发动机基础知识
- 格式:doc
- 大小:202.00 KB
- 文档页数:8
发动机基础知识1.曲柄连杆机构曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。
它由机体组、活塞连杆组和曲轴飞轮组等组成。
在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。
而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。
2.配气机构配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。
配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。
3.燃料供给系统汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。
4.润滑系统润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。
并对零件表面进行清洗和冷却。
润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。
5.冷却系统冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。
水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。
6.点火系统在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。
能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。
8. 起动系统要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转。
发动机才能自行运转,工作循环才能自动进行。
因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。
发动机原理及汽车理论发动机原理基础知识发动机是指通过能源转换为机械能来驱动汽车或其他机械设备的装置。
原理及汽车理论发动机原理是指发动机工作的基本原理和机械结构。
下面将从燃烧原理、气缸工作循环、汽缸排列方式和发动机结构几个方面来介绍发动机的基础知识。
首先是燃烧原理,发动机在燃烧室中将燃料和空气经过混合后点燃,产生的高温高压气体通过活塞运动将其转化为机械能。
燃烧是通过火花塞引燃来完成的,燃烧过程中燃料和空气按一定的化学计量比例混合后进入燃烧室,由火花塞的高压电火花点燃燃料空气混合物,产生的爆发力将活塞推动,进而驱动整个发动机工作。
其次是气缸工作循环,汽车发动机的气缸通常是根据循环工作原理分为四冲程和两冲程两种。
四冲程循环包括进气冲程、压缩冲程、工作冲程和排气冲程。
进气冲程中活塞向下运动,汽缸内气压降低吸入混合气;压缩冲程中活塞向上运动,气压上升将混合气压缩;工作冲程中点火引燃混合气,产生爆炸推动活塞向下运动;排气冲程中活塞再次向上运动,将废气排出进入排气系统。
两冲程循环中没有压缩冲程,活塞在一次往复运动中完成进气、工作和排气三个过程。
第三是汽缸排列方式,根据汽缸的排列方式,发动机可以分为直列式和V型式两种。
直列式发动机的气缸排列在一条直线上,通常有4个、6个或8个气缸。
V型式发动机是将气缸分为两组,呈V字形排列,通常有6个、8个或12个气缸。
V型式发动机由于排列方式的原因,缩短了发动机整体长度,便于安装和布置其他部分。
最后是发动机结构,主要有汽油发动机和柴油发动机。
汽油发动机是利用汽油作为燃料,通过点燃汽油空气混合物来产生爆炸驱动发动机工作。
柴油发动机使用柴油作为燃料,在高压状态下,将柴油喷入气缸,借助高温高压的气体将柴油点燃,达到驱动发动机工作的目的。
