6半导体器件-器件基本结构 pn结2学时
- 格式:ppt
- 大小:605.50 KB
- 文档页数:11
半导体器件基本结构半导体器件是一种基于半导体材料制造的电子元件,用于控制和调节电流和电压。
它在现代电子设备中起着重要的作用,包括计算机、手机、电视、汽车等。
半导体器件的基本结构主要由半导体材料、金属电极和其他衬底材料构成。
半导体材料是半导体器件的核心部分,主要有硅和锗。
这些材料的电阻率介于导体和绝缘体之间,即在一定程度上可以导电,但电阻相对较高。
半导体材料的导电性质可以通过杂质掺杂来调节,这种过程可以增加或减少材料中的自由电子和空穴数量。
通过控制杂质的类型和浓度,半导体材料可以具有不同的电性能,如P型半导体和N型半导体。
P型半导体和N型半导体是半导体器件的两种基本类型。
P型半导体是通过杂质掺入三价元素,如硼,将半导体材料中的一些原子替换为杂质原子。
这些杂质原子缺少一个电子,被称为“空穴”。
因此,P型半导体中的电荷移动是由空穴贡献的。
N型半导体是通过杂质掺入五价元素,如磷,将半导体材料中的一些原子替换为杂质原子。
这些杂质原子有一个额外的电子,被称为“自由电子”。
因此,在N型半导体中,电荷移动是由自由电子贡献的。
半导体器件的常见结构包括二极管、三极管和场效应晶体管。
二极管是最简单的半导体器件之一,由P型半导体和N型半导体材料的结合组成。
在二极管中,当正向电压施加在P型半导体一侧时,空穴和自由电子结合,形成一个电流通路,即正向电流。
而在反向电压施加时,两种半导体材料之间形成一个势垒,阻止电流流动,即阻塞反向电流。
三极管是一种基于二极管的三端口装置,通常由两个N型半导体材料和一个P型半导体材料组成。
三极管中的电流被控制通过一个输入电流和一个输出电流进行放大。
当输入电流施加到基极时,它会控制两个PN结之间的电流流动,从而调节输出电流。
这种结构使得三极管成为一种重要的电子放大器和开关。
场效应晶体管(FET)是一种依靠电场调控电流的器件。
它由一个控制电极(栅极)、一个源极和一个漏极组成,通常是由浅的、高掺杂的P型或N型半导体材料制成。
半导体与电子器件PN结与二极管半导体与电子器件一直是电子科技领域的重要组成部分,其中PN 结与二极管是半导体器件中常见且关键的元件。
本文将介绍PN结和二极管的基本原理、结构以及主要应用。
一、PN结的基本原理和结构PN结是由P型半导体和N型半导体的结合形成的。
P型半导体中的杂质原子掺入了三价元素,如硼(B)元素,使得半导体中存在电子空穴对,形成P型半导体;N型半导体则是通过掺入五价元素,如磷(P)元素,引入多余的电子而形成。
当P型和N型半导体相接触时,由于浓度差异,会出现电子从N型半导体转移到P型半导体的趋势,形成一个电子亏损区和一个电子富集区,即PN结。
PN结的结构可以简单分为P区、N区和结区。
P区富集了电子空穴对,N区则富集了自由电子。
结区是PN结最关键的部分,由于P区富电子空穴对,N区富自由电子,两者通过扩散在结区发生重组,形成电子亏损区和电子富集区。
这种扩散导致在PN结附近出现自愿产生的电场,并在不同的电势下形成一个势垒。
这个势垒阻碍了电子和空穴进入对方区域,从而形成了PN结的特性。
二、二极管的基本原理和结构二极管是基于PN结构的半导体器件,具有两个电极,分别为阴极(Cathode)和阳极(Anode)。
二极管可分为正向偏置和反向偏置两种状态,取决于电压的极性。
1. 正向偏置在正向偏置下,即将正电压施加在P区,负电压施加在N区。
这样,电子从N区跨越PN结进入P区,同时空穴从P区进入N区,两者在PN结重组后均得到补偿。
在正向偏置下,PN结的势垒得到降低,电流可以流通,形成导通状态。
二极管此时表现为低电阻状态,允许电流通过。
2. 反向偏置在反向偏置下,即将正电压施加在N区,负电压施加在P区。
这样,电子会受到势垒的阻碍无法通过,空穴也无法进入N区。
因此,在反向偏置下,PN结的势垒增加,形成一个高电阻状态,阻止电流流过,此时二极管处于关闭状态。
三、PN结和二极管的应用PN结作为半导体的基本结构,广泛应用于各种电子器件中,包括二极管、三极管、场效应管等。
