第二章 海洋微生物
- 格式:ppt
- 大小:15.34 MB
- 文档页数:62
海洋微生物以海洋水体为正常栖居环境的一切微生物。
但由于学科传统及研究方法的不同,本文不介绍单细胞藻类,而只讨论细菌、真菌及噬菌体等狭义微生物学的对象。
海洋细菌是海洋生态系统中的重要环节。
作为分解者它促进了物质循环;在海洋沉积成岩及海底成油成气过程中,都起了重要作用。
还有一小部分化能自养菌则是深海生物群落中的生产者。
海洋细菌可以污损水工构筑物,在特定条件下其代谢产物如氨及硫化氢也可毒化养殖环境,从而造成养殖业的经济损失。
但海洋微生物的颉颃作用可以消灭陆源致病菌,它的巨大分解潜能几乎可以净化各种类型的污染,它还可能提供新抗生素以及其他生物资源,因而随着研究技术的进展,海洋微生物日益受到重视。
编辑本段【特性】与陆地相比,海洋环境以高盐、高压、低温和稀营养为特征。
海洋微生物长期适应复杂的海洋环境而生存,因而有其独具的特性。
嗜盐性海洋微生物最普遍的特点。
真正的海洋微生物的生长必需海水。
海水中富含各种无机盐类和微量元素。
钠为海洋微生物生长与代谢所必需此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物生长所必需的。
嗜冷性大约90%海洋环境的温度都在5℃以下,绝大多数海洋微生物的生长要求较低的温度,一般温度超过37℃就停止生长或死亡。
那些能在0℃生长或其最适生长温度低于20℃的微生物称为嗜冷微生物。
嗜冷菌主要分布于极地、深海或高纬度的海域中。
其细胞膜构造具有适应低温的特点。
那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,即使中温就足以阻碍其生长与代谢。
嗜压性海洋中静水压力因水深而异,水深每增加10米,静水压力递增1个标准大气压。
海洋最深处的静水压力可超过1000大气压。
深海水域是一个广阔的生态系统,约56%以上的海洋环境处在100~1100大气压的压力之中,嗜压性是深海微生物独有的特性。
来源于浅海的微生物一般只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。
海洋微生物的分类及培养地球上约有80%的物种栖息在海水中,其中微生物种类超过百万种,但已经研究和鉴定过的微生物不到总量的5%。
由于海洋环境的特殊性,海洋微生物具有独特的代谢方式,产生许多特殊结构和生理功能的活性物质。
与海洋动植物相比,海洋微生物具有生长周期短、代谢易于控制、菌种可选育的优势,因此可通过大规模发酵实现工业化生产,其开发更具有自然资源的可持续利用性。
在研究早期,Macleod提出将微生物对Na+的生长需要作为海洋物种的限定,虽然这一定义仍被引用,但是部分海洋微生物在进化过程中具有适应陆地(低Na+)环境的潜力。
目前,一般认为分离自海洋环境,正常生长需要海水,并可在低营养、低温条件下生长的微生物可视为严格的海洋微生物,而有些分离自海洋的微生物,其生长不一定需要海水,但可产生不同于陆生微生物的代谢物如含溴、碘的化合物,或拥有某些特殊的生理生化性质如盐耐受性,也被视为海洋微生物[1]。
海洋微生物种类繁多,据统计有200万~2亿种。
可系统的分为病毒、古菌、细菌和真核生物[2、3]。
(1) 古菌是原核微生物的分支,与细菌在形态分化及生化特性上均有区别。
(2)革兰氏阳性菌包括常见的放线菌。
此外,还可分为极端细菌(嗜冷、嗜热、嗜碱、嗜压等)、非极端细菌、放线菌、真菌等。
海洋微生物生存在海水和海泥中,在培养之前需要将其从生存环境中分离。
所有用于分离陆生微生物的方法几乎都可用于海洋微生物的分离。
但是有些海洋微生物的分离需要特殊条件,如需含有海水的培养基和调节水压;深海微生物需在高的静水压下从深海中分离等[4]。
由于海洋极其复杂的营养背景和物理条件在目前的技术条件下大多数海洋微生物都无法在实验室培养,目前只有不足5%的海洋微生物可以培养鉴定,从中发现的活性物质只占总数的1%[5]。
一般是将冷冻保存的菌种接种在斜面培养基上,恒温培养,在培养过程中可以选择静置或使用摇床。
发酵培养基一般包括:葡萄糖、蛋白胨、酵母粉、人工海水及营养成分(如马铃薯浸汁、牛肉浸膏等)。
