实数综合提高习题(有答案)
- 格式:pdf
- 大小:118.22 KB
- 文档页数:8
实数总复习题及答案一、选择题1. 下列哪个数不是实数?A. √2B. πC. -3D. 1/02. 实数集R中的元素包括:A. 有理数B. 无理数C. 复数D. A和B3. 以下哪个表达式等于0?A. √4B. 1 - 1C. 2^0D. 1/∞4. 绝对值的定义是什么?A. 一个数的平方B. 一个数的立方C. 一个数的平方根D. 一个数的正数或05. 如果a是一个正实数,那么1/a是一个:A. 正实数B. 负实数C. 零D. 复数二、填空题6. 一个实数的绝对值总是_________或0。
7. 两个相反数的和是_________。
8. 无理数是_________的数。
9. 实数的运算包括加法、减法、乘法、除法以及_________。
10. 一个数的相反数是_________。
三、解答题11. 证明:对于任意实数a和b,如果a > b,则a - b > 0。
12. 解释实数的完备性。
13. 给出一个无理数的例子,并说明为什么它是无理数。
14. 计算下列表达式的值:(-3)^2 + √4 - 2π。
15. 讨论实数集R的性质。
四、应用题16. 一个圆的半径是5,求圆的周长和面积。
17. 如果一个物体从静止开始以恒定加速度运动,经过2秒后,求其位移和速度。
18. 一个水库的水位在24小时内下降了3米,如果下降速率是恒定的,求每小时的平均下降速率。
答案一、选择题1. D2. D3. B4. D5. A二、填空题6. 非负数7. 08. 不能表示为两个整数的比9. 幂运算10. 与原数符号相反的数三、解答题11. 证明:设a和b是任意实数,且a > b。
根据实数的性质,我们可以定义一个数c = a - b。
由于a > b,c是一个正数。
因此,a - b > 0。
12. 实数的完备性指的是,任意实数序列的极限仍然是一个实数。
这意味着实数集没有“漏洞”,即不存在任何“缺失”的数。
第三章 实数本章综合测试一、选择题(本题共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请将正确的答案选出来! 1.下列各组数中,不相等的一组是( )A 、(-2)3和-23B 、(-2)2和-22C 、+(-2)和-2D 、|-2|3和|2|3A .11B .-11C .11±D .11± 3.下列各数0,,57, 3.14-,2π中,是无理数的有( )A .5个B .4个C .个D .2个 4.估计-10的值在( )A 、-1至-2之间B 、-2至-3之间C 、-3至-4之间D 、-4至-5之间 5.下列说法错误的是( )A 、一个数的平方与这个数互为相反数的是0和-1B 、一个数的立方等于这个数的倒数的是1和-1C 、一个数的倒数小于这个数那么这个数大于1D 、一个数的算术平方根等于它本身的数是0和1 6.下列各式,正确的是( ) A 、3273-=- B4=±C、2=±D4=-7.下列说法正确的是( ) A 、81-的立方根是-12B 、 16 的平方根是±4C 、一个数的算术平方根必定是正数D 、 5的平方根是 58.如图,网格中的每个小正方形的边长为1,如果把阴影部分剪拼成一个正方形,那么这 第8题A .6B .7C .8D .39.下列叙述正确的是( )①数轴上的点与实数一一对应;②若b a <则b a <;③若五个数的积为负数,则其中正因数有2个或4个;④近似数3.70是由a 四舍五入得到的,则a 的范围为705.3695.3<≤a ;⑤连结两点的线段叫两点间的距离。
A 、①②③⑤ B 、①②④ C 、②④⑤ D 、①④10.若a ,b 互为相反数,m ,n 互为倒数,k ,则210099a b m nb k +++的值为 ( )A .-4B .4C .-96D .104 二、填空题(本题共6小题,每小题4分,共24分) 温馨提示:要求将最简洁、最正确的答案填在空格处!11.a 是9-的相反数,b 的立方根为2-,则b a +的倒数为 。
第六章实数(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题2分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.在实数中无理数的个数为()A.1个B.2个C.3个D.4个【答案】B【分析】根据无理数的定义求解即可.【解答】解:在实数中,无理数有,共2个,故选:B.【知识点】立方根、无理数、算术平方根2.已知m=,则下列对m值的范围估算正确的是()A.1<m<2B.2<m<3C.3<m<4D.4<m<5【答案】C【分析】估算确定出m的范围即可.【解答】解:∵1<<2,,∴3<<4,即3<m<4,故选:C.【知识点】估算无理数的大小3.实数a、b在数轴上的位置如图所示,化简的结果是()A.﹣2B.0C.﹣2a D.2b【答案】A【分析】根据实数a和b在数轴上的位置,确定出其取值范围,再利用二次根式和绝对值的性质求出答案即可.【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.【知识点】二次根式的性质与化简、实数与数轴4.已知无理数x=+2的小数部分是y,则xy的值是()A.1B.﹣1C.2D.﹣2【答案】A【分析】因为4<+2<5,所以+2的整数部分是4,小数部分是﹣2,由此代入求得数值即可.【解答】解:∵4<+2<5,∴+2的整数部分是4,小数部分是﹣2,则xy=.故选:A.【知识点】估算无理数的大小5.已知等腰三角形的两边长满足+b2﹣4b+4=0,那么这个等腰三角形的周长为()A.8B.10C.8或10D.9【答案】B【分析】首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.【解答】解:根据题意得,a﹣4=0,b﹣2=0,解得a=4,b=2,①4是腰长时,三角形的三边分别为4、4、2,∵4+2=6>4,∴能组成三角形,周长=4+4+2=10,②4是底边时,三角形的三边分别为4、2、2,∵2+2=4,∴不能组成三角形,所以,三角形的周长为10.故选:B.【知识点】等腰三角形的性质、三角形三边关系、非负数的性质:算术平方根、非负数的性质:偶次方6.已知(1﹣x)2+,则x+y的值为()A.1B.2C.3D.5【答案】C【分析】根据非负数的性质:它们相加和为0时,必须满足其中的每一项都等于0.即可求得x,y的值.【解答】解:∵(1﹣X)2+∴解得∴x+y=1+2=3.故选:C.【知识点】非负数的性质:绝对值、非负数的性质:算术平方根7.对于任意实数m,n,定义一种运算m※n=mn﹣m﹣n+3,例如:2※5=2×5﹣2﹣5+3=6.请根据上述定义解决问题:若5<2※x<7的整数解为()A.4B.5C.6D.7【答案】B【分析】根据新定义可得出关于x的一元一次不等式组,解之取其中的整数即可得出结论.