100以内的质数表和平方数
- 格式:doc
- 大小:106.00 KB
- 文档页数:1
精心整理平方数的规律及100以内的整数平方表(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同.(2)奇数的平方的个位数字是奇数,十位数字是偶数.(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n型.,等..a×ab×b2×a×ba×ab×b2×a×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到之间的所有质数是不是n的因子即可,超过的都不必检查了.例如,判定2431是否为质数,因为492=2401<2431<2500=502,所以49<<50,2+4+3+1=10不能被3整除,2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=1117.③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212,另外一些特殊结构的数字应该牢记,如882=7744,112=121,222=484,(121和484从左到右与从右到左看是一样的)122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒).。
(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同.(2)奇数的平方的个位数字是奇数,十位数字是偶数.(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n型.(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9.(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数.(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数.(12)一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n).一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等.如果正整数x,y,z满足不定方程x2+y2=z2 ,就称x,y,z为一组勾股数.x,y必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数.z和z2必定都是奇数.五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625;64+225=289;400+441=841记忆技巧:(a+b)2= a2 + b2 + 2ab (a-b)2=a2 + b2 -2ab| | | | | |a×a b×b 2×a×b a×a b×b 2×a×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到√n之间的所有质数是不是n的因子即可,超过√n的都不必检查了.例如,判定2431是否为质数,因为492=2401<2431<2500=502,所以49<√2431<50 ,2+4+3+1=10不能被3整除, 2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=11×13×17.③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212 ,另外一些特殊结构的数字应该牢记,如882=7744,112=121,222=484,(121和484从左到右与从右到左看是一样的)122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒).。
平方数的规律及100以内的整数平方表规律:(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同.(2)奇数的平方的个位数字是奇数,十位数字是偶数.(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n 型.(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9.(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数.(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数.(12)一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n).一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等.如果正整数x,y,z满足不定方程x2+y2=z2 ,就称x,y,z为一组勾股数.x,y必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数.z 和z2必定都是奇数.五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625;64+225=289;400+441=841记忆技巧:(a+b)2= a2 + b2 + 2ab (a-b)2=a2 + b2 -2ab| | | | | |a×a b×b 2×a×b a×a b×b 2×a×b 例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744 用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到之间的所有质数是不是n的因子即可,超过的都不必检查了.