第二章 海洋微生物
- 格式:ppt
- 大小:15.34 MB
- 文档页数:62
海洋微生物以海洋水体为正常栖居环境的一切微生物。
但由于学科传统及研究方法的不同,本文不介绍单细胞藻类,而只讨论细菌、真菌及噬菌体等狭义微生物学的对象。
海洋细菌是海洋生态系统中的重要环节。
作为分解者它促进了物质循环;在海洋沉积成岩及海底成油成气过程中,都起了重要作用。
还有一小部分化能自养菌则是深海生物群落中的生产者。
海洋细菌可以污损水工构筑物,在特定条件下其代谢产物如氨及硫化氢也可毒化养殖环境,从而造成养殖业的经济损失。
但海洋微生物的颉颃作用可以消灭陆源致病菌,它的巨大分解潜能几乎可以净化各种类型的污染,它还可能提供新抗生素以及其他生物资源,因而随着研究技术的进展,海洋微生物日益受到重视。
编辑本段【特性】与陆地相比,海洋环境以高盐、高压、低温和稀营养为特征。
海洋微生物长期适应复杂的海洋环境而生存,因而有其独具的特性。
嗜盐性海洋微生物最普遍的特点。
真正的海洋微生物的生长必需海水。
海水中富含各种无机盐类和微量元素。
钠为海洋微生物生长与代谢所必需此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物生长所必需的。
嗜冷性大约90%海洋环境的温度都在5℃以下,绝大多数海洋微生物的生长要求较低的温度,一般温度超过37℃就停止生长或死亡。
那些能在0℃生长或其最适生长温度低于20℃的微生物称为嗜冷微生物。
嗜冷菌主要分布于极地、深海或高纬度的海域中。
其细胞膜构造具有适应低温的特点。
那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,即使中温就足以阻碍其生长与代谢。
嗜压性海洋中静水压力因水深而异,水深每增加10米,静水压力递增1个标准大气压。
海洋最深处的静水压力可超过1000大气压。
深海水域是一个广阔的生态系统,约56%以上的海洋环境处在100~1100大气压的压力之中,嗜压性是深海微生物独有的特性。
来源于浅海的微生物一般只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。
海洋微生物的分类及培养地球上约有80%的物种栖息在海水中,其中微生物种类超过百万种,但已经研究和鉴定过的微生物不到总量的5%。
由于海洋环境的特殊性,海洋微生物具有独特的代谢方式,产生许多特殊结构和生理功能的活性物质。
与海洋动植物相比,海洋微生物具有生长周期短、代谢易于控制、菌种可选育的优势,因此可通过大规模发酵实现工业化生产,其开发更具有自然资源的可持续利用性。
在研究早期,Macleod提出将微生物对Na+的生长需要作为海洋物种的限定,虽然这一定义仍被引用,但是部分海洋微生物在进化过程中具有适应陆地(低Na+)环境的潜力。
目前,一般认为分离自海洋环境,正常生长需要海水,并可在低营养、低温条件下生长的微生物可视为严格的海洋微生物,而有些分离自海洋的微生物,其生长不一定需要海水,但可产生不同于陆生微生物的代谢物如含溴、碘的化合物,或拥有某些特殊的生理生化性质如盐耐受性,也被视为海洋微生物[1]。
海洋微生物种类繁多,据统计有200万~2亿种。
可系统的分为病毒、古菌、细菌和真核生物[2、3]。
(1) 古菌是原核微生物的分支,与细菌在形态分化及生化特性上均有区别。
(2)革兰氏阳性菌包括常见的放线菌。
此外,还可分为极端细菌(嗜冷、嗜热、嗜碱、嗜压等)、非极端细菌、放线菌、真菌等。
海洋微生物生存在海水和海泥中,在培养之前需要将其从生存环境中分离。
所有用于分离陆生微生物的方法几乎都可用于海洋微生物的分离。
但是有些海洋微生物的分离需要特殊条件,如需含有海水的培养基和调节水压;深海微生物需在高的静水压下从深海中分离等[4]。
由于海洋极其复杂的营养背景和物理条件在目前的技术条件下大多数海洋微生物都无法在实验室培养,目前只有不足5%的海洋微生物可以培养鉴定,从中发现的活性物质只占总数的1%[5]。
一般是将冷冻保存的菌种接种在斜面培养基上,恒温培养,在培养过程中可以选择静置或使用摇床。