【解答】解:由题意得,解得4<x<6,则该不等式组的整数解为5,故选:B.【知识点】一元一次不等式组的整数解、实数的运算8.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第10行从左至右第5个数是()A.﹣2B.﹣5C.D.【答案】B【分析】根据题意可以发现每行数字个数的变化规律和每行中的数的特点,从而可以求得第10行从左至右第5个数是哪个数,本题得以解决.【解答】解:由图可得,被开方数是偶数时,值为负,奇数时值为正,第一行1个数,第二行2个数,第三行3个数,…,则第10行10个数,故前9行的数的个数一共有:1+2+3+…+9=45个,则第10行从左至右第5个数是:﹣=﹣5,故选:B.【知识点】算术平方根、规律型:数字的变化类9.类比平方根和立方根,我们定义n次方根为:一般地,如果x n=a,那么x叫a的n次方根,其中n>1,且n是正整数.例如:因为(±3)4=81,所以±3叫81的四次方根,记作:,因为(﹣2)5=﹣32,所以﹣2叫﹣32的五次方根,记作:,下列说法不正确的是()A.负数a没有偶数次方根B.任何实数a都有奇数次方根C.D.【答案】D【分析】根据根式定义逐项判断.【解答】解:A.负数a没有偶数次方根,正确;B.任何实数a都有奇数次方根,正确;C.=a,正确;D.=|a|,故错误,故选:D.【知识点】立方根、分数指数幂、平方根10.a2=2,b3=3,c4=4,d5=5,且a、b、c、d为正数,则()A.a<b<c<d B.b<a<c<d C.d<a=c<b D.a=c<d<b【答案】C【分析】根据题意,比较a、b、c、d的大小关系,可以比较它们的相同的次幂,乘方的值大,则对应的数就大,据此即可作出判断.【解答】解:∵a2=2,c4=4,∴c2=2=a2,a=c,又∵a6=(a2)3=8,b6=(b3)2=9,∴b>a=c,比较b与d的大小:∵b15=(b3)5=243,d15=(d5)3=125,∴b>d,比较a与d的大小:∵a10=(a2)5=32,d10=(d5)2=25,∴a>d∴d<a=c<b.故选:C.【知识点】实数大小比较11.观察:=1+,=1+,s=+++…+,则s的整数部分是()A.2016B.2015C.2014D.2013【答案】C【分析】根据关系式,得到s的规律,再经过裂项计算即可.【解答】解:由规律可知s=1++1++1++…+1+(共有2014个1)=2014+1…+=2014+则s的整数部分为2014故选:C.【知识点】规律型:数字的变化类、估算无理数的大小12.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[﹣1.2}=﹣2.对数字65进行如下运算:①[]=8:②[]=2:③[]=1,这样对数字65运算3次后的值就为1,像这样对一个正整数总可以经过若干次运算后值为1,则数字255经过()次运算后的结果为1.A.3B.4C.5D.6【答案】A【分析】根据[x]表示不超过x的最大整数计算,可得答案.【解答】解:255→第一次[]=15→第二次[]=3→第三次[]=1,则数字255经过3次运算后的结果为1.故选:A.【知识点】估算无理数的大小、实数的运算二、填空题(本大题共4小题,每小题2分,共8分.不需写出解答过程,请把答案直接填写在横线上)13.计算:=.【答案】-1【分析】直接利用零指数幂的性质和负整数指数幂的性质、特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:1﹣2=﹣1.故答案为:﹣1.【知识点】实数的运算14.若有理数a,b满足a+b+3=a﹣b+7,则a=,b=.【答案】【第1空】7【第2空】2【分析】根据无理数的概念列出算式,分别求出a、b.【解答】解:∵a、b是有理数,b+3+a=a﹣b+7,∴b+3=a﹣b,a=7,解得,a=7,b=2,故答案为:7;2.【知识点】实数的运算15.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为.【答案】16【分析】利用非负数的性质求出b的值,推出a=c,推出PQ=6,根据PQ向右平移a个单位长度,其扫过的面积为24,推出a=4即可解决问题.【解答】解:∵|a﹣c|+=0,又∵|a﹣c|≥0,≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,∴a=4,∴a=c=4,∴a+b+c=4+8+4=16,故答案为16.【知识点】坐标与图形变化-平移、非负数的性质:绝对值、非负数的性质:算术平方根16.设2016a3=2017b3=2018c3,abc>0,且=++,则++=【答案】1【分析】充分利用2016a3=2017b3=2018c3这个关系,对=++中的a、b都用c进行替换即可求解.【解答】解:===(),++=+=(),即:=,解得:=1.故答案为1.【知识点】分式的加减法、立方根三、解答题(本大题共7小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1);(2)﹣;(3).【分析】(1)直接利用算术平方根的性质化简得出答案;(2)直接利用立方根的定义化简得出答案;(3)直接利用算术平方根的性质、立方根的定义化简得出答案.【解答】解:(1)=0.9﹣0.2=0.7;(2)﹣=﹣=﹣;(3)=﹣11+﹣6﹣0.5=﹣16.【知识点】实数的运算、立方根18.有理数a和b对应点在数轴上如图所示:(1)大小比较:a、﹣a、b、﹣b,用“<”连接;(2)化简:|a+b|﹣|a﹣b|﹣2|b﹣1|.【分析】(1)先根据数轴的特点判断出a、b的符号,再根据两点到原点的距离判断出﹣b与a的大小即可.(2)根据数轴点的特点可以得到a+b<0,a﹣b<0,b﹣1<0,再把要求的式子进行化简即可得出答案.【解答】解:(1)根据数轴上点的特点可得:a<﹣b<b<﹣a;(2)根据数轴给出的数据可得:a+b<0,a﹣b<0,b﹣1<0,则|a+b|﹣|a﹣b|﹣2|b﹣1|=﹣a﹣b﹣(b﹣a)﹣2(1﹣b)=a﹣b﹣b+a﹣2+2b=﹣2.【知识点】实数大小比较、绝对值、数轴19.已知A=是2x﹣y+4的算术平方根,B=是y﹣3x的立方根,试求A+B的平方根.【分析】先根据题意列方程组,解方程组求出对应的x和y的值,再计算A和B的值,最后计算其结果.【解答】解:由题意得:,方程组整理,得,,②﹣①,得3y=3,解得y=1,把y=1代入①,得x﹣1=2,解得x=3,∴A==,B==,∴A+B=3﹣2=1,∴A+B的平方根为:.【知识点】立方根、平方根、算术平方根20.解答下列各题.(1)已知:y=﹣﹣2019,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+2和a+5,求这个数x.