2019年上海市长宁区高考数学一模试卷
- 格式:pdf
- 大小:734.22 KB
- 文档页数:20
上海市长宁区2019-2020学年高考数学一月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一个几何体的三视图如图所示,则该几何体的表面积为( )A .48122+B .60122+C .72122+D .84【答案】B【解析】【分析】 画出几何体的直观图,计算表面积得到答案.【详解】该几何体的直观图如图所示:故()2422626246622641222S +⨯=⨯+⨯+⨯+⨯+⨯=+.故选:B .【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.2.已知△ABC 中,22BC BA BC =⋅=-u u u v u u u v u u u v ,.点P 为BC 边上的动点,则()PC PA PB PC ⋅++u u u v u u u v u u u v u u u v 的最小值为( )A .2B .34-C .2-D .2512- 【答案】D【解析】【分析】 以BC 的中点为坐标原点,建立直角坐标系,可得()()1010B C -,,,,设()()0P a A x y ,,,,运用向量的坐标表示,求得点A 的轨迹,进而得到关于a 的二次函数,可得最小值.【详解】以BC 的中点为坐标原点,建立如图的直角坐标系,可得()()1010B C -,,,,设()()0P a A x y ,,,, 由2BA BC ⋅=-u u u r u u u r, 可得()()120222x y x +⋅=+=-,,,即20x y =-≠,, 则()()()101100PC PA PB PC a x a a a y ⋅++=-⋅---+-++u u u r u u u r u u u r u u u r ,, ()()()()21312332a x a a a a a =--=---=--21253612a ⎛⎫=-- ⎪⎝⎭, 当16a =时,()PC PA PB PC ⋅++u u u r u u u r u u u r u u u r 的最小值为2512-. 故选D .【点睛】本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题. 3.如图所示,为了测量A 、B 两座岛屿间的距离,小船从初始位置C 出发,已知A 在C 的北偏西45︒的方向上,B 在C 的北偏东15︒的方向上,现在船往东开2百海里到达E 处,此时测得B 在E 的北偏西30°的方向上,再开回C 处,由C 向西开6D 处,测得A 在D 的北偏东22.5︒的方向上,则A 、B 两座岛屿间的距离为( )A .3B .32C .4D .2【答案】B【解析】【分析】 先根据角度分析出,,CBE ACB DAC ∠∠∠的大小,然后根据角度关系得到AC 的长度,再根据正弦定理计算出BC 的长度,最后利用余弦定理求解出AB 的长度即可.【详解】由题意可知:60,67.5,45,75,60ACB ADC ACD BCE BEC ∠=︒∠=︒∠=︒∠=︒∠=︒,所以180756045CBE ∠=︒-︒-︒=︒,18067.54567.5DAC ∠=︒-︒-︒=︒,所以DAC ADC ∠=∠,所以26CA CD == 又因为sin sin BC CE BEC CBE =∠∠,所以3262BC == 所以2212cos 2462266322AB AC BC AC BC ACB =+-⋅⋅∠=+-⨯⨯⨯=故选:B.【点睛】 本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键. 4.已知3log 5a =,0.50.4b =,2log 5c =,则a ,b ,c 的大小关系为( )A .c b a >>B .b c a >>C .a b c >>D .c a b >>【答案】D【解析】【分析】与中间值1比较,,a c 可用换底公式化为同底数对数,再比较大小.【详解】 0.50.41<,3log 51>,又550log 2log 3<<,∴5511log 2log 3>,即23log 5log 5>, ∴c a b >>.故选:D.本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较.5. “哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( )A .15B .13C .35D .23【答案】A【解析】【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1),而加数全为质数的有(3,3), 根据古典概型知,所求概率为15P =. 故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题.6.复数12i i--的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】【详解】 试题分析:由题意可得:131255i i i -=--. 共轭复数为3155i +,故选A. 考点:1.复数的除法运算;2.以及复平面上的点与复数的关系7.著名的斐波那契数列{}n a :1,1,2,3,5,8,…,满足121a a ==,21n n n a a a ++=+,*N n ∈,若2020211n n k a a -==∑,则k =( )A .2020B .4038C .4039D .4040【答案】D【分析】计算134a a a +=,代入等式,根据21n n n a a a ++=+化简得到答案.【详解】11a =,32a =,43a =,故134a a a +=,202021134039457403967403940401............n n a a a a a a a a a a a a -==+++=++++=+++==∑,故4040k =.故选:D .【点睛】本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.8.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( )A .2B .3C .4D .5【答案】D【解析】【分析】对函数求导,根据函数在3x =-时取得极值,得到()30f '-=,即可求出结果.【详解】因为()3239f x x ax x =++-,所以()2323f x x ax =++', 又函数()3239f x x ax x =++-在3x =-时取得极值, 所以()327630f a -=-+=',解得5a =.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.9.已知椭圆E :22221x y a b+=(0)a b >>的左、右焦点分别为1F ,2F ,过2F 的直线240x y +-=与y 轴交于点A ,线段2AF 与E 交于点B .若1||AB BF =,则E 的方程为( )A .2214036x y += B .2212016x y += C .221106x y += D .2215x y += 【答案】D【解析】由题可得()()20,42,0,A F ,所以2c =,又1||AB BF =,所以122225a BF BF AF =+==,得5a =,故可得椭圆的方程.【详解】由题可得()()20,42,0,A F ,所以2c =,又1||AB BF =,所以122225a BF BF AF =+==,得5a =,1b ∴=, 所以椭圆的方程为2215x y +=.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.10.如图所示程序框图,若判断框内为“4i <”,则输出S =()A .2B .10C .34D .98 【答案】C【解析】【分析】由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:4i <,122j =⨯=,0122s =+⨯=,112i =+=;4i <,224j =⨯=,22410s =+⨯=,213i =+=;4i <,428j =⨯=,103834s =+⨯=,314i =+=;4i <不成立,此时输出34s =.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.11.若复数z 满足1zi i =-(i 为虚数单位),则其共轭复数z 的虚部为( )A .i -B .iC .1-D .1【答案】D【解析】【分析】由已知等式求出z ,再由共轭复数的概念求得z ,即可得z 的虚部.【详解】 由zi =1﹣i ,∴z =()()111·i i i i i i i ---==--- ,所以共轭复数z =-1+i ,虚部为1 故选D .【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题.12.在复平面内,31i i +-复数(i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】将复数化简得=12z i +,12z i =-,即可得到对应的点为()1,2-,即可得出结果.【详解】 3(3)(1)12121(1)(1)i i i z i z i i i i +++===+⇒=---+,对应的点位于第四象限. 故选:D .【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.二、填空题:本题共4小题,每小题5分,共20分。
