例2:H(x, y):“x比y长得高”,l:“李四”,c:“张 三则” H(l, c):“李四不比张三长得高”; H(l, c) H(c, l):“李四不比张三长得高且张三不比 李四长得高”,即“李四与张三一样高”。
10
2-2 命题函数与量词(续)
例3:Q(x, y):“x比y重” 当x,y指人或物时,它是一个命题,若x,y为实数时, Q(x, y)不是命题。
b) (x)(P(x)(y) R(x,y)) (x)的作用域是:(P(x)(y)(R(x,y)), (y)的作用域是:R(x,y)。 x,y为约束变元。
22
2-4 变元的约束(续)
c) (x)(y)(P(x,y)Q(y,z))(x)P(x,y) (x)(y)的作用域是:(P(x,y)Q(y,z)) x,y为约束变元,z是自由变元。 (x)的作用域是P(x,y) x为约束变元,y是自由变元。
例2:没有不犯错误的人。(F(x), M(x)) 解: (x)(M(x) F(x))
且该命题与“任何人都会犯错误”意义相同: (x)(M(x) F(x))
例3:尽管有些人聪明,但未必一切人都聪明。(P(x),M(x)) 解: (x)(M(x) P(x)) ((x)(M(x) P(x)))
18
某些为假。
例5:(P(x, y) P(y, z)) P(x, z)。考虑P(x, y)的解释: (1)“x小于y”,则P(x, y)永真。 (2)“x为y的儿子”,则P(x, y)永假。 (3)“x距离y10米”,则P(x, y)可能为真或假。
12
2-2 命题函数与量词(续)
个体变元:函数P(x)中的x。
(z)(P(z)R(z,y)) Q(x,y) 但不可换名为
(y)(P(y)R(y,y)) Q(x,y) 或