特种陶瓷介绍
- 格式:ppt
- 大小:895.50 KB
- 文档页数:15
特种陶瓷复习资料第一章特种陶瓷的定义:采用人工合成的高纯度无机化合物为原料,在严格控制的条件下经成型、烧结和其他处理而制成具有微细结晶组织的无机材料——特种陶瓷。
这类陶瓷又称为先进陶瓷或精细陶瓷。
分类:按化学成分:氧化物和非氧化物陶瓷按功能分:结构陶瓷和功能陶瓷结构陶瓷:利用力学和热学性能应用于制造发动机,切削工具和轴承等领域功能陶瓷:利用电光磁声化学等功能性,应用于检测,控制,以及生物医学领域等。
按性能:工程陶瓷,热功能,电功能,磁学功能,光学功能,化学功能,放射性功能,声学功能,生物医学功能。
第三章弹性模量的定义:在工程意义上,弹性模量是表征材料对弹性变形的抵抗能力。
在应力应变关系意义上,弹性模量代表着单位应力作用下原子间距的变化率。
陶瓷材料弹性模量的特点比金属大得多;压缩时比拉伸时大(金属相等)1 抗弯强度定义:材料抵抗抗弯曲不断裂的能力。
测试方法:三点弯曲 :四点弯曲断裂韧性K 1C 的定义和测定方法断裂韧性:表征材料抵抗其内部裂纹扩展能力的性能指标K 1C —裂纹尖端的临界应力强度因子. 3 断裂韧性K 1C 的测定方法硬度的概念:硬度是材料抵抗外来异物压入时产生永久变形的能力 ()232/3t PL b ωσ=()232/3t PL b ωσ=()232/3t PL b ωσ=()232/3t PL b ωσ=影响因素表面原子或离子填充密度;弹性模量、强度、裂纹的方向、塑性变形程度等。
疲劳断裂在交变负荷产生的交变应力作用下,材料内部显微组织发生变化,最后导致的断裂。
称为疲劳断裂这样的变化过程称为材料的疲劳(或交变应力损伤)热学性质包括:热容量,热导率,热膨胀、耐热冲击性能等性质;3.4 陶瓷的增强和增韧1.细晶强化增韧2.晶界增强增韧3.相变增强增韧4.复合增强增韧1.2.晶界增强增韧原理通过改变晶相组成和烧结后的热处理,使晶界玻璃相结晶成高强度的晶界相来提高强度改变晶相组成• 3.相变增韧原理•利用晶态不同变体发生晶型转变时产生的体积变化使材料内部形成应力场,当材料断裂时,应力的释放阻止裂纹的扩张,只有增加外力做功,才能使裂纹继续扩展,于是材料的强度和韧性都得到了提高。
特种陶瓷的相关介绍特种陶瓷是指在传统陶瓷基础上,通过改变原始的成分配比、成形工艺、烧成工艺等,制成性能优异、用途广泛、具有特殊需求的陶瓷材料。
下面将对特种陶瓷的种类、应用领域和制造工艺等进行介绍。
特种陶瓷的种类1.电子陶瓷:以氧化铝、氧化铝质玻璃、石英等为原料,制成用于半导体器件包装、介质等的电子陶瓷。
2.结构陶瓷:以氧化锆、氧化铝、碳化硅等为原料,经过加压模压、注射成型后,高温烧制而成的具有高强度、抗磨损性、耐腐蚀性等性能的结构陶瓷。
3.生物陶瓷:以氧化锆、氧化铝、磷酸三钙等为原料,经过特殊制造工艺后,制成用于人工关节、牙科医疗和植入式医疗等领域的生物陶瓷。
4.热媒体陶瓷:以氧化铝、氧化锆等为原料,经过特殊工艺处理,制成用于高温传热的热媒体陶瓷。
5.摩擦材料陶瓷:以氧化铝、氮化硅、氧化锆等为原料,经过特殊烧制工艺,制成用于汽车、飞机、铁路等领域摩擦材料的陶瓷。
特种陶瓷的应用领域1.电子领域:用于电容器、介质、射频器件、振荡器、陶瓷滤波器、压电陶瓷、声波陶瓷等领域。
2.医疗领域:用于人工关节、人牙种植体、口腔修复等领域的生物陶瓷。
3.环保领域:用于重金属和有害气体的吸附、污水处理、空气净化等领域的陶瓷。
4.新能源领域:用于氢能源技术、太阳能电池等领域的氧化锆陶瓷。