【分析】(1)根据二次根式有意义的条件列出不等式,解不等式求出x,进而求出y,根据平方根的概念解答;(2)根据平方根的概念列出方程,解方程求出a,根据有理数的平方法则计算即可.【解答】解:(1)由题意得,x﹣2020≥0,2020﹣x≥0,解得,x=2020,则y=﹣2019,∴x+y=2020﹣2019=1,∵1的平方根是±1,∴x+y的平方根±1;(2)由题意得,a+2+a+5=0,解得,a=﹣,则a+2=﹣+2=﹣,∴x=(﹣)2=.【知识点】二次根式有意义的条件、平方根21.已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是的整数部分.(1)求a,b,c的值;(2)求2a﹣b+的平方根.【分析】(1)根据立方根、算术平方根、无理数的估算即可求出a、b、c的值;(2)求出代数式2a﹣b+的值,再求这个数的平方根.【解答】解:(1)∵3a+1的立方根是﹣2,∴3a+1=﹣8,解得,a=﹣3,∵2b﹣1的算术平方根是3,∴2b﹣1=9,解得,b=5,∵<<,∴6<<7,∴的整数部分为6,即,c=6,因此,a=﹣3,b=5,c=6,(2)当a=﹣3,b=5,c=6时,2a﹣b+=﹣6﹣5+×6=16,2a﹣b+的平方根为±=±4.【知识点】估算无理数的大小、平方根22.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:①(2+i)+(3﹣4i)=(2+3)+(i﹣4i)=5﹣3i②(5+i)(3﹣4i)=5×3﹣5×4i+3i﹣4i2=15﹣20i+3i﹣4×(﹣1)=19﹣17i③(5+i)(5﹣i)=52﹣i2=25﹣(﹣1)=26(1)填空:i6=,i4n+3=(n为正整数)(2)填空:①=;②(1+2i)2=.(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知(1﹣i)x+(﹣i﹣1)y=1﹣3i,(x,y为实数),求x,y的值.(4)试一试:请利用以前学习的有关知识将化简成a+bi的形式.(5)解方程:x2﹣x+1=0.【答案】【第1空】-1【第2空】-i【第3空】1【第4空】4i-3【分析】(1)把i2=﹣1代入求出即可;(2)①先根据平方差公式进行计算,再把i2=﹣1代入求出即可;②先根据完全平方公式进行计算,再把i2=﹣1代入求出即可;(3)根据两个复数相等的定义得出方程组,求出方程组的解即可;(4)根据分子和分母都乘以1﹣i,再进行计算即可;(5)原式化为x2﹣x=i,利用配方法求解即可.【解答】解:(1)i6=(i2)3=﹣1,i4n+3=(i2)2n×i2×i=﹣i,故答案为:﹣1,﹣i;(2)①=﹣i2=+=1;②(1+2i)2=1+4i+4i2=1+4i+4×(﹣1)=4i﹣3;故答案为1;4i﹣3;(3)(1﹣i)x+(﹣i﹣1)y=1﹣3i,(x﹣y)﹣(x+y)i=1﹣3i,∴解得:x=2,y=1;(4)=====﹣i;(5)x2﹣x+1=0,x2﹣x=﹣1,∵i2=﹣1,∴x2﹣x=i2,x2﹣x+=i2+,(x﹣)2=i2+x﹣=±,x1=,x2=.【知识点】二元一次方程的解、实数的运算23.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为,当a<b时T(a,b)=a+b;当a≥b时,T(a,b)=a﹣b例如:T(1,3)=1+3=4:T(2,﹣1)=2﹣(﹣1)=3材料二:关于数学家高斯的故事,200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?(1+100)据说,当其他同学忙于把100个数还项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:+(2+99)+…+(50+51)=101×50=5050也可以这样理解:令S=1+2+3+…+100,则S=100+99+…+3+2+1②①+②:2S==100×101=10100,即S==5050.根据以上材料,回答下列问题:(1)已知x+y=10,且x>y,求T(5,x)﹣T(5,y)的值;(2)对于正数m,有T(m2+1,﹣1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.【分析】(1)根据x+y=10,且x>y,可得x>5,y<5,再根据当a<b时T(a,b)=a+b;当a≥b时,T(a,b)=a﹣b,即可求解;(2)由于m2+1≥1,由T(m2+1,﹣1)=3,可得m2+1﹣(﹣1)=3,根据m是正数可求m,再代入T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)得到原式=1+100+2+100+3+100+…+199﹣100,再根据高斯求和公式即可求解.【解答】解:(1)∵x+y=10,且x>y,∴x>5,y<5,∴T(5,x)﹣T(5,y)=5+x﹣(5﹣y)=x+y=10;(2)∵m是正数、m2+1≥1,T(m2+1,﹣1)=3,∴m2+1﹣(﹣1)=3,解得m=±1(负值舍去),∴T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)=1+100+2+100+3+100+…+199﹣100=(1+2+3+…+199)+100×99﹣100×100=(1+199)×199÷2﹣100=100×199﹣100=100×198=19800.【知识点】数学常识、实数的运算、规律型:数字的变化类。
实数复习题含答案一、选择题1. 下列各数中,是实数的是()A. -3√2B. √(-1)C. √2D. 1/0答案:A2. 若a是实数,下列表达式中不可能为实数的是()A. a^2B. a^3C. a^4D. 1/a答案:D3. 实数x满足|x-2| < 1,则x的取值范围是()A. 1 < x < 3B. 0 < x < 4C. 1 ≤ x ≤ 3D. 0 ≤ x ≤ 4答案:A二、填空题1. 若实数x满足x^2 - 4x + 4 = 0,那么x的值为____。
答案:22. 一个实数的绝对值等于它自己,那么这个实数是____。
答案:非负数3. 若实数a和b满足a + b = 5,且a - b = 3,那么a和b的值分别是____和____。
答案:4,1三、解答题1. 证明:对于任意实数a和b,(a+b)^2 ≤ 2(a^2 + b^2)。
证明:根据平方和公式,有(a+b)^2 = a^2 + 2ab + b^2而2(a^2 + b^2) = 2a^2 + 2b^2由于2ab ≤ 2a^2 + 2b^2(根据基本不等式),所以(a+b)^2 ≤ 2(a^2 + b^2)。
