质谱学1知识讲解
- 格式:ppt
- 大小:1.75 MB
- 文档页数:25
质谱分析法知识汇总(全面)1.质谱法定义:是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。
依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。
2.质谱的作用:准确测定物质的分子量;质谱法是唯一可以确定分子式的方法;根据碎片特征进行化合物的结构分析。
3.质谱分析的基本原理:质谱法是利用电磁学原理,将待测样品分子解离成具有不同质量的离子,然后按其质荷比(m/z)的大小依次排列收集成质谱。
根据质谱中的分子离子峰(M+)可以获得样品分子的相对分子质量信息;根据各离子峰(分子离子峰、同位素离子峰、碎片离子峰、亚稳离子峰、重排离子峰等)及其相对强度和氮数规则,可以确定化合物的分子式;根据各离子峰及物质化学键的断裂规律可以进行定性分析和结构分析;根据组分质谱峰的峰高与浓度间的线性关系可以进行定量分析。
4.质谱分析的过程:(1)进样,化合物通过汽化引入电离室;(2)离子化,在电离室,组分分子被一束加速电子碰撞,撞击使分子电离形成正离子;(3)离子也可因撞击强烈而形成碎片离子;(4)荷正电离子被加速电压V加速,产生一定的速度v,与质量、电荷及加速电压有关;(5)加速正离子进入一个强度为B的磁场(质量分析器),发生偏转。
5.质谱仪的组成:真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。
6.真空系统作用:是减少离子碰撞损失,若真空度低:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;引起额外的离子-分子反应,改变裂解模型,使质谱解释复杂化;干扰离子源中电子束的正常调节;用作加速离子的几千伏高压会引起放电等。
7.进样系统目的:高效重复地将样品引入到离子源中并且不能造成真空度的降低;间歇式进样系统——气体及低沸点、易挥发的液体;直接探针进样——高沸点的液体、固体;色谱进样系统——有机化合物。
8.离子源或电离室:作用是使试样中的原子、分子电离成离子,其性能影响质谱仪的灵敏度和分辨率本领。
质谱基础知识汇总质谱,物质的分子在高真空下,经物理作用或化学反应等途径形成带电粒子,某些带电粒子可进一步断裂,形成离子,每一离子的质量与所带电荷的比称为质荷比(m∕z, 曾用m∕e),不同质荷比的离子经质量分离器一一分离后,由检测器测定每一离子的质荷比及相对强度,由此得出的谱图称为质谱。
不同离子的概念1、分子离子分子被电子束轰击失去一个电子形成的离子称为分子离子。
分子离子用疗表示。
分子离子是一个游离基离子。
在质谱图中与分子离子相对应的峰为分子离子峰。
分子离子峰的质荷比就是化合物的相对分子质量,所以,用质谱法可测分子量。
2、同位素离子含有同位素的离子称为同位素离子。
在质谱图上,与同位素离子相对应的峰称为同位素离子峰。
3、碎片离子分子离子在电离室中进一步发生键断裂生成的离子称为碎片离子。
4、重排离子经重排裂解产生的离子称为重排离子。
其结构并非原来分子的结构单元。
在重排反应中,化学键的断裂和生成同时发生,并丢失中性分子或碎片。
5、奇电子离子与偶电子离子具有未配对电子的离子为奇电子离子。
这样的离子同时也是自由基,具有较高的反应活性。
无未配对电子的离子为偶电子离子。
6、多电荷离子分子中带有不止一个电荷的离子称为多电荷离子。
当离子带有多电荷离子时,其质核比下降,因此可以利用常规的四极质量分析器来检测大分子量化合物。
7、亚稳离子从离子源出口到检测器之间产生的离子。
即在飞行过程中发生裂解的母离子。
由于母离子中途已经裂解生成某种离子和中性碎片,记录器中只能记录这种离子,也称这种离子为亚稳离子,由它形成的质谱峰为亚稳峰。
8、准分子离子比分子量多或少1质量单位的离子称为准分子离子,如:(M+H) + , (M-H)+o其不含未配对电子,结构上比较稳定。