例如,判定2431是否为质数,因为492=2401<2431<2500=502,所以49<<50 ,2+4+3+1=10不能被3整除, 2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=1117.③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212 ,另外一些特殊结构的数字应该牢记,如882=7744, 112=121,222=484,(121和484从左到右与从右到左看是一样的)122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒).1-20的平方数221-40的平方数341-60的平方数461-80的平方数581-100的平方数。
一.质数与合数的概念1.只有1和它本身两个因数的数,称为质数。
2.除了1和它本身,还有其他因数的数,称为合数。
0和1既不是质数,与不是合数。
二.100以内的质数表1~100中的质数是:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。
1~100中有25个质数,74个合数,其中1既不是质数与不是合数。
质数中有且仅有一个偶数,那就是2。
重难点:熟悉100以内的25个质数,并且灵活应用奇偶性,解决偶质数的相关应用。
题模一:100以内质数表例1.1.1只能被1和它本身整除的自然数叫做质数,如:2、3、5、7,等.那么,比40大并且比50小的质数是___________,小于100的最大的质数是___________.【答案】41、43、47;97【解析】本题考查100以内的常见质数.例 1.1.2爸爸和儿子岁数之和是一个两位数,这个两位数是一个质数,且数字之和为13,又已知爸爸比儿子大27岁,则儿子是________岁.【答案】20【解析】13495867=+=+=+,只有67为质数,故年龄和为67.由和差问题易知儿子20岁.例1.1.3五个连续自然数,每个数都是合数且都不超过60,则这五个连续自然数的和最大是().A.170B.250C.280D.285【答案】【解析】小于60的质数有59、53、47、43、41、……,所以连续的五个自然数且都是合数,最大的是58、57、56、55、54,它们的和是5455565758280++++=.例1.1.4已知p为50以内的一个两位质数,且21p+也是质数,则满足条件的所有p的和是________.【答案】104【解析】50以内的两位质数是11、13、17、19、23、29、31、37、41、43、47,满足条件的有11、23、29、41,和为11232941104+++=.例1.1.5有一类最简真分数满足以下条件:(1)分子与分母都是两位数的质数;(2)分母正好是分子这个质数逆序排列所成的质数.如1331就是满足上述条件的一个分数.那么满足数论第05讲_100以内的质数这两个条件的最简真分数有__________个,其中最大的一个是__________. 【答案】7997【解析】满足自身与其逆序数均为两位质数的有11;13、31;17、71;37、73;79、97.符合条件的最简真分数有有4个,最大的是7997. 题模二:偶质数性质与基本应用 例 1.2.1Let a 、b are prime numbers and the sum of these primes is 49.Then 11a b+=( ). A .9449 B .4994 C .8645 D .4586【答案】B【解析】根据奇偶性及2是质数中唯一的偶数易知两个质数分别为2和47,114994a b +=. 例1.2.2(1)两个质数的和是1999,那么这两个质数是多少?(2)若两个质数的差是35,那么它们的积是多少?【答案】(1)1997(2)74【解析】(1)通过奇偶分析易知两个质数必为一奇一偶,即一个为2,另一个为199921997-=. (2)通过奇偶分析易知两个质数必为一奇一偶,即一个为2,另一个为35237+=,它们的积是23774⨯=.例1.2.3三个互不相同的质数相加,和为52,这三个质数可能是多少?【答案】可能为(2,3,47)(2,43,7)(2,37,13)(2,31,19)【解析】小于50的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、发现只有一 个偶数2,所以一定包含2,另外两个为奇数,且和为50,5047350437=+=+、503713503119=+=+、.例1.2.4若两个不同的质数m 、n 满足2319m n +=,那么m n +=__________.【答案】7或8【解析】满足条件的有2m =,5n =或5m =,3n =,所以78m n +=或.例1.2.5若三个不同的质数的和是53,则这样的三个质数有__________组.【答案】11【解析】三个不同的质数的和是53,所以三个质数都必须是奇数.从最小的奇质数枚举如下:53374331337319315741511375172951929=++=++=++=++=++=++=++71729111329111923131723=++=++=++=++.共11组.例1.2.6三个数 p , p + 3 , p + 5 都是质数,它们的倒数之和是 ____ . 【答案】5970【解析】可知p 一定是2,11159=25770++. 例1.2.7有6个数字a 、b 、c 、d 、p 、q ,满足abc bcd p q pq -=⨯⨯,c 和d 的奇偶性相同,且p 、q 、pq 都是质数,则abcd 最大是多少?【答案】9846【解析】c 和d 的奇偶性相同,故p q pq abc bcd ⨯⨯=-为偶数,p 、q 、pq 中必有偶数,只能是2p =,进而易得3q =,2323138abc bcd -=⨯⨯=.