2. 已知实数x满足x^2 - 5x + 6 = 0,求x的值。
解:将方程x^2 - 5x + 6 = 0进行因式分解,得到(x-2)(x-3) = 0因此,x的值为2或3。
四、应用题1. 一个长方形的长是宽的两倍,且面积为24平方米。
求长方形的长和宽。
解:设长方形的宽为x米,则长为2x米。
根据面积公式,有x * 2x = 24即 x^2 = 12解得x = √12 = 2√3因此,长方形的宽为2√3米,长为4√3米。
五、综合题1. 已知实数a,b,c满足a < b < c,且a + b + c = 1。
证明:1/a > 1/b + 1/c。
证明:由于a < b < c,所以1/a > 1/b > 1/c。
实数计算题专题训练(含答案)实数计算题专题训练(含答案)在数学学习中,实数计算题是一个重要的训练内容。
通过解答实数计算题,可以提高我们的计算能力和逻辑思维能力。
本文将为大家提供一些实数计算题的专题训练,以帮助大家巩固和提升自己的实数计算能力。
一、有理数运算1. 计算:(-2/3) + (5/6) - (1/4)解:首先,将两个分数的分母取最小公倍数4,然后进行计算:(-2/3) + (5/6) - (1/4) = (-8/12) + (10/12) - (3/12) = (-1/12)答案:(-1/12)2. 计算:-3/5 × 4/7 ÷ (-2/3)解:首先,将除法转化为乘法,然后计算:-3/5 × 4/7 ÷ (-2/3) = -3/5 × 4/7 × (-3/2) = (-36/70)答案:(-36/70)二、无理数运算1. 计算:√2 + √18 - √8解:将每个无理数化简到最简形式,然后进行计算:√2 + √18 - √8 = √2 + 3√2 - 2√2 = 2√2答案:2√22. 计算:4√5 × √8 ÷ (√20)²解:首先,将除法化简为乘法,然后计算:4√5 × √8 ÷ (√20)² = 4√5 × √8 ÷ 20 = 4/5 × 2√2 = 8/5√2答案:8/5√2三、复数运算1. 计算:(3 + 2i) + (4 - 5i)解:将实部与虚部相加,得到结果:(3 + 2i) + (4 - 5i) = (3 + 4) + (2i - 5i) = 7 - 3i答案:7 - 3i2. 计算:(2 + 3i) × (-4 - i)解:使用分配律展开并进行计算:(2 + 3i) × (-4 - i) = -8 - 2i - 12i - 3i² = -11 - 14i + 3 = -8 - 14i 答案:-8 - 14i四、实数绝对值计算1. 计算:|3 - 7|解:将绝对值内的表达式求值:|3 - 7| = |-4| = 4答案:42. 计算:|4 - 6| + |8 - 10|解:将绝对值内的表达式求值,并进行加法运算:|4 - 6| + |8 - 10| = |-2| + |-2| = 2 + 2 = 4答案:4通过以上的实数计算题的专题训练,我们可以加深对有理数、无理数和复数的运算规则和性质的理解,并提高自己的计算技巧。
实数练习题及答案实数是数学中非常重要的概念,它们包括有理数和无理数。
掌握实数的概念和运算是解决许多数学问题的基础。
下面是一些实数的练习题,以及相应的答案,供学习者练习和参考。
练习题1:判断下列数中哪些是有理数,哪些是无理数。
- √2- π- 1/3- 0.5- √3- √8答案1:- √2(无理数)- π(无理数)- 1/3(有理数)- 0.5(有理数,即1/2)- √3(无理数)- √8(无理数,因为8可以分解为2^3,而√8 = 2√2)练习题2:计算下列表达式的值。
- √4 + √9- √16 - √25- (√2)^2- √(1/4)答案2:- √4 + √9 = 2 + 3 = 5- √16 - √25 = 4 - 5 = -1- (√2)^2 = 2- √(1/4) = 1/2练习题3:解下列方程。
- √x = 4- x^2 = 16- √(x - 3) = 2答案3:- √x = 4,两边平方得 x = 16- x^2 = 16,解得x = ±4- √(x - 3) = 2,两边平方得 x - 3 = 4,解得 x = 7练习题4:将下列无理数化为最简二次根式。
- √48- √75答案4:- √48 = √(16 * 3) = 4√3- √75 = √(25 * 3) = 5√3练习题5:求下列表达式的值。
- √(√3 + 1)^2- √(√2 - 1)^2答案5:- √(√3 + 1)^2 = √3 + 1- √(√2 - 1)^2 = √2 - 1练习题6:判断下列表达式是否正确。
- √(-4) 是否有实数解?- √(-9) 是否有实数解?答案6:- √(-4) 没有实数解,因为负数没有实数平方根。
- √(-9) 同样没有实数解。
通过这些练习,可以帮助学习者更好地理解实数的概念和运算规则。
希望这些练习题和答案对学习者有所帮助。
在数学学习中,不断的练习和思考是提高解题能力的关键。
人教版七年级数学下册 第六章《实数》综合练习一、单选题1.9的平方根是( )A .±√3B .3C .±81D .±322 ,则a 的值为( )A .-4B .4C .-2 D3)A .±2B .±4C .4D .2 4.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 55.(2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或7 6.下列实数中,无理数是( )A .3.14B .2.12122CD .2277.实数a b c d ,,,在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d8.下列说法正确的是()A.无理数都是无限不循环小数B.无限小数都是无理数C.有理数都是有限小数D.带根号的数都是无理数9.面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间10.在实际生活中,八点五十五通常说成九点差五分,受此启发,我们设计了一种新的加减计数法,比如:7写成13,即13=10-3=7;191写成209,即209=200-9=191,按这个方法计算2019等于( )A.2020B.2001C.1991D.1981二、填空题11.一个正数的两个平方根分别是3a+2和a-4.则a的值是.12-125的立方根的和为______.13的整数部分是m,小数部分是n,则n2﹣2m﹣1的值为_____.14.====,…,则第8个等式是__________.三、解答题15.求出下列x的值.(1)16x2﹣49=0;(2)24(x﹣1)3+3=0.16.已知一个正数的平方根分别是32x +和49x -,求这个数.17.