计量经济学
- 格式:doc
- 大小:494.50 KB
- 文档页数:7
计量经济学计量经济学,是一门使用统计方法分析经济现象的学科。
计量经济学主要通过收集、处理、分析和解释经济数据,以确认和识别经济核心问题,比如需求和供给、价格变动、市场结构和经济增长等。
这门学科的进步和应用在各种政策制定和经济决策上有着广泛的应用领域,比如经济政策的分析,股票市场的预测和企业的经营决策等。
接下来,本文将解释计量经济学的主要内容和方法,并探讨计量经济学在实践中的应用。
一、计量经济学的主要内容计量经济学分析的主要对象是经济现象和经济数据。
这些现象和数据可以描述为变量和关系,比如价格,工资,利润和经济增长等。
计量经济学主要研究的是这些变量及其之间的相互关系,以便为决策者提供更好的政策建议。
在计量经济学中,通常会涉及到如下的主要内容:1. 变量的含义和测量。
计量经济学要求研究者对变量的含义进行明确界定,以便能够对其进行测量,并进行数据收集和分析。
例如,如果要研究通货膨胀的影响因素,通货膨胀就是一个重要的变量,需要进行合理的测量。
2. 经济关系的建模。
计量经济学则进一步探索变量之间的数量关系,并通过数学模型来描述它们之间的联系。
例如,经济学家可以建立一个供求模型来研究商品价格的形成。
3. 假设检验。
计量经济学通过提出假设并使用统计检验方法来验证假设。
通过检验结果,经济学家可以同样的推理得出各种假设是否成立。
4. 统计分析。
该领域强调通过统计分析方法检验模型的假设,这是检验数据和变量关系的重要手段。
统计分析包括回归分析、时间序列分析以及多元统计分析等方法。
二、计量经济学方法计量经济学的重要方法包括统计分析、回归分析、时间序列分析、概率论和经济实验等。
其中最常使用的方法是回归分析。
1. 回归分析回归分析是计量经济学的核心方法。
回归分析将一个自变量与因变量相关联。
例如,如果我们想知道变量X与变量Y的相关性,我们就会回归一个X对Y的方程。
这个方程告诉我们,当X发生变化时,Y的变化程度。
回归分析需要建立方程,并根据现有数据的信息来确定系数。
名词解释1,计量经济学;计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2,虚拟变量数据;虚拟变量数据是人们构造的,用来表征政策定性事实的数据。
3,计量经济学检验;计量经济学检验主要是检验模型是否符合计量经济学方法的基本假定。
4,回归平方和;回归平方和用ESS表示,是被解释变量的样本估计值与其平均值得离差平方和5,拟合优度检验;拟合优度检验是指检验模型对样本观测值的拟合程度,用R²表示,该值越接近1,模型对样本观测值拟合得越好。
6,总体回归函数;将总体被解释变量的条件期望表现为解释变量的函数,这个函数称为总体回归函数。
7,样本回归函数;是指被解释变量的样本条件均值也是随解释变量的变化而又规律的变化,如果把被解释变量的样本均值比奥斯为解释变量的某种函数,称这个函数为样本回归函数8,回归方程的显著性检验(F检验);是指对模型中北解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。
9,回归参数的显著性检验(t检验);是指对其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。
10, 多重共线性;是指解释变量之间精确的线性关系和解释变量之间近似的线性关系。
11, 完全的多重共线性;是指解释变量的数据矩阵中,至少有一个列向量可以用其余的列向量线性表示。
12,不完全的多重共线性;指对解释变量k X X X ,,,32 ,存在不全为0的数k λλλλ,,,,321 ,使得 033221=+++++i ki k i i v X X X λλλλ ),,2,1(n i =,其中,i v 为解释变量。
13,异方差性;是指随即变量的方差不是确定的常数,即被解释变量观测值的分散程度随解释变量的变化而变化。
14,序列相关性;指总体回归模型的随机误差项之间存在相关关系。
15.滞后效应;是指由于经济活动的惯性,一个经济指标以前的变化态势往往会延续到本期,从而形成被解释变量的当期变化同自身过去取值水平相关的情形。
第一节计量经济学的概念计量经济学起因:对经济问题的定量研究;名词的产生:弗瑞希在其1926年发表的《论纯经济问题》一文中,按照“生物计量学”一词的结构仿造出来的。
计量经济学标志:1930年成立计量经济学会本意是经济度量,研究对经济现象和经济关系的计量方法,因此有时也译为经济计量学。