将问题转化为竖式,易知abcd最大是9846.例 1.2.8已知p 、q 为质数,并且存在两个正整数m 、n ,使得p m n =+,q mn =,则p qn m p q m n+=+_________. 【答案】313【解析】因为q mn =且q 为质数,所以m n 、中有一个为1.不妨设1m =,则q n =,1p m n q =+=+.又因为p 、q 为质数,故3,2,2p q n ===.代入得原式值为313. 题模三:质数与合数的应用提高例 1.3.1在1到100这100个正整数中,不能被2、3、5、7中任何一个数整除的数有__________个.【答案】22【解析】数论问题,不能被这些数整除的一定都是质数,1-100的质数去掉1、2、3、5、7还有22个.例1.3.2将正整数1,2,3,4,5,6,…,10000排成一行.若一个数不能表示成两个合数的和,则将此数划去.例如要划去1,但是因为844=+,8就不能划去.根据上面规定划掉所有能划掉的数之后,将剩下的数由小到大排列.这时从左数第2013个数是_______.【答案】2022【解析】从8开始往后的偶数可以拆成两个偶合数的和;从13开始的奇数可以拆成9+2n的形式(n 大于等于2),而1、2、3、4、5、6、7、9、11要划去,所以剩下的数列为8、10、12、13、14、15……,第2013项即为2022.例1.3.3小红、小明二人在讨论年龄,小红说:“我比你小,当你像我这么大时,我的年龄是个质数.”小明说:“当你长到我这么大时,我的年龄也是个质数.”小红说:“我发现现在咱俩的年龄和是个质数的平方.”那么小明今年____________岁.(小明今年年龄小于31岁,且年龄均为整数岁)【答案】16【解析】设小红x 岁,年龄差y ,则小明x y +岁.由题意知x y -为质数①,2x y +为质数②,2x y +为质数③的平方即年龄和,年龄和可能为4,9,25,49.经验证,年龄差为7,小红今年9岁,小明今年16岁.例1.3.4四个小三角形的顶点处有六个圆圈,如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形顶点上的数之和相等.问这六个质数的积是多少?【答案】900【解析】设每个小三角形顶点上的数之和为x ,当计算题4个小三角形顶点上的数之和时,中间三个圆圈算了三次,减去两次后得到六个质数之和20,4220,10x x x -==,三个质数和为10,则这三个质数为2、3、5.六个圆圈分别填两个2、3、5.它们的积为900.随练1.1最小的质数是________,最小的自然数是________.【答案】2;0【解析】最小的质数是2,最小的自然数是0.随练1.2在31、37、51、57、71、77、91、97这8个数中,有几个合数?A.2个B.3个C.4个D.5个【答案】C【解析】在这8个数中,31、37、71、97是质数,51、57、77、91是合数,即一共有4个合数.正确答案是C.随练1.3三个连续自然数,每个数都是合数,则这三个连续自然数的和最小是().A.6B.27C.45D.720【答案】B【解析】列举可知,最小的三个数为8、9、10,所以这三个连续自然数的和最小是++=.891027随练1.4在20以内的质数中,加上2以后结果还是质数的,一共有()个.A.8B.6C.4D.2【答案】C【解析】3、5、11、17符合要求,共4个.随练1.5两个质数的和是45,这两个质数的积是_______.【答案】86【解析】两质数必为一奇一偶,故一定有2,另一个为45243-=,两数之积为86.随练1.6从20以内的质数中选出6个,写在一个正方体的六个面上,使得两个向对面的和都相等,所选的6个数是________.【答案】5、7、11、13、17、19【解析】首先2不能入选,否则会出现有的和为奇数,有的和为偶数的情况,那么还剩下3、5、7、11、13、17、19这7个数,从中选择6个相当于剔除一个,由于这7个数的和为75,是3 的倍数,而选出的6个数的和也是3的倍数,所以被剔除的那个数应该也是3的倍数,只能是3,所以选出的6个数分别是5、7、11、13、17、19.随练1.7三个互不相同的质数相加,和为30,这三个质数的乘积最大是__________.【答案】374【解析】三个数的和是偶数,可以是三个偶数,或者一偶两奇.考虑质数中只有2是偶数,可知一定是一偶两奇,且偶数是2.另外两个奇数是5和23或11和17.所以这三个质数的乘积是2523230⨯⨯=,乘积最大是374.⨯⨯=或21117374随练 1.8一个两位质数的两个数字交换位置后,仍然是一个质数,请写出所有这样的质数.【答案】11、13、17、31、37、71、73、79、97【解析】列出备选的两位质数,十位数字是2、4、5、6、8的就不用罗列了.、、、、、、、、、.11131719313771737997观察这些数,只有19颠倒过来后是合数:91713=⨯,排除19,剩下的质数、、、、、、、、都满足要求.111317313771737997作业11~100这100个自然数中质数有25个,合数有________个.【答案】74【解析】1~100中,25个质数之外的75个数中,只有1不是合数,其他的都是.所以有74个合数.作业2a是100以内最大的质数,b是100以内最小的质数,那么a b+=__________.【答案】99【解析】97a =,2b =,所以99a b +=.作业3五个连续的自然数,每个数都是合数,这五个连续自然数的和最小是__________.【答案】130【解析】最小的连续五个合数是24、25、26、27、28,所以这五个连续自然数的和最小是130.作业4在横线上填入三个不同的质数,使等式成立________+________+________=60,则共有________种不同的填法.【答案】3【解析】由奇偶性分析易知这三个质数必为2奇1偶,即必有2,只需将58表示为2个质数之和即可.5855311471741=+=+=+,共3种填法.