观察下列计算过程,猜想立方根.13=123=833=2743=6453=12563=21673=34383=51293=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为______,又由203<19000<303,猜想19683的立方根的十位数为_____,验证得19683的立方根是______.(2)请你根据(1)中小明的方法,求﹣373248的立方根.18.填空并解答相关问题:(1)观察下列数1,3,9,27,81…,发现从第二项开始,每一项除以前一项的结果是一个常数,这个常数是________;根据此规律,如果a n (n 为正整数)表示这列数的第n 项,那么a n =__________;你能求出它们的和吗?计算方法:如果要求1+3+32+33+…+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得3S=3+32+33+…+320+321①由①式左右两边分别减去①式左右两边,得3S -S=(3+32+33+…+320+321)-(1+3+32+33+…+320),即2S=321-1,两边同时除以2得()211312S =-. (2)你能用类比的思想求1+6+62+63+…+6100的值吗?写出求解过程.(3)你能用类比的思想求1+m+m 2+m 3+…+m n (其中mn≠0,m≠1)的值吗?写出求解过程. 19.阅读下面文字,然后回答问题.的小数部分我们不可能全部的整数部分是1 减去它的整数部分,差就是它的小数部分,因此﹣1表示.由此我们得到一个真命题:=x +y ,其中x 是整数,且0<y <1,那么x =1,y ﹣1.请解答下列问题:(1a +b ,其中a 是整数,且0<b <1,那么a = ,b = ;(2c +d ,其中c 是整数,且0<d <1,那么c = ,d = ;(3)已知m+n ,其中m 是整數,且0<n <1,求|m ﹣n |的值答案1.D 2.B 3.D 4.C 5.D 6.C 7.D 8.A 9. B 10.D11.-12.12.-3或-713.5-14=15.(1)x=±74;(2)x=12.16.2517.(1)7,2,27;(2)-72.18.(1) 3, a n =13n -;(2) ()1011651S =-;(3) ()1111-n m S m +=-.19.(1)a =2,b 2;(2)c =﹣3,d =3(3)6。
人教版七年级数学下册 第六章 实数 综合训练题3一、选择题1.实数227,1,2π,3,3-中,无理数的个数是( )个.A .2B .3C .4D .52.下列说法中正确的是( )A .81的平方根是9B 4C D .64的立方根是4±3.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为()A .8B .4C .12D .144.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( )A .-1或-7B .1或-7C .1或7D .±1或7±5.已知实数a 的一个平方根是2-,则此实数的算术平方根是( )A .2±B .2-C .2D .46.定义一种关于整数n 的“F”运算:(1)当n 时奇数时,结果为35n +;(2)当n 是偶数时,结果是2k n (其中k 是使2kn是奇数的正整数),并且运算重复进行.例如:取58n =,第一次经F 运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74…;若449n =,则第449次运算结果是( )A .1B .2C .7D .87,,…,其中第6个数为( )A B C D 8.符号“f ,“g”分别表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,f(10)=9,…;(2)g(12)=2,g(13)=3,g(14)=4,g(15)=5,…,g(111)=11,….利用以上规律计算:g(12017)﹣f(2017)=( )A .2B .1C .2017D .20169.的最小整数n 的值是( )A .48B .49C .50D .5110.设,,c=,则a ,b ,c 之间的大小关系是( )A .a<b<cB .c<b<aC .c<a<bD .a<c<b二、填空题11|3|0b -=,那么b a =________.12.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,其中1a <-,且AB BC =,则a =_______.13.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.14.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n ,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为___________个.15.对于实数P ,我们规定:用P <>表示不小于P 的最小整数,例如:44,2<>=<>=. 现对 72 进行如下操作:72932−−−→<>=−−−→−−−→<>=第一次第二次第三次,即对72只需进行3次操作后变为2,类似地:(1)对 36 只需进行_______次操作后变为 2;(2)只需进行 3 次操作后变为 2 的所有正整数中,最大的是________三、解答题16.已知3m -的平方根是6±3=,求m n +的算术平方根.17.已知(25|5|0x y -+-=.(1)求x ,y 的值;(2)求xy 的算术平方根.18.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.19.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π等,而常用的“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<<<;根据上述信息,回答下列问题:(1的整数部分是___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <+<则a b +=______;(43x y -=+,其中x 是整数,且01y <<,请求x y -的相反数.20.规定:求若千个相同的有理数(均不等于0)的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等,类比有理数的乘方,我们把222÷÷记作()32,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()()43-,读作“3-的圈4次方”,一般地,把n aa a a a ↑÷÷÷⋯⋯÷ 记作()n a,读作“a ”的圈n 次方.