使用半导体器件进行 pn 结特性实验的教程半导体器件是现代电子技术中不可或缺的组成部分,而了解和掌握半导体器件的特性对于电子工程师和科学研究人员来说至关重要。
本文将为您提供一份使用半导体器件进行 pn 结特性实验的详细教程,帮助您深入了解 pn 结的性质和工作原理。
一、实验所需材料和设备在进行 pn 结特性实验之前,我们需要准备以下材料和设备:1. 半导体二极管:用于构建 pn 结的主要器件,可以通过购买或者向实验室借用获得。
2. 直流稳压电源:用于为实验提供稳定的电压,并可调节电压大小。
3. 万用表:用于测量 pn 结的电流、电压和其他相关参数。
4. 连线材料:如导线和插头,用于连接各个器件。
5. 实验台和支架:用于搭建实验电路和固定器件。
6. 安全眼镜、手套和防护服:用于保护实验人员安全。
二、实验步骤以下是使用半导体器件进行 pn 结特性实验的详细步骤:1. 确保实验室环境安全,并带好安全装备。
2. 将实验台和支架摆放整齐,并连接好直流稳压电源和万用表。
3. 选择一只半导体二极管作为实验器件,并将它放置在支架上。
4. 首先,将电源的负极连接到二极管的阴极,正极连接到二极管的阳极。
注意极性的正确连接,以免损坏二极管。
5. 打开电源,调节电压到适当的范围(如1V),并使用万用表测量二极管上的电流和电压。
记录测量结果。
6. 逐渐调节电压,每次增加一定的值(如0.1V),并记录相应的电流和电压数值。
7. 在整个电压范围内重复步骤6,直到达到电源的最大电压或者观察到二极管的击穿现象。
8. 分析实验数据,绘制 pn 结的特性曲线,包括电压-电流特性曲线和电压-电阻特性曲线。
9. 根据特性曲线的形状和实验数据,分析pn 结的工作状态和特性,如正向偏置、反向偏置、截止区和导通区等。
10. 完成实验后,关闭电源,断开连接,并将实验台恢复整洁。
三、实验注意事项在进行 pn 结特性实验时,务必注意以下事项:1. 仔细阅读并遵守实验室的安全操作规程,确保实验过程中的人身安全和设备安全。
半导体物理学中的pn结半导体物理学是研究半导体材料和器件的特性及其应用的科学领域。
而其中一个核心概念便是pn结,它是一种半导体器件中常见的结构。
本文将介绍pn结的基本原理、特性和应用。
一、pn结的构成pn结由p型半导体和n型半导体直接接触形成。
p型半导体是掺入了三价杂质的半导体,如掺入硼或铝,带有多余的电子空穴。
n型半导体则是掺入了五价杂质的半导体,如掺入砷或磷,带有过剩的自由电子。
当这两种半导体相结合时,空穴和自由电子会通过碰撞重组,形成一个带电的区域,即结区。
二、pn结的工作原理在pn结中,有两个关键区域:n端和p端。
n端富含自由电子,而p端则富含电子空穴。
由于电荷差异,电子和空穴会相互扩散到对方的区域,形成漂移电流。
同时,当电子和空穴通过重组而消失时,会形成一个正电荷层和一个负电荷层。
这就是常说的耗尽区。
在平衡状态下,耗尽区的正电荷层和负电荷层正好平衡,称为开路状态。
而当外加电压施加在pn结上时,会改变耗尽区的电荷分布。
当施加的电压为正向偏置时,p端连接的电源的正极与n端连接的电源的负极,会加大耗尽区的宽度,减小耗尽区正负电荷层的高度,这就形成了导通状态。
反过来,当施加的电压为反向偏置时,p端连接的电源的负极与n端连接的电源的正极,会增大耗尽区的宽度和正负电荷层的高度,这就形成了截止状态。
三、pn结的特性1. 双向导电性:pn结在正向偏置下会导电,形成导通状态。
而在反向偏置下则会截止,不导电。
这种特性使得pn结成为一种可控制的电子器件。
2. 整流性:由于pn结的双向导电性,它可以用于整流电路。
在正向偏置下,电流可以流过pn结,而在反向偏置下则会被截止。
3. 光电效应:当光照射到pn结上时,通过光电效应,光子能量会被转化为电能。
这使得pn结广泛应用于光电器件,如太阳能电池。
四、pn结的应用1. 整流器件:如二极管和整流电路,用于将交流电转换为直流电。
2. 放大器件:如晶体管,能够放大信号,实现电子设备的放大功能。