除此之外,还有混合动力发动机、电动车发动机等其他发动机结构形式。
综上所述,发动机的原理和机械结构是驱动汽车工作的核心,燃烧原理、气缸工作循环、汽缸排列方式和发动机结构是理解发动机原理及汽车理论的基础知识。
第一章发动机基本知识1.1 汽车发动机的分类 (2)1.2 汽车发动机的基本术语 (6)1.3 发动机的基本工作原理 (9)1.4 发动机的总体构造 (13)1.5 发动机产品名称和型号编制规则 (15)学习目标:通过本次课的讲述,使学生对发动机有一个直观的了解和认识1.了解发动机的分类方法;2.掌握有关发动机的基本术语;3.掌握发动机的工作原理;4.了解发动机的总体构造。
学习方法:介绍发动机的基本术语,通过多媒体课件动态演示发动机的工作原理,并分析典型车型发动机的总体构造,这是今后学习发动机构造的基础。
学习内容:§ 1.1 概述§ 1.2 发动机的工作原理§ 1.3 发动机总体构造学习重点:1.发动机的排量以及压缩比的概念;2.四冲程汽油机的工作原理;3.发动机的总体构造。
作业习题:1.发动机由哪些机构系统组成 ? 各部分功用是什么 ?2.柴油机与汽油机在总体构造上有何异同 ? 它们之间的主要区别是什么 ?3.二冲程与四冲程发动机比较有何优缺点 ?4.举例说明国产发动机的型号编制规则。
1.1 汽车发动机的分类汽车发动机,这里专指汽车用往复活塞式内燃机,其分类方法很多,按照不同的分类方法可以把发动机分成不同的类型。
1.1.1 按着火方式分类发动机根据所使用的燃料的不同,着火方式也不相同,具体可分为点燃式发动机(汽油机属于此类)和压燃式发动机(柴油机属于此类)。
(如图1-1-1)1.1.2 按使用燃料分类发动机按照所使用的燃料的不同可分为汽油机、柴油机、煤气机、气体燃料发动机、多种燃料发动机等。
(如图1-1-2)1.1.3 按冷却方式分类发动机按照冷却方式的不同可分为水冷发动机、风冷发动机、油冷发动机。
水冷发动机利用在气缸体和气缸盖冷却水套中进行循环的冷却液作为冷却介质进行冷却;风冷发动机利用流动于气缸体和气缸盖外表面散热片之间的空气作为冷却介质进行冷却;油冷发动机利用油冷却气缸和气缸盖等零件。
汽车发动机基础知识1. 发动机类型发动机是汽车的心脏,根据燃料和结构的不同,主要分为汽油机和柴油机两大类。
汽油机又可以分为自然吸气(NA)和涡轮增压(Turbo)两种类型。
此外,还有混合动力发动机和纯电动发动机等新型发动机。
2. 发动机原理发动机的工作原理基于四冲程循环:进气、压缩、做功和排气。
进气时,燃料与空气混合物被吸入气缸;压缩时,混合物被压缩;做功时,火花塞点燃混合物,产生能量推动活塞;排气时,燃烧后的废气被排出气缸。
3. 气缸排列形式常见的气缸排列形式有直列、V型、水平对置和W型。
每种排列形式都有其独特的优点和适用范围。
4. 发动机性能指标主要性能指标包括功率、扭矩、升功率等。
功率表示发动机做功的快慢;扭矩反映车辆加速能力和爬坡能力;升功率则表示发动机的紧凑程度和动力性。
5. 发动机保养维护定期更换机油和空气滤清器,检查冷却系统,保持发动机清洁是保养的关键。
按照厂家推荐的保养周期进行保养可以确保发动机保持良好的状态。
6. 发动机故障诊断常见的故障包括点火系统故障、供油系统故障、机械故障等。
根据故障现象,利用相关工具进行检查和测试,确定故障原因并进行修复。
7. 发动机油品知识发动机油的主要作用是润滑、冷却、清洁和防锈。
不同品牌和类型的机油适用于不同类型的发动机和工况。
选择合适的机油并按厂家推荐的更换周期进行更换是重要的。
8. 发动机性能升级通过更换高性能的火花塞、喷油嘴,调整点火正时和气门正时等方法,可以提高发动机的动力性和燃油经济性。
但是,升级前需要考虑与车辆其他部分的匹配问题,确保安全性和可靠性。
9. 发动机与油耗关系发动机的效率直接影响油耗。
一般来说,发动机的功率和扭矩越大,油耗也越高。
同时,先进的燃油喷射系统和智能启停技术也可以降低油耗。