5.机械领域:用于轴承、密封、磨损件等机械领域的结构陶瓷。
特种陶瓷的制造工艺特种陶瓷的制造过程包括原料选取、配料、成型、烧结等多个工艺环节。
原料选取是关键环节,不同种类的特种陶瓷要选取不同的原料。
例如,生物陶瓷需要选用生物相容性好、生物安全性高的原料,并采用特殊的工艺进行处理,保证最终陶瓷的生物可接受性。
配料是根据要求的化学组成比配制粉末混合物的重要环节,粉末混合方法有湿法和干法两种。
成型是将混合后的陶瓷粉末通过模具成型的环节,通常包括压制、注射成型、挤出成型和印制等多种成型方式。
烧结是将成型后的陶瓷样品放入特殊的烧结设备中加热处理的环节,经过高温烧结,使得陶瓷颗粒结合更紧密、密度更高,从而得到更高的强度和硬度。
一.名词解释1.特种陶瓷:不同于传统日用、建筑卫生陶瓷的用于现代工业、高科技技术领域的陶瓷材料,亦称先进陶瓷、高技术陶瓷或精细陶瓷等。
包括利用其力学、高温性能等的结构陶瓷与及利用其特殊功能的功能陶瓷等等。
2.功能陶瓷:利用材料的力学之外的性能的一类陶瓷材料,能表现出优异的电学性能、磁学性能、光学性能等。
如压电、热释电、热敏、气敏、湿敏、光敏、磁敏等以及其功能的耦合等等。
3.流延成型:将粉体加入粘合剂混合成浆料,再把浆料放入流延机的料斗中,流经薄膜载体上,形成膜坯。
4.反应烧结:通过多孔坯体同气相或液相发生化学反应,从而使坯体质量增加,孔隙减小,并烧结成为具有一定强度和尺寸精度的成品的工艺5.95氧化铝陶瓷:以刚玉为主晶相,氧化铝含量在95%左右的陶瓷材料,具备优良的力学性能、热学性能及其它功能性。
6.部分稳定氧化锆陶瓷:是指在氧化锆中添加适量的可形成固溶体的氧化钇等物质,稳定四方氧化锆晶体不相变。
从而在室温得到不相变的四方和立方氧化锆的混合物,称为部分稳定氧化锆。
这种材料称部分稳定氧化锆。
简称PSZ。
7.微裂纹增韧:陶瓷材料中存在许多小于临界尺寸的微纹,这些微裂纹在负载作用下是非扩展性的,但大的裂纹在扩展中遇到这些裂纹时,使扩展裂纹转向,吸收能量,起到提高韧性的作用,称为微裂纹增韧。
8.表面强化韧化:由于氧化锆四方晶向单斜晶转变产生的体积膨胀,从而使表面产生压应力,起到强化和韧化的作用。
9.低膨胀陶瓷材料:指膨胀系数的绝对值小于2×10-6/℃的陶瓷材料。
10.蜂窝陶瓷:有规范的孔结构的陶瓷材料,主要利用其特殊的孔型结构,起到过滤、隔热、隔音、抗热震性等等性能的一类陶瓷材料。
11.复合材料:由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料。
既保留原组成材料的重要特点,又通过复合效应获得原组分所不具备的性能。
这种材料称复合材料。
12.梯度陶瓷材料:在同一材料内不同方向上由一种功能逐渐连续分布为另一种功能的材料称为梯度材料。
特种陶瓷的特点和用途
特种陶瓷是一种在高温高压环境下制造出的陶瓷材料,具有独特的性质和用途。
由于其良好的耐热、耐腐蚀、耐磨损、绝缘、导热性好等特点,特种陶瓷已经被广泛应用于许多领域,包括电子、机械、航空航天、医疗、化工、环保等。
特种陶瓷具有良好的耐热性。
在高温环境下,许多材料会出现熔化、变形或者老化现象,而特种陶瓷则能够保持其稳定的物理和化学性质。
因此,特种陶瓷被广泛应用于高温炉窑、热电站、航空发动机等领域。
特种陶瓷具有优异的耐腐蚀性。
在酸碱等腐蚀性物质的环境下,普通材料容易受到侵蚀和腐蚀,而特种陶瓷则能够保持其完整和稳定性。
因此,特种陶瓷被广泛应用于化工、环保等领域。
特种陶瓷具有良好的耐磨损性。