发酵培养基一般包括:葡萄糖、蛋白胨、酵母粉、人工海水及营养成分(如马铃薯浸汁、牛肉浸膏等)。
海洋微生物的特性与陆地相比,海洋环境以高盐、高压、低温和稀营养为特征。
海洋微生物长期适应复杂的海洋环境而生存,因而有其独具的特性。
嗜盐性海洋微生物最普遍的特点。
真正的海洋微生物的生长必需海水。
海水中富含各种无机盐类和微量元素。
钠为海洋微生物生长与代谢所必需,此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物生长所必需的。
嗜冷性大约90%海洋环境的温度都在5℃以下,绝大多数海洋微生物的生长要求较低的温度,一般温度超过37℃就停止生长或死亡。
那些能在0℃生长或其最适生长温度低于20℃的微生物称为嗜冷微生物。
嗜冷菌主要分布于极地、深海或高纬度的海域中,其细胞膜构造具有适应低温的特点。
那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,中温就足以阻碍其生长与代谢。
嗜压性海洋中静水压力因水深而异,水深每增加10米,静水压力递增1个标准大气压。
海洋最深处的静水压力可超过1000大气压。
深海水域是一个广阔的生态系统,约56%以上的海洋环境处在100~1100大气压的压力之中,嗜压性是深海微生物独有的特性。
来源于浅海的微生物一般只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。
研究嗜压微生物的生理特性必需借助高压培养器来维持特定的压力。
那种严格依赖高压而存活的深海嗜压细菌,由于研究手段的限制迄今尚难于获得纯培养菌株。
根据自动接种培养装置在深海实地实验获得的微生物生理活动资料判断,在深海底部微生物分解各种有机物质的过程是相当缓慢的。
低营养性海水中营养物质比较稀薄,部分海洋细菌要求在营养贫乏的培养基上生长。
在一般营养较丰富的培养基上,有的细菌于第一次形成菌落后即迅速死亡,有的则根本不能形成菌落。
这类海洋细菌在形成菌落过程中因其自身代谢产物积聚过甚而中毒致死。
这种现象说明常规的平板法并不是一种最理想的分离海洋微生物方法。
趋化性与附着生长海水中的营养物质虽然稀薄,但海洋环境中各种固体表面或不同性质的界面上吸附、积聚着较丰富的营养物。
海洋微生物科普书【原创实用版】目录1.海洋微生物的概述2.海洋微生物的重要性3.海洋微生物的种类4.海洋微生物的生存环境5.海洋微生物的科研价值6.海洋微生物的科普书推荐正文海洋微生物是指生活在海洋中的微生物,包括细菌、病毒、藻类、原生动物等。
它们在海洋生态系统中扮演着重要的角色,是海洋生物链的重要组成部分。
海洋微生物的重要性体现在多个方面。
首先,它们是海洋生态系统中的初级生产者,通过光合作用将阳光能转化为化学能,为整个生态系统提供能量。
其次,海洋微生物可以分解有机物质,净化水质,维持海洋生态系统的稳定。
最后,海洋微生物还具有重要的科研价值,可以用于研究海洋生态系统、生物多样性、气候变化等重大科学问题。
海洋微生物的种类繁多,包括细菌、病毒、藻类、原生动物等。
其中,细菌是最为常见的海洋微生物,它们在海洋中的数量庞大,种类繁多,有些细菌可以分解有机物质,有些细菌则可以进行光合作用。
病毒也是海洋微生物中的一种,它们寄生在海洋生物体内,对海洋生态系统有着重要的影响。
藻类和原生动物也是海洋微生物的重要组成部分,它们在海洋中的数量和种类也非常丰富。
海洋微生物的生存环境主要包括海水、海底沉积物、海洋生物体内等。
其中,海水是海洋微生物最主要的生存环境,它们可以在海水中自由游动,寻找食物和生存空间。
海底沉积物也是海洋微生物的重要生存环境,它们可以在沉积物中寻找有机物质,进行分解和生长。
海洋生物体内也是海洋微生物的生存环境之一,一些微生物可以寄生在海洋生物体内,获取养分和生存空间。
海洋微生物的科研价值主要体现在以下几个方面。
首先,海洋微生物可以用于研究海洋生态系统,了解海洋生态系统的结构和功能。
其次,海洋微生物可以用于研究生物多样性,了解海洋生物种类的多样性和分布规律。
