分。
3. 体系分类:敞开体系: 体系与环境之间既有物质交换又有能量交换() 封闭体系: 体系与环境之间没有物质交换只有能量交换() 孤立体系: 体系与环境之间没有物质交换没有能量交换 ()1.1.2.2 状态与状态函数1. 状态:体系的物理性质和化学性质的综合表现状态函数:描述体系状态的性质注:(1)体系与环境的划分不绝对 (2)体系与环境的界面可以是实际存在的,也可以是虚拟的2. 状态函数的特点:A.状态一定,值一定;反之亦然B.异途同归,值变相等,周而复始,数值还原。
C.状态函数的微小变化是全微分,并且可积分D.状态函数代数运算的结果仍然是状态函数,如ρ=m/VE.状态函数之间存在着相互联系,如对于一定量的理想气体P、V、T之间存在下列关系PV=nRT说明:①定量纯物质均相体系或组成不变的多组分均相体系:只需两个独立改变的状态函数就能确定体系的状态②组成可变的多组分均相体系:除两个独立改变的状态函数之外,还需各组分的物质的量3. 状态函数的分类:根据状态函数与体系物质的量的关系,状态函数可以分为两类:广度性质:其数值与体系中物质的量成正比,具有加和性。
整个体系的该广度性质的数值,是组成体系的各部分该性质数值的总和强度性质:其数值与体系中物质的量无关,没有加和性。
第一章 热力学第一定律和热化学理想气体:分子间无相互作用力,分子本身没有体积的气体PV=nRT 适用于理想气体,其中T 单位为K(开氏度=摄氏度+273.15),V 单位为m 3,R=8.314J.mol -1.k -1第二节热力学基本概念1.*敞开系统:系统与环境之间没有物质的交换,只要能量的交换孤立系统(隔离系统)无物质,无能量交换2.状态函数:只与始终态有关,V 、P 、T 、热容、热力学能、焓、熵、吉布斯函数、亥姆兹函数等都属于状态函数过程函数:与途径有关3.*热和功(状态函数)热(Q )是无序的;功(W)是有序的,dv p 21v v e ⎰-=W (所采用的压力均外压力)系统吸热为正,Q>0; 系统对环境做功,W<0(dv>0)。
系统放热为负,Q<0; 系统从环境得到功,W>0(dv<0)。
功可表示为强度性质与广度性质改变量的乘积:机械工=F (力)*dl (位移)体积功=—p (外压)*dv (提及的改变) ——由于系统变化与环境交换的功。
除此为非体积功。
表面功(非体积功)=σ(表面张力)*da (表面积的改变)电功(非体积功)=E (电位)*dq (电量的改变)4.热力学第一定律的三种说法。
其数学式:W Q U +=∆5.*热力学能又称内能(Q )(状态函数)除掉宏观中的整体势能以及整体动能,在微观中其分子之间存在平动能和转动能等。
另一种说法:组成物体分子的无规则热运动动能和分子间相互作用势能的总功。
第四节功的过程与可逆过程定外压,)(12v v p --=W ;多次定外压,)'2()1'('v v Pe v v Pe W ----=准静态膨胀过程(可逆过程))1/2ln(v v nRT W -=系统做功最大Ps :自由膨胀和恒压定温膨胀(压缩)皆为不可逆过程压缩系放热;膨胀系吸热。
第五节焓(封闭,非体积功为零)定容热:U Q v ∆=; 焓(定压))(12V V P U H Q e p -+∆=∆=第六节热容m p m v C C ,,-------2/'c ,T bT a C m p ++=(假若题目已经告知此经验公式,根据公式)(12,T T nC Q H m p p -==∆算出Qp ) 如若未告知,则理想气体在常温下,单原子分子的R C R C m p m v 2/5,2/3,,==;刚性双原子分子(线性分子)的R C R C m p m v 2/7,2/5,,==非刚性双原子分子的R C R C m p m v 2/8,2/6,,==多原子分子的R C R C m p m v 4,3,,==绝热可逆过程:常数=-1r TV ;绝热过程功的计算公式标准摩尔生成热等于产物的标准摩尔生成焓乘以其系数的总和减去反应物的标准摩尔生成焓乘以其系数的总和。