(初步探究)(1)直接写出计算结果:()()32=- ;()()42=- ;(2)关于除方,下列说法错误的是( )A .任何非零数的圈2次方都等于1B .对于任何正整数(),1=1n n C .()()433=4 D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(3)试一试:()()()2446113=5=35⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,依照前面的算式,将()93,()1012⎛⎫- ⎪⎝⎭的运算结果直接写成幂的形式是()93= ,()101=2⎛⎫- ⎪⎝⎭ ;(4)想一想:将一个非零有理数a 的圆n 次方写成幂的形式是:()n a = ;(5)算一算:()()()()4652311122333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭.21.对于一个各个数位上的数字均不为0且互不相同的三位自然数M ,将该自然数各个数位上的数字两两交换后,得到4个新的三位数abc =100a+10b+c (含原数)(a 、b 、c 均为1至9之间的整数),当满足2a c b +-最大时,称此时的abc 为自然数M 的“希望数”,并规定:()K M =2222()()a b a c -+.例:M =123,将各个数位上的数字两两交换后,得到4个新的三位数:123,213,321,132.因为|2132⨯+-|=3,|2231⨯+-|=6,|2312⨯+-|=5,|2123⨯+-|=1,6>5>3>1,所以213是原三位数123的“希望数”,此时()K M =2222(21)(23)39-+=.(1)直接写出符合条件的最大的三位自然数: ;并直接写出将该自然数各个数位上的数字两两交换后,得到的4个新三位数是: 、、、.(2)求:(168)K .22.阅读下面的文字,解答问题: 的小数部分我们不可1-的小数部分,你同意小明的表示方法吗?的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22)2<32 ,即2<<3, 的整数部分为2-2).请解答:(1的整数部分是__________,小数部分是__________(2)如果的小数部分为a的整数部分为b ,求a +b23.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n aa a a a÷÷÷÷个(a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③= ,1()2-④= ;(2)关于除方,下列说法错误的是 A .任何非零数的圈2次方都等于1; B .对于任何正整数n ,1ⓝ=1;C .3④=4③D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算有理数的除方运算如何转化为乘方运算呢?(3)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于 ;(4)算一算:1()3-④×1(2-③-1(3-⑧÷63【参考答案】1.B 2.C 3.D 4.C 5.C 6.D 7.D 8.B 9.C 10.A 11.8-12.2+13.414.1215.325616.m n+的算术平方根为.17.(1)5x=-5y=(218.(1)8888;(2)1134 . 19.(1)33-;(2)21;21a-;(3)23;(47-.20.(1)12-,14;(2)C;(3)71(3,82;(4)21na-⎛⎫⎪⎝⎭;(5)-5.21.(1)987;987,897,789,978;(2)(168)K=350022.(1)33-;(2)423.(1)12,4;(2)C;(3)21na-;(4)19-。
1.阅读理解:一般地,在数轴上点A,B表示的实数分别为a,b(a<b),则A,B两点的距离AB=x B ﹣x A=b﹣a.如图,在数轴上点A,B表示的实数分别为﹣3,4,则记x A=﹣3,x B=4,因为﹣3<4,显然A,B两点的距离AB=x B﹣x A=4﹣(﹣3)=7.若点C为线段AB的中点,则AC=CB,所以x C﹣x A=x B﹣x C,即x C=.解决问题:(1)直接写出线段AB的中点C表示的实数x C=;(2)在点B右侧的数轴上有点P,且AP+BP=9,求点P表示的实数x P;(3)在(2)的条件下,点M是AP的中点,点N是BP的中点,若A,B两点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,AP的中点M和BP的中点N也随之运动,3秒后,MN=2,则点B的速度为每秒个单位长度.2.如图1,在数轴上A、B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D 点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴正半轴向右平移t(0<t<3)个单位,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α,β满足|α﹣β|=45°,请用t 的式子表示α、β并直接写出t的值.3.阅读下面的文字,解答问题,例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是,小数部分是.(2)已知:9﹣小数部分是m,9+小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值4.为了比较+1与的大小,小伍和小陆两名同学对这个问题分别进行了研究.(1)小伍同学利用计算器得到了≈2.236,≈3.162,所以确定+1(填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对+1和的大小做出准确的判断.5.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:若|x|=2,|y|=3求x+y的值.情况①若x=2,y=3时,x+y=5情况 ②若x=2,y=﹣3时,x+y=﹣1情况③若x=﹣2,y=3时,x+y=1情况④若x=﹣2,y=﹣3时,x+y=﹣5所以,x+y的值为1,﹣1,5,﹣5.几何的学习过程中也有类似的情况:问题(1):已知点A,B,C在一条直线上,若AB=8,BC=3,则AC长为多少?通过分析我们发现,满足题意的情况有两种情况①当点C在点B的右侧时,如图1,此时,AC=情况 ②当点C在点B的左侧时,如图2,此时,AC=通过以上问题,我们发现,借助画图可以帮助我们更好的进行分类.