在高速运转的机械设备中,普通材料容易出现磨损和疲劳现象,而特种陶瓷则能够保持其完整和耐用性。
因此,特种陶瓷被广泛应用于汽车、船舶、机械等领域。
特种陶瓷还具有良好的绝缘性和导热性能。
在电子、医疗等领域中,特种陶瓷被广泛应用于电子元件、热敏电阻、医疗器械等方面。
特种陶瓷具有独特的性质和用途,已经成为现代工业中不可或缺的材料之一。
随着技术的不断发展和应用领域的不断扩大,特种陶瓷
的应用前景将会越来越广阔。
1、采用高度精选的原料,具有能精确控制的化学组成,按照便于进行结构设计及控制的方法进行制造、加工的,具有优异特性的陶瓷。
特种陶瓷有很多种叫法,例如:精细陶瓷、技术陶瓷、现代陶瓷、新型陶瓷等等。
2、粘土在陶瓷生产中的作用:1)粘土的可塑性是陶瓷坯泥赖以成型的基础。
2)粘土使注浆泥料与釉料具有悬浮性与稳定性。
3)粘土一般呈细分散颗粒,同时具有结合性。
4)粘土是陶瓷坯体烧结时的主体。
5)粘土是形成陶器主体结构和瓷器中莫来石晶体的主要来源。
4、特种陶瓷分类:按特性和用途分⑴结构陶瓷⑵功能陶瓷⑶陶瓷基复合材料5、特种陶瓷性能(和金属材料相比)优点:高硬度,耐磨;高熔点,耐高温;高强度;高化学稳定性;比重小,约为金属1/3缺点:脆性大研究热点:如何提高陶瓷的韧性成为世界瞩目的陶瓷材料研究领域的核心课题!!!原因:化学键差异造成的。
金属:金属键,没有方向性,塑性变形性能好陶瓷:离子键和共价键,方向性强,结合能大,很难塑性形变,脆性大,裂纹敏感性强6、提高陶瓷韧性的方法1)利用金属的延展性2)利用晶须或者纤维增韧3)利用相变增韧4)纳米陶瓷增韧7、特种陶瓷用途特陶可以“上天入地”,“上天”指特种陶瓷应用于航天科技行业,“入地”指特种陶瓷可以应用于汽车等行业。
陶瓷刹车盘、陶瓷刀具、陶瓷装甲金刚石:作为世界上最硬的物质,是一种天然“陶瓷”。
8、陶瓷发动机优势①提高发动机热效率。
②减少辅助功率消耗,发动机结构简化。
③适应多种燃料燃烧④降低噪声,减少排气污染⑤减轻质量⑥资源丰富。
9、特种陶瓷研究方向探求材料的组成、结构与性能之间的关系组分一确定,工艺过程是控制材料结构的主要手段陶瓷的显微结构对材料性能影响很大,而材料的显微结构在很大程度上依赖于粉体特性。
1、粉体:作为物质的一种存在状态,粉体不同于气体、液体,也不完全同于固体;它是大量固体粒子的集合体,具有很多固体的属性,如物质结构,密度等等;颗粒间存在宏观空隙,颗粒间结合力较弱;同时它具有固体所不具有的流动性。
特种陶瓷,又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大类。
在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能,如:电、磁、光、热、声、化学、生物等功能;以及耦合功能,如压电、热电、电光、声光、磁光等功能。
纠错编辑摘要目录∙ 1 分类∙ 2 制作工艺∙ 3 发展新动向特种陶瓷特种陶瓷又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大 ... 在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能。
如:电、磁、光、热、声、化学、生物等功能,以及耦合功能。
如压电、热电、电光、特种陶瓷是二十世纪发展起来的,在现代化生产和科学技术的推动和培育下,它们"繁殖"得非常快,尤其在近二、三十年,新品种层出不穷,令人眼花缭乱。
按照化学组成划分有:①氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、二氧化钍、三氧化铀等。
②氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。
③碳化物陶瓷:碳化硅、碳化硼、碳化铀等。
④硼化物陶瓷:硼化锆、硼化镧等。
⑤硅化物陶瓷:二硅化钼等。
⑥氟化物陶瓷:氟化镁、氟化钙、三氟化镧等。
硫化物陶瓷:硫化锌、硫化铈等。
还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。
除了主要由一种化合物构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。
例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。
此外,有一大类在陶瓷中添加了金属而生成的金属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷,硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。
特种陶瓷概述特种陶瓷概述特种陶瓷概述摘要本⽂主要叙述了国内特种陶瓷市场发展和⽣产现状,讲述了相关的制备⽅法和最新的相关技术前沿⼯艺,最后展望了特种陶瓷未来的发展趋势。
关键词特种陶瓷;市场现状;制备⼯艺;发展规模、⼋、,刖⾔特种陶瓷也称为先进陶瓷、新型陶瓷、⾼性能陶瓷等,突破了传统陶瓷以黏⼟为主要原料的界限,主要以氧化物、炭化物、氮化物、硅化物等为主要原料,有时还可以与⾦属进⾏复合形成陶瓷⾦属复合材料,是⼀种采⽤现代材料⼯艺制备的,具有独特和优异性能的陶瓷材料。
已成为现代⾼性能复合材料的⼀个研究热点。
特种陶瓷于⼆⼗世纪发展起来,在近⼆、三⼗年内,新产品不断涌现,在现代⼯业技术,特别是在咼技术、新技术领域中的地位⽇趋重要。
许多科学家预⾔:特种陶瓷在⼆^⼀世纪的科学技术发展中,必将占据⼗分重要的地位。
特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,可作为⼯程结构材料和功能材料应⽤于机械、电⼦、化⼯、冶炼、能源、医学、激光、核反应、宇航等领域。
⼀些经济发达国家,特别是⽇本、美国和西欧国家,为了加速新技术⾰命,为新型产业的发展奠定物质基础,投⼊⼤量⼈⼒、物⼒和财⼒研究开发特种陶瓷,因此,特种陶瓷的发展⼗分迅速,在技术上也有很⼤突破。
1.发展现状1.1市场情况:与20年前相⽐,⽬前我国特陶⾏业结构变化巨⼤,私营企业、外资企业的数量和⽐重迅猛增加,特别是外资企业增长势头迅猛,约占我国全部特陶企业的10%左右。
当前在电⼦陶瓷⾏业中,股份制和三资企业市场竞争⼒最强。
我国特陶市场的开放和市场规模的潜⼒,吸引许多国外企业纷纷进⼊,投资不断增加,规模逐步扩⼤,其投资模式已从最初的产品输⼊(经销产品)到⽣产输⼊(投资设⼚),再到应⽤研究输⼊(设⽴实验室),对我国本⼟特陶企业带来巨⼤挑战。
1995年我国特种陶瓷产品销售额80亿元⼈民币(约合10亿美元),其中电⼦陶瓷约占70%约56亿元;结构陶瓷占30%约为24亿元。
绪论,第一章特种陶瓷是一类“采用高度精选的原料,具有能精确控制的化学组成,按照便于控制的制造加工技术的,便于结构设计的,具有优异性能的陶瓷。
”特种陶瓷与传统陶瓷材料差别体现在1、原材料不同2、结构不同3、制备工艺不同4、性能不同5、应用领域不同。
理想粉体:1、形状规则一致,各向同性。
2、粒径均匀且细小3、不结块4、纯度高5、能控制相。