了解并合理利用这些知识可以帮助我们更好地维护和使用汽车。
发动机维修基础知识发动机是汽车的心脏,发动机的工作效率直接影响汽车的性能和燃油消耗。
当发动机出现故障时,及时进行维修和保养是非常重要的。
在进行发动机维修时,有一些基础知识需要掌握。
1. 发动机工作原理发动机是将燃油和空气混合后在气缸内进行燃烧,从而驱动活塞运动,进而带动曲轴旋转,最终将能量传递到车轮上,使汽车运动。
具体来说,发动机的工作过程包括四个阶段:进气、压缩、燃烧和排气。
在进气阶段,活塞向下移动,汽缸内产生负压,进气门打开,混合气体进入气缸;在压缩阶段,进气门关闭,活塞向上移动,将混合气体压缩;在燃烧阶段,点火器点燃混合气体,气体燃烧膨胀,使活塞向下移动;在排气阶段,排气门打开,活塞向上移动,将废气排出。
2. 发动机故障诊断当发动机出现故障时,需要进行故障诊断。
常见的发动机故障包括启动困难、动力不足、噪声过大等。
针对不同的故障,需要采取相应的解决方法。
在诊断发动机故障时,可以采用故障码读取、观察排放情况、测量压缩比等方法。
3. 发动机保养定期进行发动机保养是延长发动机寿命的重要措施。
发动机保养包括更换机油、更换机油滤清器、清洗进气道、更换火花塞等。
机油是发动机保养的重要组成部分,机油的作用包括润滑、冷却、清洗等。
机油滤清器的作用是过滤机油中的杂质,保护发动机。
清洗进气道可以去除进气系统中的积碳,保持进气道畅通。
更换火花塞可以确保点火系统正常工作,提高发动机的燃烧效率。
4. 发动机拆装在进行发动机维修时,有时需要拆卸发动机。
拆卸发动机需要注意安全,同时需要具备一定的技术和工具。
拆卸发动机时,需要先拆下外围零件,如进气系统、排气系统、冷却系统等。
接着需要拆下发动机的传动部件,如离合器、变速器等。
最后才能拆卸发动机本身。
在拆卸发动机时,需要注意标记各个部件的位置,以便在组装时正确安装。
掌握发动机维修基础知识是进行汽车维修的基础。
通过了解发动机的工作原理、故障诊断、保养和拆装等方面的知识,可以更好地维护汽车的发动机,提高汽车的性能和寿命。
民航发动机基础知识点总结一、民航发动机的基本概念1.1 发动机的定义发动机是指将燃料的化学能或其他形式的能量转化为机械能的设备。
在民航领域中,发动机通常用于给飞机提供推进力,以便进行飞行。
1.2 发动机的分类根据工作原理和结构特点,发动机可以分为多种不同类型。
在民航领域中,常见的发动机类型包括活塞式内燃机、涡轮式发动机、涡喷发动机等。
1.3 发动机的主要功能发动机的主要功能是将燃料能量转化为机械能,从而提供飞机所需的推进力。
此外,在一些涡喷发动机中,还可以通过提供压气机输出的高压气流来为飞机提供辅助动力。
二、民航发动机的结构和工作原理2.1 活塞式内燃机活塞式内燃机是一种使用活塞和气缸来完成往复循环运动的发动机。
在内燃机中,通过点火或者压燃的方式将燃料的化学能转化为机械能。
2.2 涡轮式发动机涡轮式发动机是一种利用涡轮的旋转运动来产生推进力的发动机。
在涡轮式发动机中,燃料的燃烧产生的高温高压气体进入涡轮机组,驱动涡轮的旋转。
2.3 涡喷发动机涡喷发动机是一种将空气通过压气机压缩后,再与燃料混合并燃烧,最终将燃烧产生的高温高压气体喷出以产生推进力的发动机。
涡喷发动机具有高效、推力大、重量轻等特点,因此在民航领域中得到了广泛的应用。
2.4 发动机的工作原理发动机的工作原理通常包括进气、压缩、燃烧和喷射四个基本过程。
进气阶段将外界空气引入发动机中,压缩阶段将空气压缩并增加气体压力,燃烧阶段将燃料燃烧产生高温高压气体,喷射阶段将高温高压气体喷出以产生推进力。
三、民航发动机的性能指标3.1 推力推力是指发动机产生的推进力的大小,通常用千牛(kN)或磅(lb)为单位。
3.2 燃油效率燃油效率是指单位时间内发动机所消耗燃料的少,通常用每小时耗油量(g/h)来表示。
3.3 噪音噪音是发动机在工作时产生的声音,通常用分贝(dB)为单位来表示。