问题(2):如图3,数轴上点A和点B表示的数分别是﹣1和2,点C是数轴上一点,且BC=2AB,则点C表示的数是多少?仿照问题1,画出图形,结合图形写出分类方法和结果.问题(3):点O是直线AB上一点,以O为端点作射线OC、OD,使∠AOC=60°,OC⊥OD,求∠BOD的度数.画出图形,直接写出结果.6.已知3x+1的算术平方根是4,x+2y的立方根是﹣1,(1)求x、y的值;(2)求2x﹣5y的平方根.7.解方程:(1)9x2﹣16=0(3)(x+1)3+27=0.8.已知一个正数的两个平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?9.根据所学知识,我们通过证明可以得到一个定理:一个非零有理数与一个无理数的积仍为一个无理数,根据这个定理得到一个结论:若x+y=0,其中x、y为有理数,是无理数,则x=0,y=0.证:∵x+y=0,x为有理数∴y是有理数∵y为有理数,是无理数∴y=0∴x+0=0∴x=0(1)若x+y=(1﹣),其中x、y为有理数,则x=,y=;(2)若x+y=a+b,其中x、y、a、b为有理数,是无理数,求证:x=a,y=b;(3)已知的整数部分为a,小数部分为b,x、y为有理数,a、b、x、y满足17y+ y+(y﹣2x)=2a+b,求x、y的值.10.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E 在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒;当x=秒时,原点O恰为线段MN的三等分点.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,求S与t 的关系式.参考答案1.阅读理解:一般地,在数轴上点A,B表示的实数分别为a,b(a<b),则A,B两点的距离AB=x B ﹣x A=b﹣a.如图,在数轴上点A,B表示的实数分别为﹣3,4,则记x A=﹣3,x B=4,因为﹣3<4,显然A,B两点的距离AB=x B﹣x A=4﹣(﹣3)=7.若点C为线段AB的中点,则AC=CB,所以x C﹣x A=x B﹣x C,即x C=.解决问题:(1)直接写出线段AB的中点C表示的实数x C=;(2)在点B右侧的数轴上有点P,且AP+BP=9,求点P表示的实数x P;(3)在(2)的条件下,点M是AP的中点,点N是BP的中点,若A,B两点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,AP的中点M和BP的中点N也随之运动,3秒后,MN=2,则点B的速度为每秒1或个单位长度.【解答】解:(1)根据阅读材料可知:x C==故答案为;(2)∵AP+BP=9,∴x P﹣(﹣3)+x P﹣4=9解得x P=5答:点P表示的实数x P=5;(3)如图,∵点M是AP的中点,点N是BP的中点,∴AP=2AM=2MPBP=2BN=2PN∴MN=MP﹣NP=(AP﹣BP)=AB∴AB=2MNA,B两点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,AP的中点M和BP的中点N也随之运动,3秒后,MN=2,则AB=4设点B的速度为每秒x个单位长度,则点A的速度为每秒2x个单位长度,根据题意可知:3秒后,点A表示的数为﹣3+6x,点B表示的数为4+3x,当点A在点B左侧时,4+3x﹣(﹣3+6x)=4,解得x=1;当点A在点B右侧时,﹣3+6x﹣(4+3x)=4解得x=.答:B点速度为每秒1或个单位长度.【点评】本题考查了实数与数轴、一元一次方程的应用,解决本题的关键是理解阅读材料并运用.2.如图1,在数轴上A、B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D 点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=45°;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=30°;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴正半轴向右平移t(0<t<3)个单位,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α,β满足|α﹣β|=45°,请用t 的式子表示α、β并直接写出t的值.【解答】(1)∵CF平分∠ACE,∴∠AOF=∠AOE=45°,故答案为:45°;(2)①∵t=1,∴∠ACD=30t=30°,∵∠DCE=90°,∴∠ACE=120°,∵CF平分∠ACE,∴∠ACF=60°,∵∠DCF=α,∴α=∠ACF﹣∠ACD=30°,故答案为:30°;②∠BCE=2α,证明:∠BCE=180°﹣(90°+30t)=90°﹣30t由平分知:90°﹣α=α+30t30t=90°﹣2α∴∠BCE=90°﹣(90°﹣2α)=2α;(3)α=∠FCA﹣∠DCA=(90°+30t)﹣30t=45°﹣15t,β=∠AC1D1+∠AC1F1=30t+(90°﹣30t)=45°+15t,∵|α﹣β|=45°,∴|30t|=45°,∴t=±,∵0<t<3,∴t=.【点评】本题考查角的计算、角平分线的定义、数轴、平移、旋转变换等知识,解题的关键是熟练掌握角的和差定义,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.3.阅读下面的文字,解答问题,例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是4,小数部分是﹣4.(2)已知:9﹣小数部分是m,9+小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值【解答】解:(1)∵4<<5,∴的整数部分是4,小数部分是﹣4.(2)∵9﹣小数部分是m,9+小数部分是n,∴m=9﹣﹣4=5﹣,n=9+﹣13=﹣4,∵(x+1)2=m+n=5﹣+﹣4=1,∴x+1=±1,解得x1=﹣2,x2=0.故答案为:4,﹣4.【点评】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.4.为了比较+1与的大小,小伍和小陆两名同学对这个问题分别进行了研究.(1)小伍同学利用计算器得到了≈2.236,≈3.162,所以确定+1>(填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对+1和的大小做出准确的判断.【解答】解:(1)∵≈2.236,≈3.162,∴+1≈3.236,∵3.236>3.162,∴+1>.