特种陶瓷粉体应有特性:1、化学组成精确2、化学组成均匀性好3、纯度高4、适当小的颗粒尺寸5、球状颗粒且尺寸均匀单一6分散性好无团聚。
团聚体:团聚体由一次颗粒通过表面力吸引或化学键键合形成的颗粒,是很多一次颗粒的集合体。
团聚原因:1、分子之间的范德华力;2、颗粒间的静电引力;3吸附水分的毛细管力;4、颗粒间的磁引力。
5、颗粒表面不平滑引起的机械纠缠力。
由以上原因形成的团聚体为软团聚体,由化学键键合形成的团聚体为硬团聚体,团聚体的形成使体系能量下降。
粉体颗粒表面能:内部原子在周围原子的均等作用下处于能量平衡的状态;而表面原子只是一侧受到内部原子的引力,另一侧则处于一种具有“过剩能量”的状态,该“过剩能量”就称为表面能。
粉体表面颗粒的“过剩能量”就称为粉体颗粒的表面能。
粉体制备方法一般有两种:1、粉碎法;2、合成法。
粉碎法是由粗颗粒来获取细粉的方法,通常采用机械粉碎(机械制粉),现在已经发展到采用气流粉碎,但是不易制得粒径在1微米以下的微细颗粒。
合成法是由离子,原子,分子通过反应、成核和成长、收集、后处理来获得微细颗粒的方法(化学制粉)。
特点:纯度高,粒度可控,均匀性好,颗粒微细,可以实现颗粒在分子水平上的复合均化。
包括固相法,液相法,气相法。
溶胶凝胶法:用于制备纳米颗粒和薄膜。
它将金属化合物或氢氧化物浓溶液溶胶转变为凝胶,再将凝胶干燥后进行煅烧,然后制得氧化物的方法。
优点:1、在溶液中进行反应,均匀度高;2、化学计量准确,易于改型掺杂;3烧结温度可较大降低;4、制得的粉料粒径小,分布均匀,纯度高。
绪论1名词解释特种陶瓷:采用高度精选的原料,具有能精确控制的化学组成,按照便于控制的制造技术加工的,便于进行结构设计,具有优异特性的陶瓷。
结构陶瓷:具有高硬、高强、耐磨、耐蚀、耐高温、润滑性好等性能,可用作机械结构零部件的陶瓷材料。
功能陶瓷:具有声、光、电、热、磁特性和化学、生物功能的陶瓷材料。
2简述特种陶瓷和传统陶瓷的区别①原材料不同。
传统陶瓷以天然矿物,如粘土、石英和长石等不加处理直接使用;而现代陶瓷则使用经人工合成的高质量粉体作起始材料,突破了传统陶瓷以粘土为主要原料的界线,代之以“高度精选的原料”。
②结构不同。
传统陶瓷的组成由粘土的组成决定,不同产地的陶瓷有不同的质地,所以由于原料的不同导致传统陶瓷材料中化学和相组成的复杂多样、杂质成分和杂质相较多而不易控制,显微结构粗劣而不够均匀,多气孔;先进陶瓷的化学和相组成较简单明晰,纯度高,即使是复相材料,也是人为调控设计添加的,所以先进陶瓷材料的显微结构一般均匀而细密。
③制备工艺不同。
传统陶瓷用的矿物经混合可直接用于湿法成型,如泥料的塑性成型和浆料的注浆成型,材料的烧结温度较低,一般为900℃-1400℃,烧成后一般不需加工;而先进陶瓷一般用高纯度粉体添加有机添加剂才能适合于干法或湿法成型,材料的烧结温度较高,根据材料不同从1200℃到2200℃,烧成后一般尚需加工。
在制备工艺上突破了传统陶瓷以炉窑为主要生产手段的界限,广泛采用诸如真空烧结、保护气氛烧结、热压、热等静压等先进手段。
④性能不同。
由于以上各点的不同,导致传统陶瓷和先进陶瓷材料性能的极大差异,不仅后者在性能上远优于前者,而且特种陶瓷材料还发掘出传统陶瓷材料所没有的性能和用途。
传统陶瓷材料一般限于日用和建筑使用,而特种陶瓷具有优良的物理力学性能,高强、高硬、耐磨、耐腐蚀、耐高温、抗热震,而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能,某些性能远远超过现代优质合金和高分子材料。