海洋微生物的特性与陆地相比,海洋环境以高盐、高压、低温和稀营养为特征。
海洋微生物长期适应复杂的海洋环境而生存,因而有其独具的特性。
嗜盐性海洋微生物最普遍的特点。
真正的海洋微生物的生长必需海水。
海水中富含各种无机盐类和微量元素。
钠为海洋微生物生长与代谢所必需,此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物生长所必需的。
嗜冷性大约90%海洋环境的温度都在5℃以下,绝大多数海洋微生物的生长要求较低的温度,一般温度超过37℃就停止生长或死亡。
那些能在0℃生长或其最适生长温度低于20℃的微生物称为嗜冷微生物。
嗜冷菌主要分布于极地、深海或高纬度的海域中,其细胞膜构造具有适应低温的特点。
那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,中温就足以阻碍其生长与代谢。
嗜压性海洋中静水压力因水深而异,水深每增加10米,静水压力递增1个标准大气压。
海洋最深处的静水压力可超过1000大气压。
深海水域是一个广阔的生态系统,约56%以上的海洋环境处在100~1100大气压的压力之中,嗜压性是深海微生物独有的特性。
来源于浅海的微生物一般只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。
研究嗜压微生物的生理特性必需借助高压培养器来维持特定的压力。
那种严格依赖高压而存活的深海嗜压细菌,由于研究手段的限制迄今尚难于获得纯培养菌株。
根据自动接种培养装置在深海实地实验获得的微生物生理活动资料判断,在深海底部微生物分解各种有机物质的过程是相当缓慢的。
低营养性海水中营养物质比较稀薄,部分海洋细菌要求在营养贫乏的培养基上生长。
在一般营养较丰富的培养基上,有的细菌于第一次形成菌落后即迅速死亡,有的则根本不能形成菌落。
这类海洋细菌在形成菌落过程中因其自身代谢产物积聚过甚而中毒致死。
这种现象说明常规的平板法并不是一种最理想的分离海洋微生物方法。
趋化性与附着生长海水中的营养物质虽然稀薄,但海洋环境中各种固体表面或不同性质的界面上吸附、积聚着较丰富的营养物。
海洋微生物科普书【原创实用版】目录1.海洋微生物的概述2.海洋微生物的重要性3.海洋微生物的种类4.海洋微生物的生存环境5.海洋微生物的科研价值6.海洋微生物的科普书推荐正文海洋微生物是指生活在海洋中的微生物,包括细菌、病毒、藻类、原生动物等。
它们在海洋生态系统中扮演着重要的角色,是海洋生物链的重要组成部分。
海洋微生物的重要性体现在多个方面。
首先,它们是海洋生态系统中的初级生产者,通过光合作用将阳光能转化为化学能,为整个生态系统提供能量。
其次,海洋微生物可以分解有机物质,净化水质,维持海洋生态系统的稳定。
最后,海洋微生物还具有重要的科研价值,可以用于研究海洋生态系统、生物多样性、气候变化等重大科学问题。
海洋微生物的种类繁多,包括细菌、病毒、藻类、原生动物等。
其中,细菌是最为常见的海洋微生物,它们在海洋中的数量庞大,种类繁多,有些细菌可以分解有机物质,有些细菌则可以进行光合作用。
病毒也是海洋微生物中的一种,它们寄生在海洋生物体内,对海洋生态系统有着重要的影响。
藻类和原生动物也是海洋微生物的重要组成部分,它们在海洋中的数量和种类也非常丰富。
海洋微生物的生存环境主要包括海水、海底沉积物、海洋生物体内等。
其中,海水是海洋微生物最主要的生存环境,它们可以在海水中自由游动,寻找食物和生存空间。
海底沉积物也是海洋微生物的重要生存环境,它们可以在沉积物中寻找有机物质,进行分解和生长。
海洋生物体内也是海洋微生物的生存环境之一,一些微生物可以寄生在海洋生物体内,获取养分和生存空间。
海洋微生物的科研价值主要体现在以下几个方面。
首先,海洋微生物可以用于研究海洋生态系统,了解海洋生态系统的结构和功能。
其次,海洋微生物可以用于研究生物多样性,了解海洋生物种类的多样性和分布规律。
最后,海洋微生物还可以用于研究气候变化,了解海洋微生物在气候变化中的作用和影响。
对于对海洋微生物感兴趣的读者,这里推荐几本海洋微生物的科普书。
首先是《海洋微生物学》,这本书详细介绍了海洋微生物的分类、结构、生理生态学等方面的内容。