作业5有一个质数是两位数,这两位上的数字相差6,则这个两位数的质数是.【答案】17或71【解析】各位必为偶数.分别试验1、7和3、9,17或71满足要求.作业6两个质数的和是19,则这两个质数的积是______.【答案】34【解析】由奇偶性可知必有2,另一个为19217-=,两数乘积为34.作业7当p 和3p +5都是质数时,55p +=_______.【答案】37【解析】当p 和3p +5奇偶性不同,而且都为质数,那么较小的数必须为2,所以55p +=37.作业8已知正整数p 、q 都是质数,并且7p q +与11pq +也都是质数,求p 、q 的值.【答案】23p q =⎧⎨=⎩或32p q =⎧⎨=⎩ 【解析】若p 、q 均为奇数则7p q +为大于2的偶数,与其为质数矛盾,故p 、q 必有偶数,即为2.当2p =时,q 、14q +、211q +均为质数,且讨论得此三数被3除的余数各不相同,因此q 只能为3,此时另两个均为17,满足条件;当2q =时,p 、72p +、211p +均为质数,同理可得p 也只能为3,此时另两个数分别为23和17,满足要求.综上,23p q =⎧⎨=⎩或32p q =⎧⎨=⎩. 作业9张中中小朋友手中有四张卡片,分别写有1、2、3、4;张右右小朋友手中也有四张卡片,分别写着5、6、7、9,两位小朋友将卡片放在一起适当组合恰好形成四个不同的两位质数(卡片不重复使用,也不得有剩余),请将四个质数的和求出.答:_________【答案】190【解析】2只能和9配,为29.4只能和7配,为47.进而另两个为61、53,总和为190. 作业10(1)两个质数的和是39,这两个质数的差是多少?(2)三个互不相同的质数相加,和为40,这三个质数分别是多少?【答案】(1)35(2)2、7、31【解析】(1)39=+奇数偶数.偶质数是2,所以奇质数是39237-=.这两个质数的差是37235-=(2)40是偶数,如果写成三个数相加的形式则有两种情况,40=++偶数偶数偶数,或偶数奇数奇数,第一种情况显然是不可能的(质数中只有2是偶数).40=++所以可以确定出三个质数中有一个一定是2,剩下两个奇质数的和是38.通过简单的枚举可得,只有73138+=符合题意.所以这三个质数分别是:2,7,31.n-(n为质数)作业11有一种数,是以法国数学家梅森的名字命名的,它们就是形如21的梅森数,当梅森数是质数时就叫梅森质数,是合数时就叫梅森合数.例如:2213-=就是第一个梅森质数.第一个梅森合数是().A.4B.15C.127D.2047【答案】D【解析】可依次写出梅森数:2213-=,第二个梅森质数;-=,第一个梅森质数;32175-=,第四个梅森质数;11212047-=,第一个梅森-=,第三个梅森质数;7211272131合数.所以答案为D.也可以用排除法,梅森数一定为奇数,A选项排除.42115-=,4为合数,所以15不是梅森数,B选项排除.721127-=,127为质数,所以127为梅森质数,C选项排除.检验可知,D选项为梅森合数,所以答案为D.作业12在小于30的质数中,加3以后是4的倍数的是____________.【答案】5,13,17,29【解析】通过枚举法可得,5、13、17、29.作业13已知a,b,c只3个彼此不同的质数,若37+-最大是+⨯=,则a b ca b c___________.【答案】32【解析】223733132=⇒+=⇒=⇒=⇒+-=.c a b b a a b c作业14有些三位数,它的各位数字的乘积是质数,这样的三位数最大的为A,最小的为B.则A B-=__________.【答案】599【解析】由质数定义可知,质数只能写成1乘本身的形式,则说明三位数的三个数位上的数字有2个1,另一个为质数.则这样的三位数最大为711,最小为112,则-=-=.A B711112599作业15从1、2、3、4、5、6、7、8、9中选出8个数排成一个圆圈,使得相邻的两数之和都是质数.排好后可以从任意两个数字之间切开,按顺时针方向读这些八位数,其中可能读的最大的数是________________.【答案】98567432【解析】设首位为9,旁边可为8,下一位最大为5……这样进行下去,最大为98567432.。
知识图谱-100以内的质数100以内质数表偶质数性质与基本应用质数与合数的应用提高数论第02讲_100以内的质数错题回顾100以内的质数知识精讲一.质数与合数的概念1.只有1和它本身两个因数的数,称为质数。
2.除了1和它本身,还有其他因数的数,称为合数。
0和1既不是质数,与不是合数。
二.100以内的质数表1~100中的质数是:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。
1~100中有25个质数,74个合数,其中1既不是质数与不是合数。
质数中有且仅有一个偶数,那就是2。
三点剖析重难点:熟悉100以内的25个质数,并且灵活应用奇偶性,解决偶质数的相关应用。
题模精讲题模一100以内质数表例1.1、只能被1和它本身整除的自然数叫做质数,如:2、3、5、7,等.那么,比40大并且比50小的质数是___________,小于100的最大的质数是___________.答案:41、43、47;97解析:本题考查100以内的常见质数.例1.2、爸爸和儿子岁数之和是一个两位数,这个两位数是一个质数,且数字之和为13,又已知爸爸比儿子大27岁,则儿子是________岁.答案:20解析:,只有67为质数,故年龄和为67.由和差问题易知儿子20岁.例1.3、五个连续自然数,每个数都是合数且都不超过60,则这五个连续自然数的和最大是().A、170B、250C、280D、285答案:解析:小于60的质数有59、53、47、43、41、……,所以连续的五个自然数且都是合数,最大的是58、57、56、55、54,它们的和是.