译为计量经济学,是为了强调计量经济学是一门经济学科,不仅要研究经济现象的计量方法,而且要研究经济现象发展变化的数量规律。
Econometrics计量经济学产生的意义反映了社会化大生产对各种经济因素和经济活动进行数量分析的客观要求,从定性研究到定量分析的发展,是经济学更精密、更科学的表现,是现代经济学的重要特征。
计量经济学产生的特点计量经济学与其他西方经济理论不同的一个重要特点,是它自身并没有固定的经济理论,计量经济学中的各种计量方法和技术,大多来自数学和统计学。
若干代表性表述:⚫“计量经济学是统计学、经济学和数学的结合。
”——计量经济学的奠基人弗瑞希(弗瑞希)⚫“计量经济学是用数学语言来表达经济理论,以便通过统计方法来论述这些理论的一门经济学分支。
”——美国现代经济词典若干代表性表述:⚫“计量经济学可定义为:根据理论和观测的事实,运用合适的推理方法使之联系起来同时推导,对实际经济现象进行的数量分析。
”——萨谬尔逊等各种表述的共性:➢计量经济学绝不是对经济的一般度量,它与经济理论、统计学、数学都有密切的关系。
计量经济学定义:在经济理论的指导下,以经济数据的事实为依据,运用数学和统计学的方法,借助于计算机技术,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
计量经济学1.计量经济学是一门应用经济学,是以经济现象为研究对象的;2.计量经济学的目的在于揭示经济关系与经济活动的数量规律;3.计量经济学是经济理论、统计学、数学三者的结合;4.计量经济学的核心内容是建立和应用具有随机特征的计量经济模型。
计量经济学研究的主体(出发点、归宿、核心):经济现象及数量变化规律;研究的工具(手段):数学、统计学和计算机技术;必须明确:方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务。
计量经济学计量经济学是:指通过计量工具来研究具有统计意义的经济问题的经济学科。
计量经济学的工具:数学(如优化理论,微分方程),概率与统计分析,计算机及其应用软件,数据分析等学科的相关知识。
计量经济学的研究对象:经济问题,包括各种经济现象。
经量经济学的研究目的:对所关心的经济问题做适当的经济预测,政策评估,评价或建议1.计量经济学的发展历程:经济学的一个分支学科 1926年挪威经济学家R.Frish 提出Econometrics1930年成立世界计量经济学会 1933年创刊《Econometrica 》20世纪40、50年代的大发展和60年代的扩张20世纪70年代以来非经典(现代)计量经济学的发展2.计量经济学模型的步骤:(1)、理论模型的设计 (2)、样本数据的收集 (3)、模型参数的估计(4)、模型的检验 (5)、计量经济学模型成功的三要素:理论,数据,方法3.随机误差项主要包括下列因素的影响:1)在解释变量中被忽略的因素的影响;2)变量观测值的观测误差的影响;3)模型关系的设定误差的影响; 4)其它随机因素的影响。
4.产生并设计随机误差项的主要原因:(1)理论的含糊性;2)数据的欠缺;3)节省原则。
5.参数的普通最小二乘估计(OLS )给定一组样本观测值(Xi, Yi )(i=1,2,…n )要求样本回归函数尽可能好地拟合这组值.普通最小二乘法(Ordinary least squares, OLS )给出的判断标准是:二者之差的平方和最小。
由于参数的估计结果是通过最小二乘法得到的,故称为普通最小二乘估计量。
6.最小二乘估计量的性质:一个用于考察总体的估计量,可从如下几个方面考察其优劣性:(1)线性性,即它是否是另一随机变量的线性函数;(2)无偏性,即它的均值或期望值是否等于总体的真实值;(3)有效性,即它是否在所有线性无偏估计量中具有最小方差。
这三个准则也称作估计量的小样本性质。
拥有这类性质的估计量称为最佳线性无偏估计量。
1、什么是计量经济学?计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2、为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。
(同一)3、建立与应用计量经济学模型的主要步骤。
①理论模型的建立;②收集数据,参数估计;③模型检验;④模型应用;4、并说明时间序列数据和横截面数据有和异同?时间序列:同一个统计指标,在同一时间点上,不同的对象所得的数据;横截面积:同一指标,同一对象在不同时间点上所得的数据5、试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。