上海市2019年高考数学一模试卷(理科)A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·齐齐哈尔模拟) 设集合,,则()A .B .C .D .2. (2分)在复平面内,复数所对应的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)数列的通项公式为,当该数列的前n项和达到最小时,n等于()A . 24B . 25C . 26D . 274. (2分) (2019高二上·浙江期中) 在中,,,则()A . -5B . 5C . -25D . 255. (2分) (2019高一上·衢州期末) 函数的图象为()A .B .C .D .6. (2分) (2016高二上·郸城开学考) 在区间[﹣, ]上随机取一个数x,cosx的值介于0到之间的概率为()A .B .C .D .7. (2分) (2016高二下·韶关期末) 如图所示的算法流程图中,输出S的值为()A . 32B . 42C . 52D . 638. (2分)把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥A﹣BCD的正视图与俯视图如图所示,则其侧视图的面积为()A .B .C .D .9. (2分) (2018高二上·石嘴山月考) 如图所示,表示阴影部分的二元一次不等式组是()A .B .C .D .10. (2分)已知抛物线的焦点与椭圆的一个焦点重合,它们在第一象限内的交点为,且与轴垂直,则椭圆的离心率为()A .B .C .D .11. (2分)已知函数f(x)满足:①定义域为R;②∀x∈R,都有f(x+2)=f(x);③当x∈[﹣1,1]时,f(x)=﹣|x|+1,则方程f(x)= |x|在区间[﹣3,5]内解的个数是()A . 5B . 6C . 7D . 812. (2分) (2020高二下·通辽期末) 曲线在点(1, )处的切线方程为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)已知向量 =(k,1), =(1,0), =(﹣2,k).若 + ⊥ ,则k=________.14. (1分)已知双曲线的右焦点为,则该双曲线的渐近线方程为________.15. (1分)已知四面体P- ABC的外接球的球心O在AB上,且平面ABC, ,若四面体P - ABC的体积为,则该球的表面积为________.16. (1分) (2016高一下·大庆期中) 已知函数f(n)=n2sin ),且an=f(n)+f(n+1),则a1+a2+a3+…+a2016的值为________三、解答题 (共7题;共65分)17. (5分)在中,,,,记 .求的值域.18. (10分)(2019·南平模拟) 从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表)(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中以近似为样本平均数,近似为样本方差.(ⅰ)利用该正态分布,求;(ⅱ)某用户从该工厂购买了100件这种产品,记表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求.附:.若,则,.19. (10分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,∠DAB=60°,平面PCD⊥底面ABCD,E是AB的中点,G为PA上的一点.(1)求证:平面GDE⊥平面PCD;(2)若PC∥平面DGE,求的值.20. (10分) (2016高二下·佛山期末) 已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.(1)求椭圆C的方程;(2)过点S(,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.21. (10分) (2017高二下·赣州期末) 已知函数f(x)=alnx﹣(a+2)x+x2 .(1)求函数f(x)的单调区间;(2)若对于任意a∈[4,10],x1 ,x2∈[1,2],恒有| |≤ 成立,试求λ的取值范围.22. (10分)在平面直角坐标系xOy中,过点P(2,0)的直线l的参数方程为(t为参数),圆C的方程为x2+y2=4.以直角坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求直线l的普通方程和圆C的极坐标方程;(2)设直线l与圆C相交于A,B两点,求|AB|的值.23. (10分) (2017高二下·湘东期末) 已知函数f(x)=|x﹣a|+|x+2|(1)当a=3时,求不等式f(x)≥7的解集;(2)若f(x)≤x+4的解集包含[1,2],求实数a的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分) 17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。
2019年上海市高考数学一模试卷一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.(4分)设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B=.2.(4分)函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=.3.(4分)设i为虚数单位,在复平面上,复数对应的点到原点的距离为.4.(4分)若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=.5.(4分)已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=.6.(4分)甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有种.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是.(写出所有真命题的序号)11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为cm.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]三、解答题(共5小题,满分76分)17.(14分)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD 所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).18.(14分)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.19.(14分)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k >0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.20.(16分)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.21.(18分)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.参考答案与试题解析一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B={2} .【考点】交集及其运算.【分析】利用交集定义求解.【解答】解:|x﹣2|<1,即﹣1<x﹣2<1,解得1<x<3,即A=(1,3),集合B=Z,则A∩B={2},故答案为:{2}【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意定义法的合理运用.2.函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=2.【考点】正弦函数的图象.【分析】根据三角函数的周期性及其求法即可求值.【解答】解:∵y=sin(ωx﹣)(ω>0),∴T==π,∴ω=2.故答案是:2.【点评】本题主要考查了三角函数的周期性及其求法,属于基础题.3.设i为虚数单位,在复平面上,复数对应的点到原点的距离为.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数===对应的点到原点的距离==.故答案为:.【点评】本题考查了复数的运算法则、几何意义、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.4.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=3.【考点】反函数.【分析】由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.【解答】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.【点评】本题考查了互为反函数的两个函数之间的关系与应用问题,属于基础题.5.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=6.【考点】二项式系数的性质.【分析】令二项式中的a=b=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和2n,据已知列出方程求出n 的值.【解答】解:令二项式中的a=b=1得到展开式中的各项系数的和4n 又各项二项式系数的和为2n据题意得,解得n=6.故答案:6【点评】求二项展开式的系数和问题一般通过赋值求出系数和;二项式系数和为2n.属于基础题.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有60种.