例1.4、已知为50以内的一个两位质数,且也是质数,则满足条件的所有的和是________.答案:104解析:50以内的两位质数是11、13、17、19、23、29、31、37、41、43、47,满足条件的有11、23、29、41,和为.例1.5、有一类最简真分数满足以下条件:(1)分子与分母都是两位数的质数;(2)分母正好是分子这个质数逆序排列所成的质数.如就是满足上述条件的一个分数.那么满足这两个条件的最简真分数有__________个,其中最大的一个是__________.答案:解析:满足自身与其逆序数均为两位质数的有11;13、31;17、71;37、73;79、97.符合条件的最简真分数有有4个,最大的是.题模二偶质数性质与基本应用例2.1、Let a、b are prime numbers and the sum of these primes is 49.Then ().A、B、C、D、答案:B解析:根据奇偶性及2是质数中唯一的偶数易知两个质数分别为2和47,.例2.2、(1)两个质数的和是1999,那么这两个质数是多少?(2)若两个质数的差是35,那么它们的积是多少?答案:(1)1997(2)74解析:(1)通过奇偶分析易知两个质数必为一奇一偶,即一个为2,另一个为.(2)通过奇偶分析易知两个质数必为一奇一偶,即一个为2,另一个为,它们的积是.例2.3、三个互不相同的质数相加,和为52,这三个质数可能是多少?答案:可能为(2,3,47)(2,43,7)(2,37,13)(2,31,19)解析:小于50的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、发现只有一个偶数2,所以一定包含2,另外两个为奇数,且和为50,、.例2.4、若两个不同的质数m、n满足,那么__________.答案:7或8解析:满足条件的有,或,,所以.例2.5、若三个不同的质数的和是53,则这样的三个质数有__________组.答案:11解析:三个不同的质数的和是53,所以三个质数都必须是奇数.从最小的奇质数枚举如下:.共11组.例2.6、三个数p,p + 3 ,p + 5 都是质数,它们的倒数之和是 ____ .答案:解析:可知p一定是2,.例2.7、有6个数字a、b、c、d、p、q,满足,c和d的奇偶性相同,且p、q、都是质数,则最大是多少?答案:解析:c和d的奇偶性相同,故为偶数,p、q、中必有偶数,只能是,进而易得,.将问题转化为竖式,易知最大是9846.例2.8、已知p、q为质数,并且存在两个正整数m、n,使得,,则_________.答案:解析:因为且为质数,所以中有一个为1.不妨设,则,.又因为p、q为质数,故.代入得原式值为.题模三质数与合数的应用提高例3.1、在1到100这100个正整数中,不能被2、3、5、7中任何一个数整除的数有__________个.答案:解析:数论问题,不能被这些数整除的一定都是质数,1-100的质数去掉1、2、3、5、7还有22个.例3.2、将正整数1,2,3,4,5,6,…,10000排成一行.若一个数不能表示成两个合数的和,则将此数划去.例如要划去1,但是因为,8就不能划去.根据上面规定划掉所有能划掉的数之后,将剩下的数由小到大排列.这时从左数第2013个数是_______.答案:2022解析:从8开始往后的偶数可以拆成两个偶合数的和;从13开始的奇数可以拆成9+2n的形式(n大于等于2),而1、2、3、4、5、6、7、9、11要划去,所以剩下的数列为8、10、12、13、14、15……,第2013项即为2022.例3.3、小红、小明二人在讨论年龄,小红说:“我比你小,当你像我这么大时,我的年龄是个质数.”小明说:“当你长到我这么大时,我的年龄也是个质数.”小红说:“我发现现在咱俩的年龄和是个质数的平方.”那么小明今年____________岁.(小明今年年龄小于31岁,且年龄均为整数岁)答案:16解析:设小红岁,年龄差,则小明岁.由题意知为质数①,为质数②,为质数③的平方即年龄和,年龄和可能为4,9,25,49.经验证,年龄差为7,小红今年9岁,小明今年16岁.例3.4、四个小三角形的顶点处有六个圆圈,如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形顶点上的数之和相等.问这六个质数的积是多少?答案:900解析:设每个小三角形顶点上的数之和为,当计算题4个小三角形顶点上的数之和时,中间三个圆圈算了三次,减去两次后得到六个质数之和20,,三个质数和为10,则这三个质数为2、3、5.六个圆圈分别填两个2、3、5.它们的积为900.随堂练习随练1.1、最小的质数是________,最小的自然数是________.答案:2;0解析:最小的质数是2,最小的自然数是0.随练1.2、在31、37、51、57、71、77、91、97这8个数中,有几个合数?A、2个B、3个C、4个D、5个答案:C解析:在这8个数中,31、37、71、97是质数,51、57、77、91是合数,即一共有4个合数.正确答案是C.随练1.3、三个连续自然数,每个数都是合数,则这三个连续自然数的和最小是().A、6B、27C、45D、720答案:B解析:列举可知,最小的三个数为8、9、10,所以这三个连续自然数的和最小是.随练1.4、在20以内的质数中,加上2以后结果还是质数的,一共有()个.A、8B、6C、4D、2答案:C解析:3、5、11、17符合要求,共4个.随练1.5、两个质数的和是45,这两个质数的积是_______.答案:86解析:两质数必为一奇一偶,故一定有2,另一个为,两数之积为86.随练1.6、从20以内的质数中选出6个,写在一个正方体的六个面上,使得两个向对面的和都相等,所选的6个数是________.答案:5、7、11、13、17、19解析:首先2不能入选,否则会出现有的和为奇数,有的和为偶数的情况,那么还剩下3、5、7、11、13、17、19这7个数,从中选择6个相当于剔除一个,由于这7个数的和为75,是3 的倍数,而选出的6个数的和也是3的倍数,所以被剔除的那个数应该也是3的倍数,只能是3,所以选出的6个数分别是5、7、11、13、17、19.