最后,海洋微生物还可以用于研究气候变化,了解海洋微生物在气候变化中的作用和影响。
对于对海洋微生物感兴趣的读者,这里推荐几本海洋微生物的科普书。
首先是《海洋微生物学》,这本书详细介绍了海洋微生物的分类、结构、生理生态学等方面的内容。
海洋微生物是生活在海洋中的微小生物的总称,包括细菌、古菌、真菌、原生生物、微藻和病毒等。
它们是海洋生态系统的重要组成部分,对海洋生物地球化学循环和海洋生态系统功能起着至关重要的作用。
本文将简要介绍海洋微生物的分类、分布、功能及其在海洋生态系统中的作用。
一、海洋微生物的分类与分布1.分类海洋微生物的分类主要依据其形态、生理生化特征、遗传信息等进行。
根据细胞结构,海洋微生物可分为原核生物和真核生物两大类。
原核生物包括细菌和古菌,真核生物包括真菌、原生生物和微藻。
病毒也是海洋微生物的重要组成部分,但它们的分类地位尚存在争议。
2.分布海洋微生物广泛分布于全球海洋各个角落,包括沿海、开阔大洋、深海等环境。
在不同深度、温度、盐度等条件下,海洋微生物的种群结构和生物量存在显著差异。
例如,在表层海水中,微藻和细菌的生物量较高,而在深海环境中,古菌和细菌的生物量占主导地位。
二、海洋微生物的功能1.生物地球化学循环海洋微生物在海洋生物地球化学循环中发挥着关键作用。
它们参与碳、氮、磷、硫等元素的循环过程,如硝化作用、反硝化作用、固氮作用、硫氧化作用等。
这些过程对全球气候变化具有重要影响,如海洋微生物固定的碳约占全球初级生产力的50%。
2.生态系统功能海洋微生物是海洋生态系统中的基础生物,为海洋生物提供能量和营养物质。
它们参与食物网的构建,为浮游动物、底栖生物等提供食物来源。
同时,海洋微生物还能降解有机污染物,净化海洋环境。
3.生物活性物质生产海洋微生物能产生丰富的生物活性物质,如抗生素、酶、色素等。
这些物质在医药、农业、环保等领域具有广泛的应用前景。
近年来,随着基因组学和代谢组学技术的发展,海洋微生物资源的开发和利用逐渐成为研究热点。
三、海洋微生物在海洋生态系统中的作用1.初级生产者海洋微生物中的微藻和蓝细菌等光合作用微生物是海洋生态系统中的初级生产者。
它们通过光合作用将太阳能转化为化学能,为海洋生物提供能量和营养物质。
海洋微生物的分离与鉴定研究第一章:引言海洋微生物是海洋生态系统中最丰富多样的生命形态之一。
它们在海洋生态系统中扮演着重要的角色,例如维持海洋生态平衡和参与有机物分解循环等。
近年来,随着现代分子生物学和生物技术的发展,对海洋微生物的分离和鉴定研究也取得了显著进展。
本文将对海洋微生物的分离和鉴定研究进行介绍和讨论。
第二章:海洋微生物的分离方法海洋微生物的分离方法主要包括传统分离和现代分离两种方式。
传统分离方法是基于微生物生理学和生态学的研究原理,利用不同菌株的生长条件、生长速率和生理代谢差异等特征进行筛选和分离。
常见的传统分离方法包括表层沉淀、筛选培养基和微生物计数等。
现代分离方法则利用现代分子生物学技术和高通量筛选平台,对微生物进行高通量分离、筛选和鉴定。
常见的现代分离方法包括共培养方法、PCR扩增和转录组技术等。
第三章:海洋微生物的鉴定方法海洋微生物的鉴定主要基于其形态、生理代谢和分子生物学特征。
传统鉴定方法主要基于微生物生理学和生物化学的研究原理,包括形态学鉴定、生化鉴定和药敏试验等。
现代鉴定方法则利用分子生物学技术对微生物进行鉴定,包括16S rRNA序列分析、rpoB基因序列分析和比较基因组学分析等。
第四章:海洋微生物的应用研究海洋微生物的应用研究包括医药、食品、能源、环境等多个领域。
以医药领域为例,海洋微生物是重要的天然药物来源,如海洋真菌产生的头孢菌素和海洋细菌生产的抗生素等。
在食品领域,海洋微生物也具有重要的应用前景,例如海洋藻类可以提取富含蛋白质和营养物质的食品材料。
此外,海洋微生物还可以被用作生产能源、处理废水等环境保护领域。
第五章:海洋微生物的前景与展望随着现代分子生物学和生物技术的不断发展,海洋微生物的分离和鉴定技术也将得到不断提高和完善。
未来,海洋微生物在多个领域的应用前景将继续扩大,为人类的生活健康和环境保护等方面作出更大的贡献。
