2014~2015学年度初三一模试卷数学附答案
- 格式:doc
- 大小:412.50 KB
- 文档页数:14
2015年九年级第一次质量预测数学模拟试卷(一)(满分120分,考试时间100分钟)学校:___________ 班级:_________ 姓名:________ 分数:__________一、选择题(每小题3分,共24分)1.与-3的差为0的数是()A.3 B.-3 C.1 3D.13-2.下列图形中,不是轴对称图形的是()A.B. C. D.3.国家统计局公布2013年中国国内生产总值568 845亿元,同比增长7.7%,完成了年初设定的7.5%的目标.请你以亿元为单位用科学记数法表示2013年我国的国内生产总值为(结果保留两个有效数字)()A.5.6×1013B.5.7×1013C.5.7×105D.5.6×1054.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,则它的俯视图为()A.B.C.D.5.不等式4-3x≥2x-6的非负整数解有()A.1个B.2个C.3个D.4个6.如图,双曲线myx=与直线y kx b=+相交于点M,N,且点M的坐标为(1,3),点N的纵坐标为-1.根据图象信息可得关于x的方程mkx bx=+的解为()A.-3,1 B.-3,3 C.-1,1 D.-1,37.如图,正方形OABC的两边OA,OC分别在x轴、y轴的正半轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D'的坐标是()A.(2,10)B.(-2,0) C.(2,10)或(-2,0)D.(10,2)或(-2,0)8.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长,交⊙O于点E,连接CE.若AB=8,CD=2,则CE的长为()A.215B.8C.210D.213二、填空题(每小题3分,共21分)9.当x=_______时,分式55xx--无意义.10.菱形ABCD中,若对角线AC=8cm,BD=6cm,则边长AB=_______cm.11.已知圆锥的底面半径为1,全面积为4π,则圆锥的母线长为_______.12.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是_______.13.如图,平行四边形OABC的顶点O在坐标原点,顶点A,C在反比例函数kyx=(0x>)的图象上,点A的横坐标为4,点B的横坐标为6,且平行四边形OABC的面积为9,则k的值为_________.yxOABCFED CBANMEDCBA第13题图第14题图第15题图14.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=12∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为_________.15.如图,在矩形ABCD中,AD AB>,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积之比为1:4,则MNBM的值为_________.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:2311221x xx x x x-⎛⎫-÷-⎪+++⎝⎭,其中x满足x2-x-1=0.NMxyOxyODC BAEDC BAO第6题图第7题图第8题图O EDC BA P x y O F ED CBA GP ABC DE H Oy x17. (9分)为了推广阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图1和图2,请根据有关信息,解答下列问题:m %10%20%30%25%38号37号34号35号36号图18106412人数鞋号1224610838号37号34号35号36号图2(1)本次接受随机抽样调查的学生人数为_______,图1中m 的值是_____; (2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 18. (9分)如图,矩形ABCD 的对角线AC ,BD 相交于 点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 为菱形;(2)连接AE ,BE ,AE 与BE 相等吗?请说明理由.19. (9分)如图,将透明三角形纸片P AB 的直角顶点P 落在第四象限,顶点A ,B 分别落在反比例函数ky x=图象的两支上,且PB ⊥x 轴于点C ,P A ⊥y 轴于点D ,AB 分别与x 轴,y 轴相交于点F ,E .已知B (1,3). (1)k =_________;(2)试说明AE =BF ; (3)当四边形ABCD 的面积为214时,求点P 的坐标.20. (9分)钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A ,B 的距离,如图,勘测飞机在距海平面垂直高度为1公里的点C 处,测得端点A 的俯角为45°,然后沿着平行于AB 的方向飞行3.2公里到点D ,并测得端点B 的俯角为37°,求钓鱼岛两端A ,B 的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41)37°45°NCDBMA21. (10分)某工程机械厂根据市场需求,计划生产A ,B 两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B 成本(万元/台) 200 240 售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B 型挖掘机的售价不会改变,每台A 型挖掘机的售价将会提高 m 万元(m >0),该厂应该如何生产获得最大利润?(注:利润=售价-成本) 22. (10分)如图,在△ABC 中,∠B =45°,O 为AC 上一个动点,过O 作∠POQ =135°,且∠POQ与AB 交于P ,与BC 交于Q .(1)如图1,若11AB AOBC CO ==,,则OP OQ=______. (2)如图2,若1132AB AO BC CO ==,,求OP OQ 的值,写出求解过程. (3)如图3,若1325AB OP BC OQ ==,,则AOCO =_____.图3图2图1A COPQ B ACO PQB Q POCBA23. (11分)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A ,D 两点,与y轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4).已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式.(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度.(3)在(2)的条件下,是否存在这样的点P ,使得以P ,B ,G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.。
2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。