随练1.7、三个互不相同的质数相加,和为30,这三个质数的乘积最大是__________.答案:374解析:三个数的和是偶数,可以是三个偶数,或者一偶两奇.考虑质数中只有2是偶数,可知一定是一偶两奇,且偶数是2.另外两个奇数是5和23或11和17.所以这三个质数的乘积是或,乘积最大是374.随练1.8、一个两位质数的两个数字交换位置后,仍然是一个质数,请写出所有这样的质数.答案:11、13、17、31、37、71、73、79、97解析:列出备选的两位质数,十位数字是2、4、5、6、8的就不用罗列了.观察这些数,只有19颠倒过来后是合数:,排除19,剩下的质数都满足要求.自我总结课后作业作业1、1~100这100个自然数中质数有25个,合数有________个.答案:74解析:1~100中,25个质数之外的75个数中,只有1不是合数,其他的都是.所以有74个合数.作业2、a是100以内最大的质数,b是100以内最小的质数,那么__________.答案:99解析:,,所以.作业3、五个连续的自然数,每个数都是合数,这五个连续自然数的和最小是__________.答案:130解析:最小的连续五个合数是24、25、26、27、28,所以这五个连续自然数的和最小是130.作业4、在横线上填入三个不同的质数,使等式成立________+________+________=60,则共有________种不同的填法.答案:3解析:由奇偶性分析易知这三个质数必为2奇1偶,即必有2,只需将58表示为2个质数之和即可.,共3种填法.作业5、有一个质数是两位数,这两位上的数字相差6,则这个两位数的质数是.答案:17或71解析:各位必为偶数.分别试验1、7和3、9,17或71满足要求.作业6、两个质数的和是19,则这两个质数的积是______.答案:34解析:由奇偶性可知必有2,另一个为,两数乘积为34.作业7、当和+5都是质数时,_______.答案:37解析:当和+5奇偶性不同,而且都为质数,那么较小的数必须为2,所以37.作业8、已知正整数p、q都是质数,并且与也都是质数,求p、q的值.答案:或解析:若p、q均为奇数则为大于2的偶数,与其为质数矛盾,故p、q必有偶数,即为2.当时,q、、均为质数,且讨论得此三数被3除的余数各不相同,因此q只能为3,此时另两个均为17,满足条件;当时,p、、均为质数,同理可得p也只能为3,此时另两个数分别为23和17,满足要求.综上,或.作业9、张中中小朋友手中有四张卡片,分别写有1、2、3、4;张右右小朋友手中也有四张卡片,分别写着5、6、7、9,两位小朋友将卡片放在一起适当组合恰好形成四个不同的两位质数(卡片不重复使用,也不得有剩余),请将四个质数的和求出.答:_________答案:190解析:2只能和9配,为29.4只能和7配,为47.进而另两个为61、53,总和为190.作业10、(1)两个质数的和是39,这两个质数的差是多少?(2)三个互不相同的质数相加,和为40,这三个质数分别是多少?答案:(1)35(2)2、7、31解析:(1).偶质数是2,所以奇质数是.这两个质数的差是(2)40是偶数,如果写成三个数相加的形式则有两种情况,,或,第一种情况显然是不可能的(质数中只有2是偶数).所以可以确定出三个质数中有一个一定是2,剩下两个奇质数的和是38.通过简单的枚举可得,只有符合题意.所以这三个质数分别是:2,7,31.作业11、有一种数,是以法国数学家梅森的名字命名的,它们就是形如(n为质数)的梅森数,当梅森数是质数时就叫梅森质数,是合数时就叫梅森合数.例如:就是第一个梅森质数.第一个梅森合数是().A、4B、15C、127D、2047答案:D解析:可依次写出梅森数:,第一个梅森质数;,第二个梅森质数;,第三个梅森质数;,第四个梅森质数;,第一个梅森合数.所以答案为D.也可以用排除法,梅森数一定为奇数,A选项排除.,4为合数,所以15不是梅森数,B选项排除.,127为质数,所以127为梅森质数,C选项排除.检验可知,D选项为梅森合数,所以答案为D.作业12、在小于30的质数中,加3以后是4的倍数的是____________.答案:5,13,17,29解析:通过枚举法可得,5、13、17、29.作业13、已知a,b,c只3个彼此不同的质数,若,则最大是___________.答案:32解析:.作业14、有些三位数,它的各位数字的乘积是质数,这样的三位数最大的为A,最小的为B.则__________.答案:599解析:由质数定义可知,质数只能写成1乘本身的形式,则说明三位数的三个数位上的数字有2个1,另一个为质数.则这样的三位数最大为711,最小为112,则.作业15、从1、2、3、4、5、6、7、8、9中选出8个数排成一个圆圈,使得相邻的两数之和都是质数.排好后可以从任意两个数字之间切开,按顺时针方向读这些八位数,其中可能读的最大的数是________________.答案:98567432解析:设首位为9,旁边可为8,下一位最大为5……这样进行下去,最大为98567432.。