故答案为:>;(2)∵∠C=90°,BC=3,BD=AC=1,∴CD=2,AD==,AB==,∴BD+AD=+1,又∵△ABD中,AD+BD>AB,∴+1>.【点评】本题主要考查了三角形三边关系以及勾股定理的运用,解题时注意:三角形两边之和大于第三边.5.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:若|x|=2,|y|=3求x+y的值.情况①若x=2,y=3时,x+y=5情况 ②若x=2,y=﹣3时,x+y=﹣1情况③若x=﹣2,y=3时,x+y=1情况④若x=﹣2,y=﹣3时,x+y=﹣5所以,x+y的值为1,﹣1,5,﹣5.几何的学习过程中也有类似的情况:问题(1):已知点A,B,C在一条直线上,若AB=8,BC=3,则AC长为多少?通过分析我们发现,满足题意的情况有两种情况①当点C在点B的右侧时,如图1,此时,AC=11情况 ②当点C在点B的左侧时,如图2,此时,AC=5通过以上问题,我们发现,借助画图可以帮助我们更好的进行分类.问题(2):如图3,数轴上点A和点B表示的数分别是﹣1和2,点C是数轴上一点,且BC=2AB,则点C表示的数是多少?仿照问题1,画出图形,结合图形写出分类方法和结果.问题(3):点O是直线AB上一点,以O为端点作射线OC、OD,使∠AOC=60°,OC ⊥OD,求∠BOD的度数.画出图形,直接写出结果.【解答】解:(1)满足题意的情况有两种:①当点C在点B的右侧时,如图1,此时,AC=AB+BC=8+3=11;②当点C在点B的左侧时,如图2,此时,AC=AB﹣BC=8﹣3=5;故答案为:11,5;(2)满足题意的情况有两种:①当点C在点B的左侧时,如图,此时,BC=2AB=2(2+1)=6,∴点C表示的数为2﹣6=﹣4;②当点C在点B的右侧时,如图,BC=2AB=2(2+1)=6,∴点C表示的数为2+6=8;综上所述,点C表示的数为﹣4或8;(3)满足题意的情况有两种:①当OC,OD在AB的同侧时,如图,∠BOD=180°﹣∠AOC﹣∠COD=30°;②当OC,OD在AB的异侧时,如图,∠BOD=180°﹣(∠COD﹣∠AOC)=150°;【点评】本题主要考查了实数与数轴,垂线的定义以及角的计算,解决问题的关键是根据题意画出图形,解题时注意分类讨论思想的运用.6.已知3x+1的算术平方根是4,x+2y的立方根是﹣1,(1)求x、y的值;(2)求2x﹣5y的平方根.【解答】解:(1)根据题意知3x+1=16、x+2y=﹣1,则x=5、y=﹣3;(2)∵2x﹣5y=10+15=25,则2x﹣5y的平方根为±5.【点评】本题主要考查平方根、立方根,解题的关键是熟练掌握平方根和立方根的定义.7.解方程:(1)9x2﹣16=0(2)(x+1)3+27=0.【解答】解:(1)方程整理得:x2=,开方得:x=±;(2)方程整理得:(x+1)3=﹣27,开立方得:x+1=﹣3,解得:x=﹣4.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.8.已知一个正数的两个平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?【解答】解:(1)∵m+3和2m﹣15是同一个正数的平方根,则这两个数互为相反数.即:(m+3)+(2m﹣15)=0解得m=4.则这个正数是(m+3)2=49.(2)=3,则它的平方根是±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.9.根据所学知识,我们通过证明可以得到一个定理:一个非零有理数与一个无理数的积仍为一个无理数,根据这个定理得到一个结论:若x+y=0,其中x、y为有理数,是无理数,则x=0,y=0.证:∵x+y=0,x为有理数∴y是有理数∵y为有理数,是无理数∴y=0∴x+0=0∴x=0(1)若x+y=(1﹣),其中x、y为有理数,则x=﹣2,y=1;(2)若x+y=a+b,其中x、y、a、b为有理数,是无理数,求证:x=a,y=b;(3)已知的整数部分为a,小数部分为b,x、y为有理数,a、b、x、y满足17y+ y+(y﹣2x)=2a+b,求x、y的值.【解答】(1)解:∵x+y=(1﹣),其中x、y为有理数,∴x+y=﹣2+,∴x=﹣2,y=1,故答案为:﹣2,1;(2)证明:∵x+y=a+b,∴x﹣a+(y﹣b)=0,∵x、y、a、b为有理数,∴x﹣a,y﹣b都是有理数,∴x﹣a=0,y﹣b=0,∴x=a,y=b;(3)解:∵4<<5,又知的整数部分为a,小数部分为b,∴a=4,b=﹣4,∵17y+y+(y﹣2x)=2a+b,∴17y+y+y﹣34x=8+(﹣4),17y﹣34x+2y=17+4,∵x、y为有理数,∴,解得:.【点评】本题考查了有理数、无理数、实数的运算,读懂阅读材料内容,是正确解题的关键.10.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E 在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是13,点A在数轴上表示的数是﹣11.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒;当x= 2.2或2.5秒时,原点O恰为线段MN的三等分点.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,求S与t 的关系式.【解答】解:(1)∵长方形EFGH的长EH是8个单位长度,且点E在数轴上表示∴点H在数轴上表示的数是5+8=13∵E、D两点之间的距离为12点D表示的数为5﹣12=﹣7∵长方形ABCD的长AD是4个单位长∴点A在数轴上表示的数是﹣7﹣4=﹣11故答案为:13,﹣11(2)由题意知,线段AD的中点为M,则M表示的数为﹣9,线段EH上一点N且EN =EH,则N表示的数为7;由M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,则经过x秒后,M点表示的数为4x﹣9,N点表示的数为7﹣3x;①当OM=2ON时,则有|4x﹣9|=2|7﹣3x|,解得:x=2.3(经验证,不符合题意,舍去)或x=2.5②当ON=2OM时,则有|7﹣3x|=2|4x﹣9|,解得:x=2.2或x=5(经验证,不符合题意,舍去)综上所述,当x=2.2或x=2.5时,原点O恰为线段MN的三等分点.故答案为:x=2.2或x=2.5.(3)由题意知,当0<t<6时,长方形ABCD和EFGH无重叠,些时S=0当6≤t≤12时,两个长方形重叠部分的面积为S=,即S =.当t>12时,长方形ABCD和EFGH无重叠,S=0.【点评】本题为图象与函数的综合题,考查了实数与数轴上的点的对应关系、一次函数关系以及分类讨论的思想.解题的关键是分清楚在一个运动变化中各个量的变化情况!。