同时,我们也需要更深入地了解海洋微生物在海洋生态系统中的作用和意义,保护海洋生态系统,维护自然生态平衡。
第一章绪论一、海洋微生物的定义海洋微生物(marine microbe)以海洋水体为正常栖居环境的一切微生物。
自八十年代起海洋生物技术蓬勃发展,“向海洋要药物”是新世纪海洋生物技术提出的口号。
海洋微生物的研究起步较晚,但在最近几年也受到了普遍重视。
二、海洋环境的特征(1) 海洋占地球表面积的71% —资源丰富;(2) 海洋平均深度:4000m ——高压,低温(3) 主要离子:Na+,Cl-,Ca2+,K+,SO42- ——高盐(4) 营养匮乏(N,P,Fe)——稀营养1 . 远海环境(1)栖居着浮游(自由泳动)微生物(2)地球上最大的环境(3)一般有大空间规模的环境变化(温度、光度等)2 . 深海环境(1)沉积物表面(2)提供了附加的表面积(3)提供小生境的多样性,使得有小空间规模的环境变化3 . 海洋雪(marine snow)(1)海洋雪定义:生存或死亡的有机体被黏多糖(微生物和浮游植物分泌的胞外产物)粘在一起形成的大的聚集体。
(2)海洋雪的形成①黏多糖形成纤丝②纤丝凝结形成透明结构③透明结构不断碰撞形成更大的颗粒,即海洋雪。
(3)海洋雪的特点①海洋雪的产量随光合作用强度和洋流季节性地波动,春天更大一些。
② 80%的初级生产者分泌黏多糖③海洋雪的沉降速率是16-25m/d,沉降过程中颗粒不断增加。
④提供养料给深海生物。
三、海洋生物的特征(1)多样性(2)复杂性(3)特殊性四、陆栖微生物的研究拥有辉煌的历史微生物活性代谢物是药物的丰富源泉:自19世纪60年代首先从微生物中发现了青霉素以来,人们陆续从陆栖微生物中寻找到抗生素类药物、化疗药阿霉素、免疫抑制药环孢霉素A等120多种重要的临床使用药物。
五、陆栖微生物研究陷入了困境(1)陆栖微生物中发现新代谢产物的速率明显降低,重复发现率极高。
(2)传染性病菌对传统抗生素的抗药性正在迅速发展。
目前,约12种重要的病菌已有抗药性,寻找活性物质新源成为当务之急。
一、实验题目:从海洋微生物中提取产抗生素菌株二、实验背景:海洋微生物包括海洋细菌、海洋真菌和海洋放线菌,其种类约为陆生微生物的20倍以上,海洋微生物其特殊的生存环境(高盐、高压、低温、低光照和寡营养),从而可合成一些结构新颖的抗生素,这是陆地微生物所不具备的。
从海洋微生物中筛选新抗生素,实际上是由陆地资源发掘向整个自然界的延伸,开发海洋微生物资源的意义是重大的,表现在几个方面:(1)海洋丰富的微生物资源为新药发现提供了多样的物种基础,它的开发将使人类进一步认识自然。
(2)新抗生素由于结构与作用机制可能有别于陆生来源的抗生素,将极大的克服目前的抗药性,同时为新药的合成提供新的“母核”。
(3)微生物易于培养、发酵,可无限再生而无需过度开发野生资源。
三、实验思路:四、实验步骤:五、实验原理已知海洋微生物其特殊的生存环境(高盐、高压、低温、低光照和寡营养),从而可合成一些结构新颖的抗生素,抗生素可以抑制周围微生物的生长。
若把这些微生物臵于含有供试菌的琼脂平板上,则其周围会形成一个圆形的不长菌的透明区域,即透明圈。
这样就可以选择不同类型的微生物做供试菌,来寻找能抑制该类微生物生长的抗生素产生菌。
本次实验采用的是纸片扩散法,其原理为:纸片中的药物向纸片周围扩散时形成递减的浓度梯度,纸片周围的实验菌生长若受到抑制,就会形成抑菌透明圈,透明圈越大、越透明,说明实验菌对该药物越敏感,反之,则不敏感。
实验时,在固体培养基表面均匀涂布实验菌后,将滤纸片平整的贴在平板表面。
取适量待测样品加到滤纸中央,培养一定时间后测量透明圈直径。
该方法具有直观、快速的优点,在化合物分离纯化过程中还可以用来进行活性成分的追踪。
六、实验过程(一)所用器皿的洗涤1、刷洗、烘干:先用自来水洗刷至无污物,再选用大小合适的毛刷蘸取去污粉刷洗,用自来水冲洗干净后再用蒸馏水洗2-3次,然后烘干。
2、泡酸、清洗:烘干后泡入酸液,24h后取出,立即用自来水冲洗,无色后用自来水冲洗12遍,后用三蒸水清洗三遍。