精心整理平方数的规律及100以内的整数平方表(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n型.(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9.(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数.(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数.精心整理精心整理(12)一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n).一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等.如果正整数x,y,z满足不定方程x2+y2=z2,就称x,y,z为一组勾股数.x,y必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数.z 和z2必定都是奇数.五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625;64+225=289;400+441=841记忆技巧:(a+b)2=a2+b2+2ab(a-b)2=a2+b2-2ab||||||a×ab×b2×a×ba×ab×b2×a×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到之间的所有质数是不是n的因子即可,超过的都不必检查了.例如,判定2431是否为质数,因为492=2401<2431<2500=502,所以49<<50,2+4+3+1=10不能被3整除,2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=1117.③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212,另外一些特殊结构的数字应该牢记,如882=7744,112=121,222=484,(121和484从左到右与从右到左看是一样的)122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒).精心整理。
平方数得规律及100以内得整数平方表规律:(1)完全平方数得个位数字只能就是0,1,4,5,6,9、(没有2,3,7,8)两个整数得个位数字之与为10,则它们得平方数得个位数字相同、(2)奇数得平方得个位数字就是奇数,十位数字就是偶数、(3)如果完全平方数得十位数字就是奇数,则它得个位数字一定就是6;反之,如果完全平方数得个位数字就是6,则它得十位数字一定就是奇数、(4)偶数得平方就是4得倍数;奇数得平方就是4得倍数加1、(5)奇数得平方就是8n+1型;偶数得平方为8n或8n+4型、(6)完全平方数得形式必为下列两种之一:3n,3n+1、(7)不能被5整除得数得平方为5n±1型,能被5整除得数得平方为5n 型、(8)平方数得形式具有下列形式16n,16n+1,16n+4,16n+9、(9)完全平方数得各位数字之与得个位数字只能就是0,1,3,4,6,7,9、(没有2,5,8)(10)如果质数p能整除a,但p得平方不能整除a,则a不就是完全平方数、(11)在两个相邻得整数得平方数之间得所有整数都不就是完全平方数、(12)一个正整数n就是完全平方数得充分必要条件就是n有奇数个因数(包括1与n)、一个数如果就是另一个整数得完全立方(即一个整数得三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等、如果正整数x,y,z满足不定方程x2+y2=z2,就称x,y,z为一组勾股数、x,y必然就是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数、z与z2必定都就是奇数、五组常见得勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625; 64+225=289;400+441=841记忆技巧:(a+b)2=a2+b2+2ab (a-b)2=a2 + b2 -2ab||| || |a×a b×b 2×a×b a×a b×b 2×a ×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169 882=(90-2)2=902+22-2×90×2=8100+4—360=7744用处:①训练计算能力,使计算更快更准确;②估计某数得平方根所处得范围,在判定某个较大得数n就是不就是质数时可以缩小其可能因子得筛选范围,只需检查3到之间得所有质数就是不就是n得因子即可,超过得都不必检查了、例如,判定2431就是否为质数,因为492=2401<2431〈2500=502,所以49<<50,2+4+3+1=10不能被3整除,2341得个位既非0又非5,故只需检查7到47之间得所有质数能否整除2431即可,而53,59,61,67……等更大得质数都不用检查了,实际上2431=1117、③增加对数字得熟悉程度,比如162=256=28,322=1024=210,642=4096=212,另外一些特殊结构得数字应该牢记,如882=7744,ﻫ112=121,222=484,(121与484从左到右与从右到左瞧就是一样得)ﻫ122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒)、1—20得平方数221-40得平方数341-60得平方数461-80得平方数581-100得平方数。
平方数的规律及以内的平方表Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】平方数的规律及100以内的整数平方表规律:(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同.(2)奇数的平方的个位数字是奇数,十位数字是偶数.(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n型.(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9.(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数.(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数.