6、常用的样本数据有哪些?(同第四题)1、最基础的:经典单方程计量经济学模型;2、运用最小二乘法,3、最基本假定:简单线性回归;对随机扰动项的假定:①零均值;②同方差;③无自相关4、统计检验:一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度5、后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
6、总体回归函数是对总体变量间关系的定量表述7、样本估计量优劣的最主要的衡量准则:无偏性、有效性与一致性8、Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
9、运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
10、总体回归函数:将总体被解释变量Y的条件均值表现为解释变量X 的某种函数11、样本回归函数(SRF):将被解释变量Y 的样本条件均值表示为解释变量X 的某种函数。
总体回归函数与样本回归函数的区别与联系12、随机扰动项:被解释变量实际值与条件均值的偏差,代表排除在模型以外的所有因素对Y的影响。
13、引入随机扰动项的原因:未知影响因素的代表●无法取得数据的已知影响因素的代表●众多细小影响因素的综合代表●模型的设定误差●变量的观测误差●变量内在随机性14、为什么要作基本假定:模型中有随机扰动,估计的参数是随机变量,只有对随机扰动的分布作出假定,才能确定所估计参数的分布性质,也才可能进行假设检验和区间估计●只有具备一定的假定条件,所作出的估计才具有较好的统计性质15、拟合优度:样本回归线对样本观测数据拟合的优劣程度,16、可决系数:在总变差分解基础上确定的,模型解释了的变差在总变差中的比重1、多元线性回归模型基本假定:①零均值;②同方差;③无自相关;④不存在相关性2、在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。
关于计量经济学英文“Econometrics”这个词,它最早是由挪威经济学家、统计学家、第一届诺贝尔经济学奖获得者之一(弗瑞希)于1926年仿照”Biometrics”(生物计量学)一词而提出的。
中文译名有两种:经济计量学与计量经济学。
关于它的定义,也有很多的论述。
美国现在经济词典认为:计量经济学是用数学语言来表达经济理论,以便通过统计方法来论述这些理论的一门经济学分支。
拉缪尔森、科普曼斯、斯通等三位著名的经济学家在1954年计量经济学家评审委员会的报告中认为:“计量经济学可以定义为”根据理论和观测的事实,运用合适的推理方法,对实际经济现象进行的数量分析。
戈德伯格的《计量经济学通论》中把计量经济学定义为这样的社会科学:它把经济理论、数学和统计推断作为工具,应用于经济现象的分析。
克莱因在他的《经济计量学讲义》中定义计量经济学是数学方法、统计技术和经济分析的综合。
就其字义来说,计量经济学不仅是指对经济现象加以测量,而且包含根据一定的经济理论进行计算的意思。
尽管对计量经济学定义的表述并不相同,但是我们可以看出它是经济学、数学和统计学相结合的一门综合学科。
具体地说,计量经济学就是在经济理论的指导下,根据实际观测的统计数据(或以客观事实为依据),运用数学和统计学的方法,借助于计算机技术从事经济关系与经济活动数量规律的研究,并以建立和应用计量经济学模型为核心的一门经济学科。
必须指出的是,这些计量经济模型是具有随机特性的。
在这个定义中,强调以下几点:第一,计量经济学是经济学的一个分支科学,是一门应用经济科学,它是以经济现象为研究对象的。
第二,计量经济学目的在于揭示经济关系与经济活动的数量规律。
第三,计量经济学是经济理论、统计学和数学三者的结合。
第四,计量经济学核心内容是建立和应用具有随机特征的计量经济模型。
作为计量经济学的初学者,我认为计量经济学可以这样定义:首先“计量”这个词的本意是指实现单位统一、量值准确可靠的活动,在此可以理解为以数理统计方法做定量研究,而“经济”就是用较少的人力、物理、财力、空间获取较大的成果或收益,在此可以理解为社会生产、交换分配和消费等经济活动和经济规律。
一、1、列举计量经济分析过程的几个要素:1、数据;2、计量模型。
3、解释变量;4、被解释变量;5、相关影响。
2、计量经济分析过程基本围绕着四类值。