2014-2015学年度第二学期九年级摸底考试数学试题答案及评分标准二、填空题:17、33 18、5 19、70和120 20. -2014 三、解答题:21、(1)△=)1(4)}1(2{422--+-=-m m m ac b …………1分∵该方程有两个实数根 ∴△》0 (3)1-≥m 3分 解得:m ≥131≠-m 且…………4分(2)当m=2时,上述方程有实数根…………5分当m=2时,原方程可化为0262=+-x x ………6分 配方得:7)3(2=-x ………8分731+=x ………9分 732-=x ………10分22、(l )144: ……………………………………………………………………………2分 (2)300×40%=120 120-27-33-20=40人………………………4分(“篮球”选项的频数为40.正确补全条形统计图):………………………5分 (3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为 1200×40300=160(人):………………………………………………………8分 (4)这种说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人。
………10分(注:只要解释合理即可) 23、(1)证明:在△ABC 和△ADC 中∴△ABC ≌△ADC (SSS ),………………2分∴∠1=∠2,………………3分 在△ABF 和△ADF 中∴△ABF ≌△ADF (SAS )………………5分(2)证明:∵AB ∥CD ,∴∠1=∠3,………………6分又∵∠1=∠2,∴∠2=∠3,∴AD=CD ,………………7分∵AB=AD ,CB=CD ,∴AB=CB=CD=AD ,………………8分 ∴四边形ABCD 是菱形;………………9分(3)由(2)可得:BE ⊥CD 或∠BEC=∠BED=90°或△BEC ∽△DEF 或∠EFD=∠BAD ,写出其中一个.………………11分 24、(1)∵ 函数2y x bx c =++(x ≥0)满足当x =1时,1y =-, 且当x = 0与x =4时的函数值相等,∴ 11,2.2b c b ++=-⎧⎪⎨-=⎪⎩。
A .B .C .D .学校_____________________班级_____________姓名___________________学号__________ ………………………………装………………………………订………………………………线………………………………2014—2015学年第二学期九年级数学一模试卷测试时间:120分钟 满分:130分一、选择题(本大题共10题,每小题3分,共计30分)1.-3的倒数是………………………………………………………………………( )A .-3B .3C .-13D .132.下列计算正确的是 ………………………………………………………………( )A .2a -a =1B .a 2+a 2=2a 4C .a 2· a 3=a 5D .(a -b )2=a 2-b 23.下列图形中,不是中心对称图形的是 ……………………………………………( )4.在锐角△ABC 中,|sin A - 32 |+( cos B -22)2=0 ,则∠C 的度数是 ………( )A .30°B .45°C .60°D .75°5.下列说法中,正确的是 …………………………………………………………( ) A .为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B .两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C .抛掷一个正方体骰子,点数为奇数的概率是13D .“打开电视,正在播放广告”是必然事件6.若点M (-2,y 1),N (-1,y 2),P (8,y 3)在抛物线y= - 12x 2+2x 上,则下列结论正确的 …………………………………………………………………………( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 27.定义新运算:对于任意实数a ,b ,都有a ⊕b =a 2-3a +b ,如3⊕5=32-3×3+5,若x ⊕1=11则实数x 的值 ……………………………………………………………………( ) A .2或-5 B .-2或5 C .2或5 D .-2或-58.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为 ………………………………………………………………( ) A .4 B .6 C .8 D .129.如图,矩形ABCD 为⊙O 的内接四边形,AB =2,BC =3,点E 为BC 上一点,且BE =1,延长 AE 交⊙O 于点F ,则线段AF 的长为 …………………………………………( )A .75 5B .5C .5+1D .32510.如图,正方形ABCD 的对角线BD 长为2 2 ,若直线l 满足:(1)点D 到直线l 的距离为1,(2)A 、C 两点到直线l 的距离相等,则符合题意的直线l 的条数为 …………………………………………………………………………………( ) A .1 B .2 C .3 D .4▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲二、填空题(本大题共8小题,每小题2分,共计16分)11.使1-3x 有意义的x 的取值范围是____________.12.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为___________人次. 13.分解因式:4a 2-16=____________. 14.已知0≤x ≤1,若x -2y =6,则y 的最小值是____________.15.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积...是 . 16.如图,△ABC 中,AB =5,BC =3,CA =4,D 为AB 的中点,过点D 的直线与BC 交于点E ,若直线DE 截△ABC 所得的三角形与△ABC 相似,则DE =_________.17.如图,在以点O 为原点的直角坐标系中,一次函数y =- 12x +1的图象与x 轴交于A ,与y 轴交于点B ,点C 在第二象限内且为直线AB 上一点,OC =12 AB ,反比例函数y =kx 的图象经过点C ,则k 的值为 . 18.等边三角形ABC 中,BC =6,D 、E 是边BC 上两点,且BD =CE =1,点P 是线段DE 上的一个动点,过点P 分别作AC 、AB 的平行线交AB 、AC 于点M 、N ,连接MN 、AP 交于点G ,则点P 由点D 移动到点E 的过程中,线段BG 扫过的区域面积为__________.三、解答题(本大题共10小题,共计84分.) 19.(本题满分8分)(1)计算: | 3 -1|-(12 )-2-2sin60o(2)计算: (1-3x +2 )÷x 2-1x +2B C A D · 第16题图 A O B x y第17题图 A B C P M N G D E · · 第18题图 第9题图ABCDE OF· 第10题图CDA B第8题图5 13▲ ▲ ▲▲ ▲ ▲ ▲▲20.(本题满分8分)(1)解方程: 2x 2x -1 +xx -2 =2; (2)解不等式组: ⎩⎪⎨⎪⎧x -32 +3≥x ,1-3(x -1)<8-x .21.(本题满分6分)在3×3的方格纸中,点A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上.(1)从A 、D 、E 、F 四个点中任意取一点,以所取的这一点及点B 、C 为顶点画三角形,则所画三角形是等腰三角形的概率是; (2)从A 、D 、E 、F 四个点中先后任意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率.(用树状图或列表法求解).22.(本题满分6分)如图AB 是半圆的直径,图1中,点C 在半圆外;图2中,点C 在半圆内,请仅用无刻度...的直尺按要求画图. (1)在图1中,画出△ABC 的三条高的交点; (2)在图2中,画出△ABC 中AB 边上的高.23.(本题满分9分)B AC F ED ·· · · · · B · · CA · · 图1图2B· · CA · ·▲“校园手机”现象越来越受到社会的关注.某校小记者随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的家长大约有多少名? 