【考点】排列、组合及简单计数问题.【分析】间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100﹣10﹣30=60种.故答案为60.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用间接法是解决本题的关键,属中档题.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.【解答】解:设此圆锥的底面半径为r,由题意,得:2πr=π×2,解得r=.故圆锥的高h==,∴圆锥的体积V=πr2h=cm3.故答案为:.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=2.【考点】数列的求和;极限及其运算.【分析】利用数列递推关系可得a n,再利用等差数列的求和公式、极限的运算性质即可得出.【解答】解:∵ ++…+=n2+3n(n∈N*),∴n=1时,=4,解得a1=16.n≥2时,且++…+=(n﹣1)2+3(n﹣1),可得:=2n+2,∴a n=4(n+1)2.=4(n+1).∴()==2.故答案为:2.【点评】本题考查了数列递推关系、等差数列的求和公式、极限运算性质,考查了推理能力与计算能力,属于中档题.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.【考点】余弦定理.【分析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.【解答】解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.【点评】本题主要考查余弦定理和正弦定理的应用,在解决问题的过程中要灵活运用正弦定理和余弦定理.属基础题.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是①②.(写出所有真命题的序号)【考点】必要条件、充分条件与充要条件的判断.【分析】①函数f(x)既是奇函数又是偶函数,则f(x)=0.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.【解答】解:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0},所以①正确.②若函数为偶函数,则f(﹣x)=f(x),所以f(|x|)=f(x)成立,所以②正确.③因为函数f(x)=在定义域上不单调,但函数f(x)存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线y=x对称,但不一定在直线y=x上,比如函数y=﹣与其反函数y=x2﹣1(x≤0)的交点坐标有(﹣1,0),(0,1),显然交点不在直线y=x上,所以④错误.故答案为:①②.【点评】本题主要考查函数的有关性质的判定和应用,要求熟练掌握相应的函数的性质,综合性较强.11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为8.【考点】基本不等式.【分析】A、B、C三点共线,则=λ,化简可得2a+b=1.根据+ =(+)(2a+b),利用基本不等式求得它的最小值【解答】解:向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,∴=﹣=(a﹣1,1),=﹣=(﹣b﹣1,2),∵A、B、C三点共线,∴=λ,∴,解得2a+b=1,∴+=(+)(2a+b)=2+2++≥4+2=8,当且仅当a=,b=,取等号,故+的最小值为8,故答案为:8【点评】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,基本不等式的应用,属于中档题.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为13cm.【考点】多面体和旋转体表面上的最短距离问题.【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d==13故答案为:13.【点评】本题考查棱柱的结构特征,空间想象能力,几何体的展开与折叠,体现了转化(空间问题转化为平面问题,化曲为直)的思想方法.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先求出x2<4的充要条件,结合集合的包含关系判断即可.【解答】解:由x2<4,解得:﹣2<x<2,故x<2是x2<4的必要不充分条件,故选:B.【点评】本题考察了充分必要条件,考察集合的包含关系,是一道基础题.14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值【考点】等差数列的前n项和.【分析】S n=na1+d=n2+n,利用二次函数的单调性即可判断出结论.【解答】解:S n=na1+d=n2+n,∵>0,∴S n有最小值.故选:C.【点评】本题考查了等差数列的求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【考点】正弦函数的定义域和值域;两角和与差的正弦函数;正弦函数的对称性;余弦函数的定义域和值域.【分析】(1)利用辅助角公式将可判断(1);(2)根据函数y=sinx图象的对称轴方程可判断(2);(3)根据余弦函数的性质可求出y=cos(cosx)(x∈R)的最大值与最小值,从而可判断(3)的正误;(4)用特值法令α,β都是第一象限角,且α>β,可判断(4).【解答】解:(1)∵,∴(1)错误;(2)∵y=sinx图象的对称轴方程为,k=﹣1,,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max=cos0=1,y min=cos(cos1),其值域是[cos1,1],(3)正确;(4)不妨令,满足α,β都是第一象限角,且α>β,但tanα<tanβ,(4)错误;故选B.【点评】本题考查正弦函数与余弦函数、正切函数的性质,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]【考点】函数恒成立问题.【分析】将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立,构造函数f(y)=+,利用基本不等式可求得f(y)=3,于是问题转化为asinx﹣sin2x≤2恒成立.通过对sinx>0、sinx min<0、sinx=0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.【解答】解:∀实数x、y,不等式﹣cos2x≥asinx﹣恒成立⇔+≥asinx+1﹣sin2x恒成立,令f(y)=+,则asinx+1﹣sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)=3;min当y<0时,f(y)=+≤﹣2=﹣3(当且仅当y=﹣6时取“=”),f(y)max=﹣3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1﹣<0,所以,g(t)=t+在区间(0,1]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥﹣3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,﹣3≤a≤3.故选:D.【点评】本题考查恒成立问题,将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立是基础,令f(y)=+,求得f (y)min=3是关键,也是难点,考查等价转化思想、分类讨论思想的综合运用,属于难题.三、解答题(共5小题,满分76分)17.(14分)(2017•上海一模)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.【解答】解:(1)如图,因为AB⊥平面BCD,所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC=2,∴BD==2,CD==2,则V A﹣BCD====.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,则A(0,2,2),D(2,0,0),C(0,0,0),B(0,2,0),M(),=(2,﹣2,﹣2),=(),设异面直线AD与CM所成角为θ,则cosθ===.θ=arccos.∴异面直线AD与CM所成角的大小为arccos.【点评】本题考查了直线和平面所成角的计算,考查了利用等积法求点到面的距离,变换椎体的顶点,利用其体积相等求空间中点到面的距离是较有效的方法,此题是中档题.18.(14分)(2017•上海一模)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.【考点】余弦定理;解三角形.【分析】(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,解方程求得cosA 的值,即可得到A的值.(II)由余弦定理及a=,b+c=3,解方程组求得b 和c的值.【解答】解:(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos (B+C)]﹣4cos2A+2=7,(1分)又∵cos(B+C)=﹣cosA,∴4cos2A﹣4cosA+1=0.(4分)解得,∴.(6分)(II)由.(8分)又.(10分)由.(12分)【点评】本题主要考查余弦定理,二倍角公式及诱导公式的应用,属于中档题.19.