3.4 寿命发动机的寿命是指其能够持续工作的时间或次数,通常用使用小时(FH)或使用周期(FC)来表示。
汽车发动机基础知识一、引言汽车发动机作为汽车的核心部件之一,承担着提供动力的重要任务。
了解汽车发动机的基础知识,对于我们更好地理解汽车的工作原理和维护保养具有重要意义。
本文将从发动机的工作原理、结构组成和常见问题等方面进行介绍。
二、发动机的工作原理汽车发动机的工作原理可以简单概括为四个步骤:吸气、压缩、燃烧和排气。
首先,在吸气阶段,汽缸内的活塞向下运动,通过进气门吸入空气和燃料混合物;接下来,在压缩阶段,活塞向上运动,将混合物压缩;然后,在燃烧阶段,火花塞产生火花,点燃混合物,产生爆炸力推动活塞向下运动;最后,在排气阶段,废气通过排气门排出汽缸。
三、发动机的结构组成1. 汽缸:发动机通常由多个汽缸组成,汽缸内进行吸气、压缩、燃烧和排气的过程。
常见的发动机有四缸、六缸和八缸等不同类型。
2. 活塞和连杆:活塞是发动机中一个重要的零部件,它与连杆相连接,通过活塞在汽缸内的运动来转化为连杆的旋转运动。
3. 曲轴:曲轴是发动机中承载连杆的部件,通过连杆传递的力,使曲轴产生旋转运动,进而带动汽车的前进。
4. 气门和气门机构:气门用于控制空气和燃料的进出,气门机构负责控制气门的开关,并与凸轮轴相连。
5. 燃料系统:燃料系统包括燃油箱、燃油泵、喷油嘴等部件,负责将燃料输送到汽缸中。
6. 点火系统:点火系统包括火花塞、点火线圈等部件,负责产生火花点燃燃料混合物。
7. 冷却系统:冷却系统包括水泵、散热器等部件,用于降低发动机温度,保持正常工作温度。
8. 润滑系统:润滑系统包括机油泵、机油滤清器等部件,负责给发动机提供润滑油,减少摩擦和磨损。
四、汽车发动机的常见问题1. 耗油过多:发动机耗油过多可能是由于燃油系统故障、点火系统问题或者发动机内部磨损等原因引起的,需要及时检修。
2. 缺乏动力:发动机缺乏动力可能是由于进气系统堵塞、燃油供应不足或者点火系统故障等原因造成的,需要进行相应的维修。
3. 发动机噪音大:发动机噪音大可能是由于曲轴轴承磨损、气缸垫片老化等原因引起的,需要进行相关部件的更换。
一款1.4L排量小型化的发动机是如何与“涡轮增压+机械增压+缸内直喷“技术协调运用的?下面我们以多图来解读一下这款大众1.4TSI发动机的工作原理。
大众1.4TSI发动机的数据非常简单,它是大众的一款1.4升汽油发动机,最大功率125kw,最大扭矩240Nm/1750rpm~4500rpm,搭载这款发动机的大众307.html" target=_blank>高尔夫GT百公里综合油耗仅为7.2升,在优良路况中油耗甚至可降至5.9升。
——1.4L的排量油耗低而输出功率超过许多2.3L发动机。
在国外,这类强力发动机通常是用在性能版车型上的,在提升性能的同时价格也不菲。
在大众,1.4TSI就被用在了强调操控性的高尔夫GT上。
< FONT>
红色的Golf在1.4TSI的驱动下,犹如红色旋风
把它“掏出来”看清楚点(下图)——的确,它比普通发动机要复杂多了。
< FONT>
< FONT>
从前后两个方向看大众1.4TSI发动机
为什么这款发动机会有这么复杂?因为这同它的功能有关。
首先来看TSI 的组成,T代表Turbo-charging(废气涡轮增压),S代表Super-charging (机械增压),I代表Fuel Stratified Injection(燃油分层直喷)。
“以最低的油耗获得最大的功率”是对TSI发动机优点的准确概括,TSI发动机将小型化技术与传统的机械增压技术和涡轮增压技术巧妙组合,兼顾了低速时的扭矩输出和高速时的功率输出,解决了两种技术各自的不足。
也就是说,TSI比普通发动机多了废气涡轮增压和机械增压这两项配置,还包括燃油直喷的功能,所需的机件自然要多。
其次,为了让这些附加的装置能够正常地工作,还会有其他附属零件的配置。
这样才能做到“1+1>2”,也难怪1.4TSI会比较复杂了。
那么它的内部结构如何呢?它又是怎么工作的呢?