(12)一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n).一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等.如果正整数x,y,z满足不定方程x2+y2=z2,就称x,y,z为一组勾股数.x,y必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数.z和z2必定都是奇数.五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625;64+225=289;400+441=841记忆技巧:(a+b)2=a2+b2+2ab(a-b)2=a2+b2-2ab||||||a×a b×b2×a×ba×ab×b2×a×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到之间的所有质数是不是n的因子即可,超过的都不必检查了.例如,判定2431是否为质数,因为492=2401<2431<2500=502,所以49<<50,2+4+3+1=10不能被3整除,2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=1117.③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212,另外一些特殊结构的数字应该牢记,如882=7744,112=121,222=484,(121和484从左到右与从右到左看是一样的)122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒).。
平方数的规律及100以内的整数平方表112=121122=144132=169142=196152=225162=256172=289182=324192=361202=400212=441222=484232=529242=576252=625262=676272=729282=784292=841302=900312=961322=1024332=1089342=1156352=1225362=1296372=1369382=1444392=1521402=1600412=1681422=1764432=1849442=1936452=2025462=2116472=2209482=2304492=2401502=2500512=2601522=2704532=2809542=2916552=3025562=3136572=3249582=3364592=3481602=3600612=3721622=3844632=3969642=4096652=4225662=4356672=4489682=4624692=4761702=4900712=5041722=5184732=5329742=5476752=5625762=5776772=5929782=6084792=6241802=6400812=6561822=6724832=6889842=7056852=7225862=7396872=7569882=7744892=7921902=8100912=8281922=8464932=8649942=8836952=9025962=9216972=9409982=9604992=98011002=10000规律:(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同.(2)奇数的平方的个位数字是奇数,十位数字是偶数.(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n型.(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9.(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数.(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数.(12)一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n).一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等.如果正整数x,y,z满足不定方程x2+y2=z2 ,就称x,y,z为一组勾股数.x,y必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数.z和z2必定都是奇数.五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625;64+225=289;400+441=841记忆技巧:(a+b)2= a2 + b2 + 2ab (a-b)2=a2 + b2 -2ab| | | | | |a×a b×b 2×a×b a×a b×b 2×a×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到之间的所有质数是不是n的因子即可,n超过的都不必检查了.例如,判定2431是否为质数,因为n2431492=2401<2431<2500=502,所以49<<50 ,2+4+3+1=10不能被3整除, 2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=1117.×13×③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212 ,另外一些特殊结构的数字应该牢记,如882=7744,112=121,222=484,(121和484从左到右与从右到左看是一样的)122=144,212=441,132=169,312=961,(a左右颠倒后a2也左右颠倒).。