24.(本题满分8分)2014年3月8日凌晨,马来西亚航空公司吉隆坡飞北京的MH370航班在起飞一个多小时后在雷达上消失,至今没有被发现踪迹.飞机上有239名乘客,其中154名是中国同胞,中国政府启动了全面应急和搜救机制,派出多艘中国舰船在相关海域进行搜救.如图,某日在南印度洋海域有两艘自西向东航行的搜救船A 、B ,B 船在A 船的正东方向,且两船保持20海里的距离,某一时刻两船同时测得在A 的东北方向,B 的北偏东15°方向有一疑似物C ,求此时疑似物C 与搜救船A 、B 的距离各是多少?(结果保留根号)25.(本题满分9分)如图,以O 为圆心的BD 度数为60 o ,∠BOE =45o ,DA ⊥OB ,EB ⊥OB .(1)求BEDA的值;(2)若OE 与BD 交于点M ,OC 平分∠BOE ,连接CM .说明:CM 为⊙O 的切线; (3)在(2)的条件下,若BC =1,求tan ∠BCO 的值.45o 15o A北 北C 东 BD ME C B O A 40 140 140 学生 学生及家长对中学生带手机的态度统计图人数 家长 赞成无所谓 反对 类别 280210 70 30 80 30 图① 赞成 无所谓20% 反对 家长对中学生带手机的态度统计图 图②26.(本题满分8分)机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关. (1)甲车间通过技术改革后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍为60%,问甲车间技术革新后,加工一台大型机械设备实际耗油量是多少千克? (2)乙车间通过技术改革后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到19.2千克,问乙车间通过技术改革后,加工一台大型机械设备润滑用油量是多少千克?拥有的重复利用率是多少? 27.(本题满分10分)【问题情境】如图1,在△ABC 中,AB =AC ,点P 为边BC 上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .求证:PD +PE =CF .【结论运用】如图2,将矩形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD =8,CF =3,求PG +PH 的值;【迁移拓展】图3是一个航模的截面示意图.在四边形ABCD 中,E 为AB 边上的一点,ED ⊥AD ,EC ⊥CB ,垂足分别为D 、C ,且AD ·CE =DE ·BC ,AB =8,AD =3,BD =7;M 、N 分别为AE 、BE 的中点,连接DM 、CN ,求△DEM 与△CEN 的周长之和.C PD AF E B图1 B FH G P A E D C C' 图2 D C B AM E N 图328.(本题满分12分)如图1,平面之间坐标系中,等腰直角三角形的直角边BC 在x 轴正半轴上滑动,点C 的坐标为(t ,0),直角边AC =4,经过O 、C 两点做抛物线y 1=ax (x -t )(a 为常数,a >0),该抛物线与斜边AB 交于点E ,直线OA :y 2=kx (k 为常数,k >0)(1)填空:用含t 的代数式表示点A 的坐标及k 的值:A ,k = ; (2)随着三角板的滑动,当a =14时:①请你验证:抛物线y 1=ax (x -t )的顶点在函数y =-14x 2的图象上;②当三角板滑至点E 为AB 的中点时,求t 的值;(3)直线OA 与抛物线的另一个交点为点D ,当t ≤x ≤t +4,|y 2﹣y 1|的值随x 的增大而减小,当x ≥t +4时,|y 2﹣y 1|的值随x 的增大而增大,求a 与t 的关系式及t 的取值范围.▲ ▲2014—2015学年第二学期九年级数学一模试卷一、选择题(本大题共10题,每小题3分,共计30分)1、C2、C3、B4、D5、A6、C7、B8、B9、A 10、D二、填空题(本大题共8小题,每小题2分,共计16分)11、x ≤13 12、8.03×10613、4(a +2)(a -2) 14、-3 15、3π 16、2 17、-1150 18、3 3 2三、解答题(本大题共10小题,共计84分.) 19.(本题满分8分)(1)| 3 -1|-(12 )-2-2sin60o += 3 -1-4-2×32……………………3分 =-5…………………………………………4分(2) (1-3x +2 )÷x 2-1x +2=x -1x +2 ÷(x -1)(x +1)x +2 ……………………2分=1x +1 …………………………………………4分20.(本题满分8分)(1)2x 2x -1 +xx -2=2;解:2x(x-2)+x(2x-1)=2(2x-1)(x-2) …………1分5x=4…………………………………………2分 x=45 …………………………………………3分 经检验,x=45是原方程的根。
海 淀 区 九 年 级 第 二 学 期 期 中 练 习数 学2015.5下面各题均有四个选项,其中只有一个..是符合题意的. 1.2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A . 50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体是A. 三棱柱B. 三棱锥C. 长方体D.正方体 3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为2A0BA .-1B .1C .-2D .24.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A .12 B .45 C .49 D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于A . 40°B .50°C .60°D .140°6.如图,已知∠AOB .小明按如下步骤作图:ba 21(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC .根据上述作图步骤,下列结论正确的是A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称D .OE =CE7.某次比赛中,15名选手的成绩如图所示,则 这15名选手成绩的众数和中位数分别是 A .98,95 B .98,98 C .95,98 D .95,958. 甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于A .1.2B .2C .2.4D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为A . 6 B. CD .310.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是二、填空题(本题共18分,每小题3分) 11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为 .(结果精确到0.1)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA AB ⊥,1AD =,BD BC 的长为__________. 15. 在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意 的观点, 理由是 .16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 . 三、解答题(本题共30分,每小题5分)A B C D17.计算:2022cos60(3.14π)--+-o .18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证: BE=CD .21.