(14分)(2017•上海一模)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD 是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D 重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN 为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.【考点】函数模型的选择与应用.【分析】(1)根据函数y=ax2过点D,求出解析式y=2x2;由,消去y得△=0即可证明b=﹣;(2)写出点P的坐标(t,2t2),代入①直线MN的方程,用t表示出直线方程为y=4tx﹣2t2,令y=0,求出M的坐标;令y=2求出N的坐标;②将四边形MABN的面积S表示成关于t的函数S(t),利用基本不等式求出S的最大值.【解答】(1)证明:函数y=ax2过点D(1,2),代入计算得a=2,∴y=2x2;由,消去y得2x2﹣kx﹣b=0,由线段MN与曲线OD有且只有一个公共点P,得△=(﹣k)2﹣4×2×b=0,解得b=﹣;(2)解:设点P的横坐标为t,则P(t,2t2);①直线MN的方程为y=kx+b,即y=kx﹣过点P,∴kt﹣=2t2,解得k=4t;y=4tx﹣2t2令y=0,解得x=,∴M(,0);令y=2,解得x=+,∴N(+,2);②将四边形MABN的面积S表示成关于t的函数为S=S(t)=2×2﹣×2×[+(+)]=4﹣(t+);由t+≥2•=,当且仅当t=,即t=时“=”成立,所以S≤4﹣2;即S的最大值是4﹣.【点评】本题考查了函数模型的应用问题,也考查了阅读理解能力,是综合性题目.20.(16分)(2017•上海一模)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【考点】函数的最值及其几何意义;函数的值域.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a ≤3时,当a>3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.【点评】本题主要考查二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,是中档题.21.(18分)(2017•上海一模)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r ∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.【考点】数列递推式.【分析】(1)由rS n=a n a n+1﹣1,利用迭代法得:ra n+1=a n+1(a n+2﹣a n),由此能够证明a n+2﹣a n为定值.(2)当n=1时,ra=aa2﹣1,故a2=,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{a n}是一个有理等差数列,所以a+a=r=2(r+),化简2a2﹣ar﹣2=0,解得a是有理数,由此入手进行合理猜想,能够求出S n.【解答】(1)证明:∵rS n=a n a n+1﹣1,①∴rS n+1=a n+1a n+2﹣1,②②﹣①,得:ra n+1=a n+1(a n+2﹣a n),∵a n>0,∴a n+2﹣a n=r.(2)解:当n=1时,ra=aa2﹣1,∴a2=,根据数列是隔项成等差,写出数列的前几项:a,r+,a+r,2r+,a+2r,3r+,….当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴r=0时,数列写出数列的前几项:a,,a,,….所以当a>0且a≠1时,该数列的周期是2,(3)解:因为数列{a n}是一个有理等差数列,a+a+r=2(r+),化简2a2﹣ar﹣2=0,a=是有理数.设=k,是一个完全平方数,则r2+16=k2,r,k均是非负整数r=0时,a=1,a n=1,S n=n.r≠0时(k﹣r)(k+r)=16=2×8=4×4可以分解成8组,其中只有,符合要求,此时a=2,a n=,S n=,∵c n=2•3n﹣1(n∈N*),a n=1时,不符合,舍去.a n=时,若2•3n﹣1=,则:3k=4×3n﹣1﹣1,n=2时,k=,不是整数,因此数列{c n}中的所有项不都是数列{a n}中的项.【点评】本题考查了数列递推关系、等差数列的定义与通项公式、数列的周期性性,考查了推理能力与计算能力,属于难题.。
2019年高考数学一模试题(及答案)一、选择题1.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .232.若43i z =+,则zz=( ) A .1B .1-C .4355i + D .4355i - 3.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .4.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<05.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A .13B .12 C .23 D .346.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥7.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( ) A .6B .8C .26D .428.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}9.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .410.sin 47sin17cos30cos17-A .32-B .12-C .12D .3211.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .12.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是15.在ABC 中,60A =︒,1b =3sin sin sin a b cA B C ________.16.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .17.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 18.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________. 19.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.20.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)三、解答题21.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.22.已知椭圆22221(0)x y a b a b +=>>的离心率为63,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为22. (1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =所得的弦的长度为5,求直线l 的方程.23.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.24.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.25.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.2.D解析:D 【解析】 【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.3.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.4.D解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .5.B解析:B 【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.6.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.7.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。