< FONT>
1.4TSI发动机几大部件分解图
增压,顾名思义就是增加压力。
那么,它是增加哪里的压力,有什么作用,又是怎么增压的呢?
< FONT>
1.4TSI上大名鼎鼎的废气涡轮增压套件
涡轮增压。
涡轮增压是目前全世界汽车厂商运用最为广泛的发动机增压技术,它可以利用发动机排出废气产生的能量,来大幅度提高发动机的动力输出。
其工作原理是,发动机排出的废气驱动废气涡轮高速旋转,废气涡轮再带动进气涡轮以同样的速度旋转,以远远高于大气的压力将空气压缩到气缸内助燃。
由于空气的易压缩性,因此在涡轮增压下的进气量要远远超过自然吸气的进气量,这
样就提高了引擎的功率输出。
[被屏蔽广告]换句话说就是,发动机排出的热废气是带有能量的,涡轮增压就相当于废物利用,重新收集了一部分废热,增加输出功率。
因此,要得到同样的功率,有增压的发动机就能做得更小,也就更轻,从而提高了操控降低了油耗。
但是,涡轮增压有个先天的缺陷,就是涡轮迟滞,即发动机必须达到一定的转速才能启动涡轮,现在换用小涡轮后解决了一部分时滞问题。
除此之外,涡轮增压发动机的压缩比通常还得降低,比如到6.5:1以下,来避免气缸过热。
这样做的结果就是在低速涡轮没有介入的情况下,发动机输出甚至还不如自然吸气机型。
另一个问题是达到涡轮介入的转速后,增压导致动力输出陡增,破坏了动力的平稳输出和操控的准确性。
为了解决这些缺陷,汽车工业发展出了不少方法:使用带旁通的涡轮增压套件减小迟滞,采用中冷器提高压缩比改善低转速的动力输出,采用新材料涡轮降低运动惯性,双涡轮增压以及机械增压等。
< FONT>
中冷器结构图及中冷器散热片的组成示意图
1.4TSI发动机是有中冷器的,即在涡轮增压器和发动机之间引入了一个中冷器。
这是因为发动机直接排出的废气温度通常高达8、9百度,会造成涡轮本体、进气温度升高,加之压缩空气时做功,增压压缩进气缸的气体就有可能过热而造成汽油预燃而发生爆震,影响动力输出;同时,高温也是引擎的隐形杀手。
所以,增压发动机通常会引入中冷器来降低进气温度。
一般来说,使用中冷后能减小50~60度的进气温度(离开临界值),可以适当的提高发动机压缩比,改善低转速时的动力输出;同时由于冷空气的密度大,所以在相同条件下,这种设计可以提高发动机的进气密度,因此发动机工作效率更高。
< P>
机械增压技术。
机械增压的历史比较悠久,在上世纪60年代涡轮增压技术出现以前,机械增压是当时发动机的主流增压技术。
机械增压的压缩机直接被发动机的曲轴带动,它的优点是响应性好(完全没有迟滞)。
但是它本身需要消耗一部分能量,因此机械增压不能产生特别强大的动力,尤其是在高转速时,因为它会产生大量的摩擦,损失能量,从而影响到发动机转速的提高。
不过,机械增压器在中低转速时,对发动机的动力输出有明显改善,但峰值功率出现较早,发动机最高转速较低。
另外,配置机械增压的发动机可以在任何时候,都能输出源源不断的扭力,大大减小换挡频率。
机械增压在发动机中低转速时效果好,而涡轮增压则能在高速时起到很大的提升作用;因此,如果能够把它们结合起来就能避免各自的不足,很自然地在宽范围内提供所需的动力了:
< FONT>
1.4TSI发动机工作示意图
注:其中红色是废气通道,蓝色是进气系统,机械增压和涡轮增压串联