已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k 的值.22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°. (1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值.24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为亿;(3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有万人.25.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD =3,BE =5,求BC +DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).图1 图2 图3请回答:BC +DE 的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称. (1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围. 28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;EDC BAEDCBA备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或b n '<,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5一、 选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)17. (本小题满分5分) 解:原式=112142-⨯+ ………………………………………………………4分 14=+ ………………………………………………………………5分 18. (本小题满分5分) 解: 345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得 3x <. ……………………………………………………2分由不等式②得 2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分19. (本小题满分5分)解: 22(2)()()2x y x y x y y ---+-2222244()2x xy y x yy =-+---………………………………………………2分243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分 20. (本小题满分5分) 证明:∠EBC =∠FCB ,A B E F C D ∴∠=∠. …………………………………………………………1分在△ABE 与△FCD 中,,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD . ………………………………………………………………………5分21. (本小题满分5分) (1)证明:0k ≠,∴220 kx x k--=是关于x 的一元二次方程.22(1)4()k k∆=--- ……………………………………………………1分90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得x =. ∴1221,x x k k==-. …………………………………………………………4分方程的两个实数根都是整数,且k 是整数,∴ 1k =-或1k =.…………………………………………………………5分22. (本小题满分5分)解: 设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得40016020.8x x =⨯-. ………………………………………………2分 解得 4x =. ………………………………………………………3分 经检验, 4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分四、解答题(本题共20分,每小题5分) 23. (本小题满分5分) (1)证明:四边形ABCD 是平行四边形,∴AD //BC . ∴∠DAF=∠F .∠F =45°,∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠=.90DAB ∴∠=.又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图. 四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°.AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得10BE ==. ……………………………………………3分 在Rt △AHB 中,∠HAB=45°,∴sin 4572BH AB =⋅=. …………………………………………4分在Rt △BHE 中,∠BHE=90°,∴sin ∠AEB=10BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分(2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分) (1)证明:⊙O 与边AB 相切于点E ,且 CE 为⊙O 的直径.∴CE ⊥AB .AB=AC ,AD ⊥BC ,BD DC ∴=. ………………………………1分又 OE=OC ,∴OD ∥EB .∴ OD ⊥CE .………………………………2分(2)解:连接EF .CE 为⊙O 的直径,且点F 在 ⊙O 上, ∴ ∠EFC =90°.CE ⊥AB , ∴∠BEC =90°. ∴+BEF FEC FEC ECF ∠=∠+∠∠=90°. ∴BEF ECF ∠=∠.∴tan tan BEF ECF ∠=∠.∴BF EF EFFC=.又DF =1, BD=DC =3, ∴ BF =2, FC =4.∴EF =. ………………………………………………… 3分∵∠EFC =90°, ∴∠BFE =90°.由勾股定理,得BE . ……………………4分 EF ∥AD , ∴21BE BF EA FD ==.∴AE =. ……………………………………………………5分26. (本小题满分5分)解:BC +DE. ……………………………………………………2分解决问题:连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB // DC .∵四边形ABEF 是矩形, ∴AB // FE ,BF =AE . ∴DC // FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A,∴点A 的坐标为(0,2). …………………………………………1分 ∵2211(232)212y x x x -+==+-, ∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上.设直线BC 的解析式为y kx b =+. ∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩ 解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为112y x =+.…………………………3分(2) ∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x =时,1y =, 当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D . 