2019届上海市长宁区、嘉定区高三上学期期末教学质量检测(一模)数学试题一、单选题1.已知x R ∈,则“0x ≥”是“1x >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件 【答案】B【解析】根据充分条件和必要条件的定义分别进行判断即可. 【详解】0x ≥推不出1x >, 10x x >⇒≥,∴“0x ≥”是“1x >”的必要非充分条件.故选:B . 【点睛】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.2.有一批种子,对于一颗种子来说,它可能1天发芽,也可能2天发芽,……,从中抽取98颗种子,下表是不同发芽天数的种子数的记录:统计每颗种子发芽天数得到一组数据,则估计这批种子发芽天数的中位数是( ) A .2 B .3C .3.5D .4【答案】B【解析】将这98颗种子发芽天数从左到右按照从小到大的顺序排成一列,求中间两颗种子发芽天数的平均数即可得结果. 【详解】将这98颗种子发芽天数从左到右按照从小到大的顺序排成一列, 可得种子的发芽天数的正中间两颗的数据都是3,所以中位数为3332+=,故选B . 【点睛】本题主要考查中位数的定义与应用,属于基础题.如果样本容量是奇数,中间的数就是中位数;如果样本容量为偶数中间两个数的平均数就是中位数. 3.已知向量a 和b 的夹角为3π,且||2,||3a b ==,则(2)(2)a b a b -+=( ) A .10- B .7-C .4-D .1-【答案】D【解析】根据数量积的运算律直接展开()()22a b a b -⋅+,将向量的夹角与模代入数据,得到结果. 【详解】()()22a b a b -⋅+= 2223?2a a b b +-=8+3cos3a b π-18=8+3×2×3×12-18=-1, 故选D. 【点睛】本题考查数量积的运算,属于基础题.4.某位喜欢思考的同学在学习函数的性质时提出了如下两个命题: 已知函数()y f x =的定义域为D ,1x 、2x D ∈.①若当()()120f x f x +=时,都有120x x +=,则函数()y f x =是D 上的奇函数; ②若当()()12f x f x <时,都有12x x <,则函数()y f x =是D 上的奇函数. 下列判断正确的是 () A.①和②都是真命题 B.①是真命题,②是假命题 C.①和②都是假命题 D.①是假命题,②是真命题【答案】B【解析】根据奇函数的定义对题干中的命题的正误进行判断. 【详解】函数()y f x =的定义域为D ,1x 、2x D ∈.①若当()()120f x f x +=时,都有120x x +=,可得D 关于原点对称, 由奇函数的定义可得函数()y f x =是D 上的奇函数,故①正确;②若当()()12f x f x <时,都有12x x <,则函数()y f x =是D 上的增函数,奇偶性不确定,故②错误. 故选:B. 【点睛】本题考查函数奇函数的定义,注意定义域关于原点对称,其次可考虑()()f x f x -=-,即可判断,考查理解能力,属于基础题.二、填空题5.已知集合{}1,2,3,4A =,{}1,3,5B =,则A B =______.【答案】{}1,2,3,4,5【解析】根据并集的定义可得出集合A B .【详解】{}1,2,3,4A =Q ,{}1,3,5B =,因此,{}1,2,3,4,5A B =U .故答案为:{}1,2,3,4,5. 【点睛】本题考查并集的运算,考查计算能力,属于基础题. 6.已知1312x -=,则x =________【答案】1【解析】直接利用矩阵中的公式运算即可. 【详解】由题得:2x+1=3,所以得x =1. 故答案为1. 【点睛】本题考查增广矩阵中的运算.考查行列式,属于基础题.7.在()61x +的二项展开式中,2x 项的系数为_____(结果用数值表示). 【答案】15【解析】通过二项展开式的通项公式求出展开式的通项,利用x 的指数为2,求出展开式中2x 的系数.【详解】解:展开式的通项为16r r r T C x +=.令2r =得到展开式中2x 的系数是2615C =.故答案为:15. 【点睛】本题是基础题,考查利用二项展开式的通项公式解决二项展开式的特定项问题.考查计算能力.8.已知向量(),3a m =,()2,1b =-r ,若向量//a b r r,则实数m 为______.【答案】6-【解析】根据平面向量共线向量的坐标表示,列关于m 的方程,解出即可. 【详解】(),3a m =r Q ,()2,1b =-r ,且//a b r r,则有6m -=,解得6m =-.故答案为:6-. 【点睛】考查向量坐标的概念,平行向量的坐标关系,解题的关键就是根据共线向量的坐标表示列方程求解,考查运算求解能力,属于基础题.9.已知幂函数()a f x x =的图像过点,则()f x 的定义域为________ 【答案】(0,)+∞【解析】依题意可求得12α=-,从而可求f (x )的定义域. 【详解】依题意,得:1222α-==,所以12α=-,()12f x x-==,所以,定义域为:()0,+∞, 故答案为()0,.+∞ 【点睛】本题考查幂函数的性质,求得α是关键,属于基础题.10.若圆锥的侧面积为15π,底面面积为9π,则该圆锥的体积为______. 【答案】12π【解析】设圆锥的底面半径为r ,母线长为l ,高为h ,根据题中条件求出这几个量,然后利用锥体的体积公式可计算出该圆锥的体积. 【详解】设圆锥的底面半径为r ,母线长为l ,高为h ,根据题意,圆锥的底面面积为29r ππ=,即则其底面半径是3r =, 圆锥的侧面积为315rl l πππ==,则其母线长为5l =,所以,圆锥的高为4h ==, 因此,圆锥的体积为149123ππ⨯⨯=. 故答案为:12π. 【点睛】本题考查圆锥的有关计算,圆锥的侧面积,体积的求法,考查计算能力,属于基础题. 11.已知(,)2a ππ∈,且tan 2a =-,则sin()a π-=________【解析】运用诱导公式化简为()sin a π-,再利用同角基本关系得到所求值. 【详解】依题意tan 2a =-,且,2a ππ⎛⎫∈⎪⎝⎭得:sin a =,所以()sin a π-= sin a =,故答案为5. 【点睛】本题考查三角函数中的诱导公式和同角的基本关系式的应用,属于基础题. 12.已知函数()log a f x x =和g()(2)x k x =-的图像如图所示,则不等式()0()f xg x ≥的解集是_______【答案】[1,2)【解析】由题意可得f (x )与g (x )的函数值的符号相同,结合函数的图象分类讨论求得x 的范围,即为所求. 【详解】函数()log a f x x =的定义域为()0,+∞,(1)当0<x <1时,f (x )<0,g (x )>0,()()f xg x <0,不符合;(2)当1≤x <2时,f (x )≥0,g (x )>0,()()f xg x ≥0,符合;(3)当x >2时,f (x )>0,g (x )<0,()()f xg x <0,不符合;所以解集是[)1,2, 故答案为[)1,2. 【点睛】本题主要考查分式不等式的解法,函数的图象的应用,属于基础题.13.如图,某学生社团在校园内测量远处某栋楼CD 的高度,D 为楼顶,线段AB 的长度为600m ,在A 处测得30DAB ︒∠=,在B 处测得105DBA ︒∠=,且此时看楼顶D 的仰角30DBC ︒∠=,已知楼底C 和A 、B 在同一水平面上,则此楼高度CD =____(精确到1m )【答案】212【解析】先由正弦定理求得AB 和BD ,根据Rt △BCD 中因为30DBC ︒∠=,可得CD=12BD =≈212。
2019年高考数学一模试卷含答案一、选择题1.如图所示的圆锥的俯视图为( )A .B .C .D .2.123{3x x >>是12126{9x x x x +>>成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件3.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃ A .(-1,2)B .(0,1)C .(-1,0)D .(1,2)4.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( )A .53 B .35 C .37 D .575.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-6.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。
老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙、丁可以知道自己的成绩 B .乙可以知道四人的成绩 C .乙、丁可以知道对方的成绩D .丁可以知道四人的成绩7.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形. 8.当1a >时, 在同一坐标系中,函数xy a-=与log a y x =-的图像是( )A .B .C .D .9.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3πB .2,-6π C .4,-6πD .4,3π 10.已知复数 ,则复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B .122± C .1102± D .322± 12.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A .13B .12C .23D .34二、填空题13.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.14.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______. 16.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.17.若,满足约束条件则的最大值 .18.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲ 19.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.20.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.三、解答题21.已知向量()2sin ,1a x =+,()2,2b =-,()sin 3,1c x =-,()1,d k =(),x R k R ∈∈(1)若,22x ππ⎡⎤∈-⎢⎥⎣⎦,且()//a b c +,求x 的值.(2)若函数()f x a b =⋅,求()f x 的最小值.