例如要预测一个硬币被抛1000次出现正面的次数,第一步: 从理论上研究,出现正面的概率是1/2, 这个概率是真值;第二步:做实验,例如抛硬币100次,观察出现正面的次数,那么这个次数为观察值;第三步:估计概率,用观察的次数除以100作为概率的估计值;第四步:用估计的概率乘以1000作为硬币被抛1000次出现正面的预测值。
3、估计量一般都采用哪三种评选标准:1、无偏性;2、有效性;3、一致性.4、无偏估计量的概念:若估计量的数学期望存在且等于其对应真值,即 ()E θθ=。
4估计量的有效性:设 1θ与 2θ均为θ的无偏估计量,若对于任意θ,有 1θ的方差小于等于 2θ的方差,则 1θ较 2θ有效。
5、列举计量经济分析的三种数据类型:1、横截面数据;2、时间序列数据;3、面板数据。
6、虚拟变量即一种二值变量,是对解释变量的一种定性描述。
二、:1、简述多元线性回归中('i i i y x βε=+)的高斯-马科夫假设(Gauss – Markov assumption )?若要求得到无偏估计量需满足其中的哪(些)项?112{}0,1,2,...,{,...,}{,...,}{}1,2,...,{,}0i N N i i j E i Nx x V i N C ov εεεεσεε=====与相互独立,若想得到无偏估计量,需满足{}0,1,2,...,i E i N ε==,和11{,...,}{,...,}NNx x εε与相互独立某种元件的寿命X(以小时计)服从正态分布N(),均未知.现测得16只元件的寿命如下(已知 t 0.05(15) =1.7531) :159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于225(小时)? 2:解 按题意需检验:=225,:取a =0.05.此检验问题的拒绝域为t=t a (n-1).现在n=16, t 0.05(15) =1.7531.又根据,s=算得 =241.5, s=98.7259,即有t ==0.6685 1.7531.t 没有落在拒绝域中,故接受,即认为元件的平均寿命不大于225小时.3、在平炉上进行一项试验以确定改变操作方法的建议是否会增加钢的得率,试验是在同一只平炉上进行的,每炼一炉钢时除操作方法外,其他条件都尽可能做到相同.先用标准方法炼一炉,然后用建议的方法炼一炉,以后交替进行,各炼成了10炉,其得率分别为(1) 标准方法 78.1 72.4 76.2 74.3 77.4 78.476.0 75.5 76.7 77.3(2) 新方法 79.1 81.0 77.3 79.1 80.0 79.179.1 77.3 80.2 82.1设这两个样本相互独立,且分别来自正态总体N()和N(),,均未知.问建议的新操作方法能否提高得率?(取a =0.05,已知 t 0.05(18)=1.7341)3:解 需要检验假设 : -0,: -0分别求出标准方法和新方法下的样本均值和样本方差如下: 根据 ,s==10,=76.23,=3.325,根据 ,s==10, =79.43,=2.225.又,==2.775, t 0.05(18)=1.7341,故拒绝域为 t =-t0.05(18)=-1.7341.现在由于样本观察值t = -4.295-1.7341,所以拒绝,即认为建议的新操作方法较原来的方法为优.4、时间序列过程tY 为平稳过程需要满足哪些条件?若121.20.32tt t tY Y Y ε--=-+,试问这个过程是一个平稳过程吗?解:平稳过程需满足三个条件:1、{}tE Y μ=,期望为有限常数与时间t 无关。
2、{}tV Y γ=,方差为有限常数与时间t 无关。
3、{,},1,2,3,.....tt kk Cov Y Yk γ-==,协方差仅与k 有关与时间t 无关这个过程为一个AR (2)过程. 写成滞后操作符的形式:(10.8)(10.4)t t L L Y ε--=特征根的解一个为1/0.8,另一个为1/0.4均大于1,所以此过程平稳。
5、什么是工具变量,什么时候应用工具变量模型?如何用2SLS 方法估计工具变量模型中的参数?当某些解释变量为内生变量,即解释变量(xi )受被解释变量(y )影响的时候,应采用工具变量来辅助回归,以取得无偏一致估计量。
工具变量应与内生变量(xi )相关,但不受被解释变量(y )的影响。
当存在内生变量要取得x 对y 的影响的无偏估计,可采用2SLS(两阶段法)。
例如:在模型01122y x x βββε=+++中x2为内生变量,可采用工具变量z ,满足z 与x2相关,但不受y 的影响。
第一阶段:OLS 回归20112xx z vααα=+++。