当图象G 向下平移至点'A 与点E 重合时, 点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分GFEDCBA图1 图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒, 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ……………………………………………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知, 50BEC DEC ∠=∠=︒,GFEDCBA100EBC EDC ∠=∠=︒.……………………………………………………………………3分100GEB DEC BEC ∴∠=∠+∠=︒.GEB CBE ∴∠=∠.50FBC ∠=︒,50EBG EBC FBC ∴∠=∠-∠=︒.…………………………………………………………4分EBG BEC ∴∠=∠.在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .EG BC ∴=.……………………………5分 方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒, 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知,50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………3分50FBC ∠=︒, 图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠. ………………………………………………4分 BH EH ∴=.在△GEH 与△CBH 中,,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .EG BC ∴=. ………………………………………………………………………………5分 (3)AE BG +=. …………………………………………………………………7分 29.(本小题满分8分)解:(1)① ; ……………………………………………………………………1分② 点B . ………………………………………………………………………2分(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的BA图象上.2≤b '∴,即当1x =时,b '取最大值2.当2b '=-时,23x -=-+.5x ∴=. ………………………………………3分 当5b '=-时,53x -=-或53x -=-+.2x ∴=-或8x =. ………………………………4分 52≤≤b '-,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分 (3)2222()y x tx t t x t t =-++=-+,∴顶点坐标为(,)t t .………………………………………………………………6分若1t <,b '的取值范围是≥b m '或≤b n ',与题意不符. 若1≥t ,当1≥x 时,y 的最小值为t ,即m t =;当1x <时,y 的值小于2[(1)]t t --+,即2[(1)]n t t =--+.22(1)1s m n t t t t ∴=-=+-+=+.∴s 关于t 的函数解析式为 211)s t t =+≥ (. ……………………………7分 当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分。
北京市朝阳区九年级综合练习(一)数学试卷 2015.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界 平均水平,至少需要8 000 000 000 000美元基建投资.将8 000 000 000 000用科学记数法表示应为A .0.8×1013B .8×1012C .8×1013D .80×10112. 如图,下列关于数m 、n 的说法正确的是A .m >nB .m =nC .m >-nD .m =-n3.如图,直线a ,b 被直线c 所截,a ∥b ,∠2=∠3,若∠1=80°,则∠4等于 A .20° B .40° C .60° D .80°4.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 7 5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是 A .平均数 B .中位数 C .众数 D .方差7为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为 A.16 B. 51C. 310D. 12 8. 若正方形的周长为40,则其对角线长为A .100B .C .D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,则河的宽度PQ 为A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发 3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的 时间t (秒)之间的关系如图所示,则下列结论正确的是 A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(本题共18分,每小题3分) 11.若分式21x 有意义,则x 的取值范围是 .12.分解因式:2236+3m mn n -= .13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 .14.请写出一个图象从左向右上升且经过点(-1,2)的函数,所写的函数表达式是 .15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).16.一组按规律排列的式子:a 2,25a -,310a ,417a-,526a ,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三、解答题(本题共30分,每小题5分)17.已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:1012sin 45(2015)3-⎛⎫+--︒+- ⎪⎝⎭π.19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁 于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D作DE ∥AC 且DE=12AC ,连接 CE 、OE ,连接AE 交OD 于点F .(1)求证:OE =CD ;(2)若菱形ABCD 的边长为2,∠ABC=60°,求AE 的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2014年全市燃煤数量比2012年压减450万吨,到2015年、2017年要比2012年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一部分:(1)据报道,2012年全市燃煤由四部分组成,其中电厂用煤920万吨,则2012年全市燃煤数量为 万吨;(2)请根据以上信息补全2012-2017年全市燃煤数量的折线统计图,并标明相应数据; (3)某地区积极倡导“清洁空气,绿色出行”,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息(如下表),发现利用公共自行车出行人数与 公共自行车投放数量之间近似成正比例关系.2012-2015年公共自行车投放数量与利用公共自行车出行人数统计表年份 公共自行车投放数量(万辆) 利用公共自行车出行人数(万人) 2012 1.4 约9.9 2013 2.5 约17.6 2014 4 约27.6 2015 5 约根据小颖的发现,请估计,该地区2015年利用公共自行车出行人数(直接写出结果, 精确到0.1)25.