(3)是否存在实数k ,使得()()a dbc +⊥+?若存在,求出k 的取值范围;若不存在,请说明理由.22.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.23.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率): ①; ②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.24.在平面直角坐标系xOy 中,已知直线l 的参数方程为12312x t y t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点()0,1P -.若直l 与曲线C 相交于两点,A B ,求PA PB +的值.25.已知A 为圆22:1C x y +=上一点,过点A 作y 轴的垂线交y 轴于点B ,点P 满足2.BP BA =(1)求动点P 的轨迹方程;(2)设Q 为直线:3l x =上一点,O 为坐标原点,且OP OQ ⊥,求POQ ∆面积的最小值.26.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b b y t =+∈=+为参数求的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】找到从上往下看所得到的图形即可. 【详解】由圆锥的放置位置,知其俯视图为三角形.故选C. 【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,本题容易误选B ,属于基础题.2.A解析:A【解析】 试题分析:因为123{3x x >>12126{9x x x x +>⇒>,所以充分性成立;1213{1x x ==满足12126{9x x x x +>>,但不满足123{3x x >>,必要性不成立,所以选A.考点:充要关系3.A解析:A 【解析】利用数轴,取,P Q 所有元素,得P Q =(1,2)-.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.4.A解析:A 【解析】 由正弦定理可得:sin 5sin 3A aB b == . 本题选择A 选项.5.C解析:C 【解析】 【分析】利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果. 【详解】因为()a i i b i +=+, 即1ai b i -+=+,因为,,a b R i ∈为虚数单位,所以1,1a b ==-, 故选C. 【点睛】本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.6.A解析:A 【解析】 【分析】根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果. 【详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.7.C解析:C 【解析】 【分析】 【详解】 解答: 由已知条件得;根据共面向量基本定理得:∴△ABC 为等边三角形。
2019年高考数学一模试卷含解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A={﹣1,0,1},B=(﹣∞,0),则A∩B= .2.设复数z满足(1+i)z=2,其中i为虚数单位,则z的虚部为.3.已知样本数据x1,x2,x3,x4,x5的方差s2=3,则样本数据2x1,2x2,2x3,2x4,2x5的方差为.4.如图是一个算法流程图,则输出的x的值是.5.在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为.6.已知实数x,y满足,则的最小值是.7.设双曲线的一条渐近线的倾斜角为30°,则该双曲线的离心率为.8.设{an }是等差数列,若a4+a5+a6=21,则S9= .9.将函数的图象向右平移φ()个单位后,所得函数为偶函数,则φ=.10.将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O﹣EFG体积的最大值是.11.在△ABC中,已知,,则的最大值为.12.如图,在平面直角坐标系中,分别在x轴与直线上从左向右依次取点Ak、Bk ,k=1,2,…,其中A1是坐标原点,使△AkBkAk+1都是等边三角形,则△A10B10A11的边长是.13.在平面直角坐标系xOy中,已知点P为函数y=2lnx的图象与圆M:(x﹣3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为.14.在△ABC中,A、B、C所对的边分别为a、b、c,若a2+b2+2c2=8,则△ABC 面积的最大值为.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.16.在△ABC中,a,b,c分别为内角A,B,C的对边,且bsin2C=csinB.(1)求角C;(2)若,求sinA的值.17.在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆(0<b<2)的焦点.(1)求椭圆E的标准方程;(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(﹣1,0),N(1,0),记直线TM,TN的斜率分别为k1,k2,当2m2﹣2k2=1时,求k1•k2的值.18.如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足.(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)19.设函数f(x)=lnx,g(x)=ax+﹣3(a∈R).(1)当a=2时,解关于x的方程g(e x)=0(其中e为自然对数的底数);(2)求函数φ(x)=f(x)+g(x)的单调增区间;(3)当a=1时,记h(x)=f(x)•g(x),是否存在整数λ,使得关于x的不等式2λ≥h(x)有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986).20.若存在常数k(k∈N*,k≥2)、q、d,使得无穷数列{a n}满足则称数列{a n}为“段比差数列”,其中常数k、q、d分别叫做段长、段比、段差.设数列{b n}为“段比差数列”.(1)若{b n}的首项、段长、段比、段差分别为1、3、q、3.①当q=0时,求b xx;②当q=1时,设{b n}的前3n项和为S3n,若不等式对n∈N*恒成立,求实数λ的取值范围;(2)设{b n}为等比数列,且首项为b,试写出所有满足条件的{b n},并说明理由.数学附加题部分(本部分满分0分,考试时间30分钟)[选做题](在21、22、23、24四小题中只能选做2题,每小题0分,计20分)[选修4-1:几何证明选讲]21.如图,AB是半圆O的直径,点P为半圆O外一点,PA,PB分别交半圆O 于点D,C.若AD=2,PD=4,PC=3,求BD的长.[选修4-2:矩阵与变换]22.设矩阵M=的一个特征值λ对应的特征向量为,求m与λ的值.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.[选修4-5:不等式选讲]24.若实数x,y,z满足x+2y+z=1,求x2+y2+z2的最小值.[必做题](第25、26题,每小题0分,计20分.请把答案写在答题纸的指定区域内)25.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).26.设n∈N*,n≥3,k∈N*.(1)求值:k﹣1;①kC n k﹣nC n﹣1②k2C n k﹣n(n﹣1)C n﹣2k﹣2﹣nC n﹣1k﹣1(k≥2);(2)化简:12C n0+22C n1+32C n2+…+(k+1)2C n k+…+(n+1)2C n n.参考答案与试题解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A={﹣1,0,1},B=(﹣∞,0),则A∩B={﹣1} .【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={﹣1,0,1},B=(﹣∞,0),∴A∩B={﹣1},故答案为:{﹣1}2.设复数z满足(1+i)z=2,其中i为虚数单位,则z的虚部为﹣1.【考点】复数代数形式的乘除运算.【分析】把给出的等式两边同时乘以,然后运用复数的除法进行运算,分子分母同时乘以1﹣i.整理后可得复数z的虚部.【解答】解:由(1+i)z=2,得:.所以,z的虚部为﹣1.故答案为﹣1.3.已知样本数据x1,x2,x3,x4,x5的方差s2=3,则样本数据2x1,2x2,2x3,2x4,2x5的方差为12.【考点】极差、方差与标准差.【分析】利用方差性质求解.【解答】解:∵样本数据x1,x2,x3,x4,x5的方差s2=3,∴样本数据2x1,2x2,2x3,2x4,2x5的方差为:22s2=4×3=12.故答案为:12.4.如图是一个算法流程图,则输出的x的值是9.【考点】程序框图.【分析】模拟执行程序,即可得出结论.【解答】解:由题意,x=1,y=9,x<y,第1次循环,x=5,y=7,x<y,第2次循环,x=9,y=5,x>y,退出循环,输出9.故答案为9.5.在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】基本事件总数n=,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,由此能求出选中的数字中至少有一个是偶数的概率.