取得拟合值 2x第二阶段:OLS 回归 2112y x xβββε=+++,得到的系数估计量记作IVβ,即x 对y 影响的无偏估计量四、案例分析(35分)1、经济学家卡特通过1987年美国的就业调查数据分析了教育对收入的影响。
数据包含了对3294个年轻劳动力,其中女性1569人,其平均工资为5.15美元,男性1725人,其平均工资6.31美元。
数据包括被观察对象的收入wage , 教育程度edu (教育年限),工作经验exp ,性别等信息。
1、若假定收入仅与教育程度,edu 有关,如何建立简单二元回归模型,如何估计其中参数? 建立二元线性回归:01wage edu ββε=++其中 121()()1()ni i i ni i x x y y x x β==---∑=∑, 01y x ββ=- 2、若二元回归模型所得参数估计值为理想的无偏估计值,应满足什么条件?应满足除教育程度外的所有变量,包括不可观测的因素,都与教育程度edu 无关。
3、现在假定收入与教育程度edu, 及工作经验exp 都有关系,建立多元线性回归模型一般形式012exp i i i iw age edu βββε=+++,其中i 代表数据中的第i 个观测值, ε满足高斯-马科夫假设条件。
若将模型写成矩阵的形式,Y X βε=+, 矩阵中的字母各代表模型一般形式下哪些变量?111102222121,,exp 1,,exp .,.,....1,,expN N N Nw age edu w age edu Y X w ageedu εβεββεβε⎛⎫⎛⎫⎛⎫⎪⎪⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,4、请给出在模型的矩阵形式(YX βε=+)下参数β的OLS 估计公式。
1(')'X X X y β-= 5、请计算参数β的OLS 估计量( O LSβ)的期望与方差,如何理解 O LSβ为最佳线性无偏估计量(Best Linear Unbiased Estimator; BLUE )?111111{}{(')'}{(')'()}{(')(')(')')}{(')')}{(')'}{}E E X X X y E X X X X E X X X X X X X E X X X E X X X E ββεβεβεβεβ------==+=+=+=+=由此可得 O LSβ的期望等于真值,估计量为无偏估计量。
1111112121(')'(')'()(')'{}{()()'}{(')''(')}(')'()(')(')X X X y X X X X X X X V ar E E X X X X X X X X X I X X X X X ββεβεβββββεεσσ--------==+=+=--=== 1、 O LSβ=1(')'X X X y -,是y 中元素的线性组合,所以此估计量是一个线性估计量。
2、由上可得估计量是一个无偏估计量3、估计量的方差与其它的线性估计量方差相比最小,所以是一个最有效估计量。
所以OLS 估计量是一个最佳线性无偏估计量。
6、上述的多元线性回归模型,回归结果如下:3.380.530.137Wage eduexp =-++ (0.465) (0.0328) (0.023) 方程下面小括号内为各解释变量的标准差。
6.1 如何理解教育程度的系数0.53?在其它解释变量不变的情况下,即工作经验不变的情况下,每增加一年的教育,小时工资将增加0.53美元。
6.2 教育程度的影响是否在统计上显著?(0.05(3291) 1.96t =)进行t 检验:0111:0:0H H ββ=≠检验统计量 0.5316.16 1.960.0328z ==>,所以拒绝原假设。
教育对收入的影响是显著的。
6.3 如何计算拟合优度,若在回归中拟合优度为0.1326,如何理解这个值?拟合优度 32942213294211()i i ii Ryy ε===--∑∑。
拟合优度0.1326意味着工资变动的13.26%可以由教育程度,工作经验及常数来解释。
6.3 如何检验教育程度和工作经验在统计上的联合显著性,即01210:0:H H H ββ==非需采用F 检验: 第一步:回归原模型012exp ii i i wage edu βββε=+++,得到拟合优度21R第二步:回归限制模型,在这里为:0+v ii wage β=,得拟合优度2R第三步:检验统计量221021()/2(2,3291)(1)/(329412)R R fF R -=---然后比较检验统计量与临界值,选择假设条件。