1.在低转速时,由机械增压提供大部分的增压压力,这些压力也用来驱动涡轮增压器,因此涡轮增压器的启动更平顺,响应速度更快。
2.在1500rpm时,两个增压器同时提供增压压力,其总增压值达到2.5bar (如果涡轮增压器单独工作,只能产生1.3bar的增压压力)。
随着转速的提高,涡轮增压器能使发动机获得更大的功率,与此同时,机械增压器的增压压力逐渐降低。
3.在转速超过3500rpm时,由涡轮增压器提供所有的增压压力,此时机械增压器在电磁离合器的作用下完全与发动机分离,防止消耗发动机功率。
< FONT>
机械增压及涡轮增压的不同阶段工作情况示意图
为了让驾驶者更为明白地掌握发动机所处工况,厂家还比较人性化地在仪表台提供了一个Boost表,描述的是涡轮机即时增压状况。
这样,有没有增压,表针动没动一目了然;表针越向右摆,表示此刻增压比越高,非常直观。
FSI燃油直喷技术。
FSI直喷的喷油嘴共有6个喷油孔,其喷油压力高达150bar!FSI即发动机利用一个高压泵,使汽油通过一个分流轨道(共轨)到达电磁控制的高压喷射气门。
它共有两种运行方式,发动机按照负荷工况,自动进行选择,以保证足够的燃油经济性:
< FONT>
汽油直喷示意图
低负荷时的特点是在进气道中已经产生可变涡流,此时节气门为半开状态,空气由进气管进入汽缸撞在活塞顶部,由于活塞顶部制作成特殊的形状从而在火花塞附近形成期望中的涡流。
然后,进气流形成最佳的涡流形态进入燃烧室内,以由浓至稀的分层填充的方式推动,使混合气体集中在位于燃烧室中央的火花塞周围。
因为稀燃技术的混合比达到25:1以上,按照常规是无法点燃的,所以最内层要易于点火,混合比大概在12:1左右,然后一层一层地向外燃烧。
这样能够节约燃料。
而在高负荷中所进行的均质理论空燃比(14.6-14.7)燃烧中,大量空气高速进入汽缸形成较强涡流,燃油则是在进气冲程中喷射。
应用FSI技术要求提高压缩比,而使用涡轮则要求降低压缩比,这二者在配置了我们上面谈到的中冷器后达到了平衡,即10:1。
另外,FSI 发动机由于喷射器的加入导致了对设计和制造的要求都相当的高,如果布置不合理、制造精度达不到要求导致刚度不足甚至漏气只能得不偿失。
另外FSI发动机对燃油品质的要求也比较高。
但是,在应用了“涡轮增压+机械增压+燃油直喷”技术之后,这款引擎发生了质的变化。
大众是在EA 111的1.4 FSI发动机(1390cc, 66Kw/88Hp, 4缸4气门)基础上进行的双增压设计,而这款发动机(1.4TSI 发动机)与我们所熟悉的POLO( 报价; 图片) GP上的那个1.4 4v 55kw是一样的不过动力输出的确是天壤之别:前者是后者的一倍还要多
型号 1.4TSI 1.4FSI 1.4V
排量mm 1390 1390 1390
缸径X冲程mm 75.6X76.5 76.5X75.6 76.5X75.6
压缩比10:1 10.5:1
最大功率Kw/rpm 125 66 55
最大扭矩Nm·rpm 240 150 135
从1.4TSI的工况图上可以看到发动机转速在1000转时,输出的扭矩就已经高达176NM,要知道好多1.6或1.8甚至2.0的发动机的最大扭矩也就这
个水平。
低速大扭矩带来大操控感受果然非同寻常,配置1.4TSI的Golf GT 的0~100km/h加速时间小于8s。
< P>。