【解答】解:在数字1、2、3、4中随机选两个数字,基本事件总数n=,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,∴选中的数字中至少有一个是偶数的概率为p=1﹣=.故答案为:.6.已知实数x,y满足,则的最小值是.【考点】简单线性规划.【分析】先作出不等式组所表示的平面区域,由于可以看做平面区域内的点与原点的连线的斜率,结合图形可求斜率最大值【解答】解:作出不等式组所表示的平面区域如图所示:由于可以看做平面区域内的点与原点的连线的斜率,结合图形可知,当直线过OA时斜率最小.由于可得A(4,3),此时k=.故答案为:.7.设双曲线的一条渐近线的倾斜角为30°,则该双曲线的离心率为.【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,可得a=,则c==2,再由离心率公式,即可得到双曲线的离心率.【解答】解:双曲线的渐近线方程为y=±x,则tan30°=即为a=,则c==2,即有e=.故答案为.8.设{a n}是等差数列,若a4+a5+a6=21,则S9=63.【考点】等差数列的前n项和.【分析】由等差数列的通项公式求出a5=7,再由等差数列的前n项和公式得,由此能求出结果.【解答】解:∵{a n}是等差数列,a4+a5+a6=21,∴a4+a5+a6=3a5=21,解得a5=7,∴=63.故答案为:63.9.将函数的图象向右平移φ()个单位后,所得函数为偶函数,则φ=.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】若所得函数为偶函数,则﹣2φ=+kπ,k∈Z,进而可得答案.【解答】解:把函数f(x)=3sin(2x+)的图象向右平移φ个单位,可得函数y=3sin[2(x﹣φ)+]=3sin(2x+﹣2φ)的图象,若所得函数为偶函数,则﹣2φ=+kπ,k∈Z,解得:φ=﹣+kπ,k∈Z,当k=1时,φ的最小正值为.故答案为:.10.将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O﹣EFG体积的最大值是4.【考点】棱柱、棱锥、棱台的体积.【分析】三棱锥O﹣EFG的高为圆柱的高,即高为ABC,当三棱锥O﹣EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,)max=,由此能求出三棱锥O﹣EFG体积的最大值.(S△EFG【解答】解:∵将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,∴三棱锥O﹣EFG的高为圆柱的高,即高为ABC,∴当三棱锥O﹣EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,)max=,(S△EFG∴三棱锥O﹣EFG体积的最大值V max==.故答案为:4.11.在△ABC中,已知,,则的最大值为.【考点】平面向量数量积的运算.【分析】可先画出图形,对的两边平方,进行数量积的运算即可得到,根据不等式a2+b2≥2ab即可得到,这样便可求出的最大值.【解答】解:如图,;∴;∴;即;∴=;∴的最大值为.故答案为:.12.如图,在平面直角坐标系中,分别在x轴与直线上从左向右依次取点A k、B k,k=1,2,…,其中A1是坐标原点,使△A k B k A k都是等边三角形,则△A10B10A11+1的边长是512.【考点】数列的求和.【分析】设直线与x轴交点坐标为P,由直线的倾斜角为300,又△A1B1A2是等边三角形,求出△A2B2A3、…找出规律,就可以求出△A10B10A11的边长.【解答】解:∵直线的倾斜角为300,且直线与x轴交点坐标为P(﹣,0),又∵△A1B1A2是等边三角形,∴∠B1A1A2=600,B1A1=,PA2=2,∴△A2B2A3的边长为PA2=2,同理B2A2=PA3=4,…以此类推B10A10=PA10=512,∴△A10B10A11的边长是512,故答案为:512.13.在平面直角坐标系xOy中,已知点P为函数y=2lnx的图象与圆M:(x﹣3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为.【考点】利用导数研究曲线上某点切线方程.【分析】设P(x0,y0),求得y=2lnx的导数,可得切线的斜率和切线方程;求得圆上一点的切线方程,由直线重合的条件,可得二次函数y=x(3﹣x),满足经过点P,O,M,即可得到所求最大值.【解答】解:设P(x0,y0),函数y=2lnx的导数为y′=,函数y=2lnx在点P处的切线方程为y﹣y0=(x﹣x0),即为x﹣y+y0﹣2=0;圆M:(x﹣3)2+y2=r2的上点P处的切线方程为(x0﹣3)(x﹣3)+yy0=r2,即有(x0﹣3)x+yy0+9﹣3x0﹣r2=0;由切线重合,可得==,即x0(3﹣x0)=2y0,则P为二次函数y=x(3﹣x)图象上的点,且该二次函数图象过O,M,则当x=时,二次函数取得最大值,故答案为:.14.在△ABC中,A、B、C所对的边分别为a、b、c,若a2+b2+2c2=8,则△ABC 面积的最大值为.【考点】余弦定理.【分析】由三角形面积公式,同角三角函数基本关系式,余弦定理可求S2=a2b2﹣,进而利用基本不等式可求S2≤﹣=﹣+c,从而利用二次函数的性质可求最值.【解答】解:由三角形面积公式可得:S=absinC,可得:S2=a2b2(1﹣cos2C)=a2b2[1﹣()2],∵a2+b2+2c2=8,∴a2+b2=8﹣2c2,∴S2=a2b2[1﹣()2]=a2b2[1﹣()2]=a2b2﹣≤﹣=﹣+c,当且仅当a=b时等号成立,∴当c=时,﹣ +c取得最大值,S的最大值为.故答案为:.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)证明B1C1∥DE,即可证明B1C1∥平面A1DE;(2)证明DE⊥平面ACC1A1,即可证明平面A1DE⊥平面ACC1A1.【解答】证明:(1)因为D,E分别是AB,AC的中点,所以DE∥BC,…又因为在三棱柱ABC﹣A1B1C1中,B1C1∥BC,所以B1C1∥DE…又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE…(2)在直三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE…又BC⊥AC,DE∥BC,所以DE⊥AC,…又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1…又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1…16.在△ABC中,a,b,c分别为内角A,B,C的对边,且bsin2C=csinB.(1)求角C;(2)若,求sinA的值.【考点】余弦定理;正弦定理.【分析】(1)根据正弦定理化简已知等式得2sinBsinCcosC=sinCsinB,结合sinB >0,sinC>0,可求,结合范围C∈(0,π),可求C的值.(2)由角的范围利用同角三角函数基本关系式可求cos(B﹣)的值,由于A=﹣(B﹣),利用两角差的正弦函数公式即可计算求值得解.【解答】解:(1)由bsin2C=csinB,根据正弦定理,得2sinBsinCcosC=sinCsinB,…因为sinB>0,sinC>0,所以,…又C∈(0,π),所以.…(2)因为,所以,所以,又,所以.…又,即,所以=sin[﹣(B﹣)]…=.…17.在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆(0<b<2)的焦点.(1)求椭圆E的标准方程;(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(﹣1,0),N(1,0),记直线TM,TN的斜率分别为k1,k2,当2m2﹣2k2=1时,求k1•k2的值.【考点】椭圆的简单性质.【分析】(1)椭圆E的焦点在x轴上,圆O:x2+y2=b2经过椭圆E的焦点,所以椭圆的半焦距c=b,所以2b2=4,即b2=2,即可求出椭圆E的方程;(2)求出T的坐标,利用斜率公式,结合条件,即可求k1•k2的值.【解答】解:(1)因0<b<2,所以椭圆E的焦点在x轴上,又圆O:x2+y2=b2经过椭圆E的焦点,所以椭圆的半焦距c=b,…所以2b2=4,即b2=2,所以椭圆E的方程为.…(2)设P(x1,y1),Q(x2,y2),T(x0,y0),联立,消去y,得(1+2k2)x2+4kmx+2m2﹣4=0,所以,又2m2﹣2k2=1,所以x1+x2=,所以,,…则.…18.如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足.(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)【考点】直线和圆的方程的应用.【分析】(1)以点A为坐标原点,AB所在直线为x轴,建立平面直角坐标系.设太阳光线所在直线方程为,利用直线与圆相切,求出直线方程,令x=30,得EG=1.5米<2.5米,即可得出结论;(2)方法一:设太阳光线所在直线方程为,利用直线与圆相切,求出直线方程,令x=30,得h≤25﹣2r,即可求出截面面积最大;方法二:欲使活动中心内部空间尽可能大,则影长EG恰为2.5米,即可求出截面面积最大【解答】解:如图所示,以点A为坐标原点,AB所在直线为x轴,建立平面直角坐标系.(1)因为AB=18,AD=6,所以半圆的圆心为H(9,6),半径r=9.设太阳光线所在直线方程为,即3x+4y﹣4b=0,…则由,解得b=24或(舍).故太阳光线所在直线方程为,…令x=30,得EG=1.5米<2.5米.所以此时能保证上述采光要求…(2)设AD=h米,AB=2r米,则半圆的圆心为H(r,h),半径为r.