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F . (1)求证:∠BAD =∠DAE ;(2)若AB =6,AD =5,求DF 的长.26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2).请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).28.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).图1图2图329.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ; ②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类16. 750a,nn a n 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分) 17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分 21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分① ②12436--=k 244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分 ① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分 ② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数. ∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分 解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =………………4分 在Rt △ACE 中,.………………………………………………………5分24.(1)2300. ………………1分 (2)如图. …………… 3分(3)35.0±0.5. ……………5分25.解:(1)连接OD,∵ED为⊙O的切线,∴OD⊥ED.……………………………………………………………………………1分∵AB为⊙O的直径,∴∠ACB=90°. ……………………………………………………………… 2分∵BC∥ED,∴∠ACB=∠E=∠EDO.∴AE∥OD.∴∠DAE=∠ADO.∵OA=OD,∴∠BAD=∠ADO.∴∠BAD=∠DAE. ………………………………3分(2)连接BD,∴∠ADB=90°.∵AB=6,AD=5,∴BD=……………………………………………………………4分∵∠BAD=∠DAE=∠CBD ,∴tan∠CBD = tan∠BAD.在Rt△BDF中,∴DF=BD·tan∠CBD =115. ……………………………………………………………5分26. 解:PDAP 的值为23 . …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2,∴BC =2k .∴DB =DC +BC =3k .∵E 是AC 中点,∴AE =CE .∵AF ∥DB ,∴∠F =∠1.又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分∴AF =BC =2k .∵AF ∥DB ,∴△AFP ∽△DBP . ∴DB AF PDAP =. ∴32=PD AP . …………………………………………………………………4分 (2) 6. ……………………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分∴M 1 : x x y 42+=,顶点为(-2,-4) .∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分∵直线n x y +=经过点F ,∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°.∵DF ⊥BC ,∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分∵∠C =90°,AC =BC ,∴∠ABC =∠DFB =90°.∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分∴AF =EB .在△ABC 和△DFB 中,∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分AF =AB -BF=即BE= …………………………………………………………………………5分(2BD =BE +AB. ……………………………………………………………………7分29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分∵P (1,2),∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=,根据题意,有 ⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k . 图1∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P . ∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。
DCE2014~2015学年度初三一模试卷数学一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.-5的倒数是A .5B .15C .-5D .15-2.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为 A .13.1×106B .1.31×107C .1.31×108D .0.131×1083.在五张完全相同的卡片上,分别写有数字0,-1,-2,1,3,现从中随机抽取一张,抽到写有负数的卡片的概率是A.15B .45 C .35D .254.在下面四个几何体中,俯视图是三角形的是①②③④A .①B .②C .③D . ④5.已知反比例函数的表达式为1k y x-=,它的图象在各自象限内具有y 随x 增大而减小的特点,那么k 的取值范围是A .k >1B .k <1C .k >0D .k <06.如图,直线AB ∥CD ,BE 平分∠ABC ,交CD 于D , ∠CDB =30°,那么∠C 的度数为A .120°B .130°C .100°D .150°7.小明同学在社会实践活动中调查了20户家庭六月份的用水量,具体数据如下表所示:A .5,7B .7,7C .7,8D .3,78.如图,⊙O 的直径AB 与弦CD (不是直径)交于点E , 且CE =DE ,∠A =30°,OC = 4,那么CD 的长为 A . B . 4 C .D .89.如图是某一正方体的展开图,那么该正方体是A B C D10.如图1,一个电子蜘蛛从点A 出发匀速爬行,它先沿线段AB 爬到点B ,再沿半圆经过点M 爬到点C .如果准备在M 、N 、P 、Q 四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x ,电子蜘蛛与记录仪之间的距离为y ,表示y 与x 函数关系的图象如图2所示,那么记录仪可能位于图1中的CBA MN PQOx y图1 图2A. 点MB. 点NC. 点PD. 点Q二、填空题(本题共18分,每小题3分) 11.5的算术平方根是 .12.当分式21x x -+的值为0时,x 的值为 . 13.