第一章半导体基础知识〖本章主要内容〗本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。
首先介绍构成PN结的半导体材料、PN结的形成及其特点。
其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。
然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。
〖本章学时分配〗本章分为4讲,每讲2学时。
第一讲常用半导体器件一、主要内容1、半导体及其导电性能根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。
半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9Ω∙cm。
典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。
2、本征半导体的结构及其导电性能本征半导体是纯净的、没有结构缺陷的半导体单晶。
制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。
在热力学温度零度和没有外界激发时,本征半导体不导电。
3、半导体的本征激发与复合现象当导体处于热力学温度0K时,导体中没有自由电子。
当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。
这一现象称为本征激发(也称热激发)。
因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。
游离的部分自由电子也可能回到空穴中去,称为复合。
在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。
4、半导体的导电机理自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。
《功率半导体器件基础》课程教学大纲课程编号:课程名称:功率半导体器件基础/ Fundamentals of Power Semiconductor Devices 课程总学时/学分:48/3.0(其中理论36学时,实验12学时)适用专业:电子科学与技术专业一、教学目的和任务功率半导体器件基础是电子科学与技术本科专业必修的一门专业核心课程。
功率半导体器件基础讲述功率半导体器件的原理、结构、特性和可靠性技术,在此基础上分析当前电力电子技术中使用的各种类型功率半导体器件,包括二极管、晶闸管、MOSFET、IGBT和功率集成器件,并包含了制造工艺、测试技术和损坏机理分析。
根据电子科学与技术本科专业的特点和应用需要,使学生对功率半导体器件的基础理论和最新发展有一个全面而系统的认识,并培养学生在工程实践中的应用能力,提高学生的创新能力。
二、教学基本要求通过对计算机控制技术课程的学习,要求学生:(1)了解如何使用和选择功率半导体,以及半导体和PN结的物理特性以及功率器件的工艺。
(2)熟悉功率器件的可靠性和封装,以及在电力电子系统中的应用。
(3)掌握pin二极管、双极型晶体管、晶闸管、MOS晶体管、IGBT的结构与功能模式及物理特性。
三、教学内容与学时分配第一章(知识领域1):功率半导体器件概述(2学时)。
(1)知识点:装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。
(2)重点与难点:重点是装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。
第二章(知识领域2):半导体的性质(2学时)。
(1)知识点:晶体结构;禁带和本征浓度;能带结构和载流子的粒子性质;掺杂的半导体;电流的输运;半导体器件的基本功式。
(2)难点与重点:重点是晶体结构、禁带和本征浓度和载流子的粒子性质第三章(知识领域3):PN结(2学时)。
(1)知识点:热平衡状态下的PN结;PN结的I-V特性;PN结的阻断特性和击穿;发射区的注入效率;PN结的电容。