分子离子峰1、分子离子峰强度分子离子是质谱图中最有价值的信息,它不但是测定化合物分子量的依据,而且可以推测化合物的分子式,用高分辨质谱可以直接测定化合物的分子式。
一般来讲,从分子中失去的电子应该是分子中束缚最弱的电子,如双键或叁键的π电子,杂原子上的非键电子。
质谱(Mass spectrum,简称MS)从字意表明,就是按照质量大小顺序排列所成的谱。
质谱学(Mass spectroscopy)就是研究质谱的仪器及其应用的科学。
(质谱不属于光谱,没有透光和波长的概念,但在质谱学的原理中有类似于光学中的聚焦、色散等所谓的几何离子光学概念)。
质谱技术是一门综合技术:质谱仪是一种大型、复杂而精确的仪器,它涉及到精密机械加工、真空科学技术、电子技术等,以及物理、化学和数学知识;而且仪器制造复杂,造价昂贵;另外,仪器的操作、维护要求有熟练的人员。
由于质谱技术本身具有的特点:1、灵敏度高、进样量少(≤微克级)2、分析速度快(几秒)3、能测定同位素4、可以测定微小的质量和质量差(测量范围下限为一个原子质量单位;高分辨质谱仪能区分相差几十万分之一的两种质量)5、能直接探讨物质的性质6、分析范围广(能一机多用)今天,质谱与核磁共振、红外、紫外一样已成为有机结构分析中必不可少的测试工具。
质谱数据的表示方法1、峰强度信号(峰形图)由质谱仪记录下来 <见例图>条图(棒图)<见例图>2、表格形式表示法-----把各正离子的质荷比数值和它们的相对丰度准确地表示出来。
<见例图:低分辨数据,高分辨数据>质谱术语质荷比 m是一个离子的质量数;Z是一个离子的电荷数。
一个离子的质量数对所带的电荷数的比值,称为质荷比,用m/Z表示基峰(base peak) 谱图中最强的峰称为基峰。
<见例图>相对丰度(relative abundance又称相对强度)最常用的是以谱图中最强的峰即基峰作为100%,其它峰按基峰来归一化。
<见例图>(有时离子峰的强度也以总离子量的百分数表示)<见例图>质谱图横坐标表示离子的质荷比m/Z,一般从左到右为质荷比增大的方向;纵坐标表示离子流强度(相对丰度)。
<见例图>质谱仪器的组成离子源、质量分析器和离子检测器三大部分。
有机化学基础知识点有机物的质谱和核磁共振谱有机化学基础知识点 - 有机物的质谱和核磁共振谱一. 引言在有机化学领域中,质谱和核磁共振谱是两种重要的分析技术,它们可以提供有机物分子结构的丰富信息。
本文将详细介绍有机物的质谱和核磁共振谱的基本原理、仪器设备以及应用。
二. 有机物的质谱原理和方法1. 质谱的基本原理质谱是通过测量有机物分子中离子的质量和相对丰度来分析有机物的技术。
其基本原理为:(1)电离:将有机物分子转化为带电粒子,一般使用电子轰击、电子喷射等方法。
(2)分离:离子根据质量-电荷比在磁场中进行分离。
(3)检测:测量离子的质量和相对丰度。
2. 质谱仪器设备质谱的仪器设备主要由以下几个部分组成:(1)离子源:用于产生离子。
(2)质谱仪:包括质量分析器、检测器等。
(3)数据处理系统:用于采集和分析数据。
3. 质谱的应用质谱在有机化学中有广泛的应用,包括:(1)质谱图谱解析:通过分析质谱图谱,确定有机物的分子式、分子结构等信息。
(2)质谱定性分析:通过比较样品的质谱图谱与数据库中的标准质谱图,鉴定有机物的种类。
(3)质谱定量分析:通过测量质谱图谱中特定离子峰的强度,确定样品中有机物的含量。
三. 有机物的核磁共振(NMR)原理和方法1. 核磁共振的基本原理核磁共振是通过测量有机物分子中核自旋的行为来提供有机物分子结构信息的技术。
其基本原理为:(1)核自旋:原子核具有自旋,每种核素的自旋数是固定的。
(2)共振:核自旋在磁场中被激发,并在不同频率下共振吸收或发射能量。
(3)检测:测量吸收或发射能量的频率和强度。
2. 核磁共振仪器设备核磁共振的仪器设备主要由以下几个部分组成:(1)磁场系统:用于产生强磁场。
(2)射频系统:用于激发和检测核自旋的共振吸收或发射能量。
(3)探头:用于容纳样品和与样品进行相互作用。
3. 核磁共振的应用核磁共振在有机化学中有广泛的应用,包括:(1)1H核磁共振:通过测量样品中氢原子核的共振吸收能量,获得有机物的结构信息。