分解因式:21025ax ax a -+= .14光线从点A 出发经平面镜反射后刚好射到城墙CD 已知AB ⊥BD ,CD ⊥BD ,AB =1.2米,BP =1.8米, PD =12米, 那么该城墙高度CD= 米.15.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手讲:“另两条边长为3、6或4.5、4.5” ,你认为小明回答是否正确: ,理由是 . 16.如图,在平面直角坐标系xOy 中,二次函数y =-x 2-2x 图象位于x 轴上方的部分记作F 1 ,与x 轴交于点P 1 和O ;F 2与F 1关于点O 对称,与x 轴另一个交点为P 2;F 3与F 2关于点P 2对称,与x 轴另一个交点为P 3;….这样依次得到F 1,F 2,F 3,…,F n ,则其中F 1的顶点坐标为 , F 8的顶点坐标为 ,F n 的顶点坐标为 (n 为正整数,用含n 的代数式表示).Ox…y P 1P 2P 3P 4F 1F 2F 3F 4P 5F 5三、解答题(本题共30分,每小题5分)17.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD . 求证:AE =FC .18.计算:(1112cos30()4-+-︒+.EA DFBCEDBOCA19.解不等式组 32,2.3x x x x +⎧⎪+⎨⎪⎩>≥20.已知x 2-2x -7=0,求(x -2)2+(x -3)(x +3) 的值.21.已知关于x 的一元二次方程x 2+2x +k -2=0有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数,且该方程的根都是整数时,求k 的值.22.列方程或方程组解应用题:北京快速公交4号线开通后,为响应“绿色出行”的号召,家住门头沟的李明上班由自驾车改为乘公交.已知李明家距上班地点18千米,他乘公交平均每小时行驶的路程比他自驾车平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交所用时间是自驾车所用时间的37,问李明自驾车上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD 的对角线AC 和BD 交于点O ,分别过点C 、D 作CE ∥BD ,DE ∥AC ,CE 和DE 交于点E . (1)求证:四边形ODEC 是矩形;(2)当∠ADB =60°,AD=时,求tan ∠EAD 的值.24.2014年1月10日,国内成品油价格迎来了首次降低,某调查员就“汽油降价对用车的影响”这一问题向有机动车的私家车车主进行了问卷调查,并制作了统计图表的一部分如下:汽油降价对用车影响的BCDE A24%52%10%4%扇形统计图人数汽油降价对用车影响的条形统计图500(1)结合上述统计图表可得:p = ,m = ; (2)根据以上信息,补全条形统计图;(3)2014年1月末,某市有机动车的私家车车主约200 000人,根据上述信息,请你估计一下持有“影响不大”这种态度的车主约有多少人?25.如图,在△ABC 中,AB=AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线EF ,交AB 和AC 的延长线于E 、F . (1)求证:FE ⊥AB ;(2)当AE =6,sin ∠CFD =35时,求EB 的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在Rt △ABC 中,∠ACB =90°,∠A =60°,CD 平分Oyx∠ACB ,试判断BC 和AC 、AD 之间的数量关系.小明发现,利用轴对称做一个变化,在BC 上截取CA′=CA ,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).A'DDCB CBAA图1 图2请回答:(1)在图2中,小明得到的全等三角形是△ ≌△ ;(2)BC 和AC 、AD 之间的数量关系是 .参考小明思考问题的方法,解决问题:如图3,在四边形ABCD 中,AC 平分∠BAD ,BC =CD =10,AC =17,AD =9. 求AB 的长.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知:关于x 的一元二次方程-x 2+(m +1)x +(m +2)=0(m >0).(1)求证:该方程有两个不相等的实数根; (2)当抛物线y =-x 2+(m +1)x +(m +2)经过点(3,0),求该抛物线的表达式;(3)在(2)的条件下,记抛物线y =-x 2+(m +1)x +(m +2)在第一象限之间的部分为图象G ,如果直线 y =k (x +1)+4与图象G 有公共点,请结合函数的图象,求直线y =k (x +1)+4与y 轴交点的纵坐标t 的取值范围.28.在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,DE ⊥BC 于E ,连接CD . (1)如图1,如果∠A =30°,那么DE 与CE 之间的数量关系是 .图3DCBA(2)如图2,在(1)的条件下,P 是线段CB 上一点,连接DP ,将线段DP 绕点D逆时针旋转60°,得到线段DF ,连接BF ,请猜想DE 、BF 、BP 三者之间的数量关系,并证明你的结论.(3)如图3,如果∠A =α(0°<α<90°),P 是射线CB 上一动点(不与B 、C 重合),连接DP ,将线段DP 绕点D 逆时针旋转2α,得到线段DF ,连接BF ,请直接写出DE 、BF 、BP 三者之间的数量关系(不需证明).DBFE DAB E DAB C C CP AE图1 图2 图329.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m与x 轴平行,且与抛物线交于点A 和点B ,如果△AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间部分与线段AB 围成的图形称为该抛物线的准蝶形,顶点M 称为碟顶,线段AB 的长称为碟宽.AABBMMOxyy=m准蝶形AMB(1)抛物线212y x的碟宽为 ,抛物线y =ax 2(a >0)的碟宽为 . (2)如果抛物线y =a (x -1)2-6a (a >0)的碟宽为6,那么a = .(3)将抛物线y n =a n x 2+b n x +c n (a n >0)的准蝶形记为F n (n =1,2,3,…),我们定义F 1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.如果F n与F n-1的相似比为12,且F n的碟顶是F n-1的碟宽的中点,现在将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②请判断F1,F2,…,F n的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的表达式;如果不是,说明理由.数学评分参考一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分)17.(本小题满分5分)证明:∵BE∥DF,∴∠ABE=∠D.……………………………………………………………1分在△ABE和△FDC中,∴△ABE≌△FDC.…………………………………………………………4分∴AE=FC.……………………………………………………………………5分18.(本小题满分5分)解:原式=124+………………………………………………4分(每个1分)=5.……………………………………………………………………………5分19.(本小题满分5分)解:322.3x xxx⎧+⎪⎨+⎪⎩>,①≥②解不等式①,得3x<.………………………………………………………2分解不等式②,得 1.x≥……………………………………………………4分∴不等式组的解集为13x≤<.……………………………………………………5分20.(本小题满分5分)解:原式22449x x x=-++-…………………………………………………………2分224 5.x x=--………………………………………………………………3分∵x2-2x=7,∴原式()2225x x=--……………………………………………………4分9.=………………………………………………………………………5分21.(本小题满分5分)∠ABE=∠DAB=FD∠A=∠FEA DFBC解:(1)∵ 原方程有两个不相等的实数根,∴ △>0,……………………………………………………………………1分 即22-4(k -2)>0,∴ k <3.……………………………………………………………………2分 (2)∵k 为正整数,∴ k =1,k =2.………………………………………………………………3分 当k =1时,△=8,此时原方程的根是无理数,∴ k =1不合题意,舍去;…………………………………………………4分 当k =2时,原方程为x 2+2x =0,解得x 1=0,x 2=-2.∴ k =2.………………………………………………………………………5分22.(本小题满分5分)解:设李明自驾车上班平均每小时行使x 千米. ……………………………………1分 依题意,得xx 18739218⨯=+ ………………………………………………………2分 解得 27=x . ………………………………………………………………3分 经检验,27=x 是原方程的解,且符合题意.………………………………4分 答:李明自驾车上班平均每小时行使27千米.………………………………………5分四、解答题(本题共20分,每小题5分) 23.(本小题满分5分) (1)证明:∵ CE ∥BD ,DE ∥AC ,∴ 四边形ODEC 是平行四边形. ……………………………………1分 又 ∵菱形ABCD ,∴ AC ⊥BD ,∴ ∠DOC =90°.∴ 四边形ODEC 是矩形.………………………………………………2分(2)如图,过点E 作EF ⊥AD ,交AD 的延长线于F .∵ AC ⊥BD ,∠ADB =60°,AD=,∴ ODAO =OC =3.……………3分 ∵ 四边形ODEC 是矩形, ∴ DE =OC =3,∠ODE =90°.BOCA又∵∠ADO+∠ODE +∠EDF=180°,∴∠EDF=30°.在Rt△DEF中,∠F=90°,∠EDF=30°.∴EF=13 22 DE=.∴DF=………………………………………………………………………4分在Rt△AFE中,∠DFE=90°,∴tan∠EAD=323EF EFAF AD DF===+.………………………………5分24.(本小题满分5分)解:(1)p=24%,m=10%;……………………………………………………2分(2)补全条形统计图;……………………………………………………………4分(3)48000人.……………………………………………………………………5分25.(本小题满分5分)(1)证明:连接OD . (如图)∵OC=OD,∴∠OCD=∠ODC.∵AB=AC,∴∠ACB=∠B.∴∠ODC=∠B.∴OD∥AB. ………………………………………………………………1分∴∠ODF =∠AEF.∵EF与⊙O相切.∴OD⊥EF,∴∠ODF =90°.∴∠AEF =∠ODF =90°.∴EF⊥AB. ……………………………………………………………2分(2)解:由(1)知:OD∥AB,OD⊥EF .在Rt△AEF中,sin∠CFD = AEAF=35,AE=6.∴AF=10. …………………………………………………………………3分∵OD∥AB,∴△ODF∽△AEF.∴ AE ODAF OF =. ∴10106r r -= .解得r =154. ………………………………………………………………4分 ∴ AB = AC =2r =152. ∴ EB =AB -AE =152 -6= 32. ……………………………………………5分26.(本小题满分5分)解:阅读材料(1)△ADC ≌△A ′DC ;………………………………………………………………1分 (2)BC =AC +AD .……………………………………………………………………2分解决问题如图,在AB 上截取AE =AD ,连接CE . ∵ AC 平分∠BAD , ∴ ∠DAC =∠EAC . 又 ∵AC =AC , ∴ △ADC ≌△AEC . ………………………3分 ∴ AE =AD =9,CE=CD =10=BC . 过点C 作CF ⊥AB 于点F .∴ EF =BF .设EF =BF =x . 在Rt △CFB 中,∠CFB =90°,由勾股定理得CF 2=CB 2-BF 2=102-x 2. 在Rt △CF A 中,∠CF A =90°,由勾股定理得CF 2=AC 2-AF 2=172-(9+x )2. ∴ 102-x 2=172-(9+x )2,解得x =6.……………………………………………………………………………4分 ∴ AB =AE +EF +FB =9+6+6=21.∴ AB 的长为21. (5)分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.(本小题满分7分)(1)证明:∵ △= (m +1)2-4×(-1)×(m +2)=(m +3)2. ……………………………………………………………1分∵ m >0,∴ (m +3)2>0, 即 △>0,D C FE B A∴原方程有两个不相等的实数根. …………………………………2分(2)解:∵抛物线抛物线y=-x2+(m+1)x+(m+2)经过点(3,0),∴-32+3(m+1)+(m+2)=0,………………………………………………3分∴m=1.∴y=-x2+2x+3. ………………………………………………………4分(3)解:∵y=-x2+2x+3=-(x-1)2+4,∴该抛物线的顶点为(1,4).∴当直线y=k(x+1)+4经过顶点(1,4)时,∴4=k(1+1)+4,∴k=0,∴y=4.∴此时直线y=k(x+1)+4与y轴交点的纵坐标为4. ………………………5分∵y=-x2+2x+3,∴当x=0时,y=3,∴该抛物线与y轴的交点为(0,3).∴此时直线y=k(x+1)+4与y轴交点的纵坐标为3. ………………………6分∴3<t≤4. …………………………………………………………………7分28.(本小题满分7分)解:(1)DE.……………………………………………………………………1分(2)DE、BF、BP三者之间的数量关系是BF+BP DE.…………………2分理由如下:∵∠ACB=90°,D是AB的中点,∠A=30°∴DC=DB,∠CDB=60°.∵线段DP绕点D逆时针旋转60°得到线段DF,∴∠PDF=60°,DP=DF.又∵∠CDB=60°,∴∠CDB-∠PDB=∠PDF-∠PDB,∴∠CDP=∠BDF.∴△D C P≌△D B F.………………………………………………………3分∴ CP=BF.而CP=BC-BP,∴BF+BP=BC,……………………………………………………………4分在Rt△CDE中,∠DEC=90°,∴tanDE DCECE∠=,∴CE DE,∴BC=2CE DE,∴BF+BP=DE.………………………………………………………5分(3)BF +BP =2DE tan α,BF -BP =2DE tan α. (7)分29.(本小题满分8分)解:(1)4,2a ; (2)分 (2)13; (3)分(3)① ∵ F 1的碟宽︰F 2的碟宽=2:1,∴12222:1a a =. ∵ a 1=13,∴ a 2=23 (4)分 又∵ 由题意得F 2的碟顶坐标为(1,1), (5)分 ∴ ()222113y x =-+ (6)分 ② F 1,F 2,...,F n 的碟宽的右端点在一条直线上;........................7分 其解析式为y =-x +5. (8)分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。