方法一:设太阳光线所在直线方程为,即3x+4y﹣4b=0,由,解得b=h+2r或b=h﹣2r(舍)…故太阳光线所在直线方程为,令x=30,得,由,得h≤25﹣2r…所以=.当且仅当r=10时取等号.所以当AB=20米且AD=5米时,可使得活动中心的截面面积最大…方法二:欲使活动中心内部空间尽可能大,则影长EG恰为2.5米,则此时点G 为(30,2.5),设过点G的上述太阳光线为l1,则l1所在直线方程为y﹣=﹣(x﹣30),即3x+4y﹣100=0…由直线l1与半圆H相切,得.而点H(r,h)在直线l1的下方,则3r+4h﹣100<0,即,从而h=25﹣2r…又=.当且仅当r=10时取等号.所以当AB=20米且AD=5米时,可使得活动中心的截面面积最大…19.设函数f(x)=lnx,g(x)=ax+﹣3(a∈R).(1)当a=2时,解关于x的方程g(e x)=0(其中e为自然对数的底数);(2)求函数φ(x)=f(x)+g(x)的单调增区间;(3)当a=1时,记h(x)=f(x)•g(x),是否存在整数λ,使得关于x的不等式2λ≥h(x)有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986).【考点】利用导数研究函数的单调性.【分析】(1)当a=2时,求出g(x)=0的解,即可解关于x的方程g(e x)=0(其中e为自然对数的底数);(2)φ(x)=f(x)+g(x)=lnx+ax+﹣3,φ′(x)=,分类讨论,利用导数的正负,求函数φ(x)=f(x)+g(x)的单调增区间;(3)判断h(x)不存在最小值,即可得出结论.【解答】解:(1)当a=2时,g(x)=0,可得x=1,g(e x)=0,可得e x=或e x=1,∴x=﹣ln2或0;(2)φ(x)=f(x)+g(x)=lnx+ax+﹣3,φ′(x)=①a=0,φ′(x)=>0,函数的单调递增区间是(0,+∞);②a=1,φ′(x)=•x>0,函数的单调递增区间是(0,+∞);③0<a <1,x=<0,函数的单调递增区间是(0,+∞);④a >1,x=>0,函数的单调递增区间是(,+∞);⑤a <0,x=>0,函数的单调递增区间是(0,);(3)a=1,h (x )=(x ﹣3)lnx ,h′(x )=lnx ﹣+1,h″(x )=+>0恒成立,∴h′(x )在(0,+∞)上单调递增, ∴存在x 0,h′(x 0)=0,即lnx 0=﹣1+,h (x )在(0,x 0)上单调递减,(x 0,+∞)上单调递增,∴h (x )min =h (x 0)=﹣(x 0+)+6,∵h′(1)<0,h′(2)>0,∴x 0∈(1,2),∴h (x )不存在最小值,∴不存在整数λ,使得关于x 的不等式2λ≥h (x )有解.20.若存在常数k (k ∈N *,k ≥2)、q 、d ,使得无穷数列{a n }满足则称数列{a n }为“段比差数列”,其中常数k 、q 、d 分别叫做段长、段比、段差.设数列{b n }为“段比差数列”.(1)若{b n }的首项、段长、段比、段差分别为1、3、q 、3. ①当q=0时,求b xx ;②当q=1时,设{b n }的前3n 项和为S 3n ,若不等式对n ∈N *恒成立,求实数λ的取值范围;(2)设{b n }为等比数列,且首项为b ,试写出所有满足条件的{b n },并说明理由.【考点】数列的应用;等比数列的性质.【分析】(1)①方法一:由{b n }的首项、段长、段比、段差可得b xx =0×b xx =0,再由b xx =b xx +3,b xx =b xx +3即可;方法二:根据{b n }的首项、段长、段比、段差,⇒b 1=1,b 2=4,b 3=7,b 4=0×b 3=0,b 5=b 4+3=3,b 6=b 5+3=6,b 7=0×b 6=0,…⇒b n }是周期为3的周期数列即可; ②方法一:由{b n }的首项、段长、段比、段差,⇒b 3n +2﹣b 3n ﹣1=(b 3n +1+d )﹣b 3n ﹣1=(qb 3n +d )﹣b 3n ﹣1=[q (b 3n ﹣1+d )+d ]﹣b 3n ﹣1=2d=6,⇒{b 3n ﹣1}是等差数列,又∵b3n+b3n﹣1+b3n=(b3n﹣1﹣d)+b3n﹣1+(b3n﹣1+d)=3b3n﹣1,即可求S3n ﹣2方法二:由{b n}的首项、段长、段比、段差⇒b3n+1=b3n,∴b3n+3﹣b3n=b3n+3﹣=2d=6,∴{b3n}是首项为b3=7、公差为6的等差数列即可,b3n+1(2)方法一:设{b n}的段长、段比、段差分别为k、q、d,⇒等比数列的通项公式有,﹣b km+1=d,即bq km+1﹣bq km=bq km(q﹣1)=d恒成立,①若q=1,当m∈N*时,b km+2则d=0,b n=b;②若q≠1,则,则q km为常数,则q=﹣1,k为偶数,d=﹣2b,;方法二:设{b n}的段长、段比、段差分别为k、q、d,①若k=2,则b1=b,b2=b+d,b3=(b+d)q,b4=(b+d)q+d,由,得b+d=bq;由,得(b+d)q2=(b+d)q+d,求得得d 即可②若k≥3,则b1=b,b2=b+d,b3=b+2d,由,求得得d 即可.【解答】(1)①方法一:∵{b n}的首项、段长、段比、段差分别为1、3、0、3,∴b xx=0×b xx=0,∴b xx=b xx+3=3,∴b xx=b xx+3=6.…方法二:∵{b n}的首项、段长、段比、段差分别为1、3、0、3,∴b1=1,b2=4,b3=7,b4=0×b3=0,b5=b4+3=3,b6=b5+3=6,b7=0×b6=0,…∴当n≥4时,{b n}是周期为3的周期数列.∴b xx=b6=6.…②方法一:∵{b n}的首项、段长、段比、段差分别为1、3、1、3,∴b3n﹣b3n﹣1=(b3n+1+d)﹣b3n﹣1=(qb3n+d)﹣b3n﹣1=[q(b3n﹣1+d)+d]﹣b3n﹣1=2d=6,+2}是以b2=4为首项、6为公差的等差数列,∴{b3n﹣1又∵b3n+b3n﹣1+b3n=(b3n﹣1﹣d)+b3n﹣1+(b3n﹣1+d)=3b3n﹣1,∴S3n=(b1+b2+b3)﹣2+(b4+b5+b6)+…+(b3n﹣2+b3n﹣1+b3n)=,…∵,∴,设,则λ≥(c n)max,又,当n=1时,3n2﹣2n﹣2<0,c1<c2;当n≥2时,3n2﹣2n﹣2>0,c n+1<c n,∴c1<c2>c3>…,∴(c n)max=c2=14,…∴λ≥14,得λ∈[14,+∞).…方法二:∵{b n }的首项、段长、段比、段差分别为1、3、1、3,∴b 3n +1=b 3n ,∴b 3n +3﹣b 3n =b 3n +3﹣b 3n +1=2d=6,∴{b 3n }是首项为b 3=7、公差为6的等差数列, ∴,易知{b n }中删掉{b 3n }的项后按原来的顺序构成一个首项为1公差为3的等差数列,∴,∴,…以下同方法一.(2)方法一:设{b n }的段长、段比、段差分别为k 、q 、d , 则等比数列{b n }的公比为,由等比数列的通项公式有,当m ∈N *时,b km +2﹣b km +1=d ,即bq km +1﹣bq km =bq km (q ﹣1)=d 恒成立,… ①若q=1,则d=0,b n =b ;②若q ≠1,则,则q km 为常数,则q=﹣1,k 为偶数,d=﹣2b ,; 经检验,满足条件的{b n }的通项公式为b n =b 或.… 方法二:设{b n }的段长、段比、段差分别为k 、q 、d , ①若k=2,则b 1=b ,b 2=b +d ,b 3=(b +d )q ,b 4=(b +d )q +d , 由,得b +d=bq ;由,得(b +d )q 2=(b +d )q +d , 联立两式,得或,则b n =b 或,经检验均合题意.… ②若k ≥3,则b 1=b ,b 2=b +d ,b 3=b +2d ,由,得(b +d )2=b (b +2d ),得d=0,则b n =b ,经检验适合题意. 综上①②,满足条件的{b n }的通项公式为b n =b 或.…数学附加题部分(本部分满分0分,考试时间30分钟)[选做题](在21、22、23、24四小题中只能选做2题,每小题0分,计20分)[选修4-1:几何证明选讲]21.如图,AB 是半圆O 的直径,点P 为半圆O 外一点,PA ,PB 分别交半圆O 于点D ,C .若AD=2,PD=4,PC=3,求BD 的长.【考点】与圆有关的比例线段.【分析】由切割线定理得:PD•PA=PC•PB,求出BC,利用勾股定理,求BD的长.【解答】解:由切割线定理得:PD•PA=PC•PB则4×(2+4)=3×(3+BC),解得BC=5,…又因为AB是半圆O的直径,故,…则在三角形PDB中有.…[选修4-2:矩阵与变换]22.设矩阵M=的一个特征值λ对应的特征向量为,求m与λ的值.【考点】特征向量的定义.【分析】推导出,由此能求出结果.【解答】解:∵矩阵M=的一个特征值λ对应的特征向量为,∴,…解得m=0,λ=﹣4.…[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.【考点】简单曲线的极坐标方程.【分析】直线为参数)化为普通方程,圆C的极坐标方程ρ=2cosθ化为直角坐标方程,求出圆C的圆心到直线l的距离,即可求弦AB的长.【解答】解:直线为参数)化为普通方程为4x﹣3y=0,…圆C的极坐标方程ρ=2cosθ化为直角坐标方程为(x﹣1)2+y2=1,…则圆C的圆心到直线l的距离为,…所以.…[选修4-5:不等式选讲]24.若实数x,y,z满足x+2y+z=1,求x2+y2+z2的最小值.【考点】基本不等式.【分析】利用条件x+2y+z=1,构造柯西不等式(x+y+z)2≤(x2+y2+z2)(12+22+12)进行解题即可.【解答】解:由柯西不等式,得(x+2y+z)2≤(12+22+12)•(x2+y2+z2),即,…又因为x+2y+z=1,所以,当且仅当,即时取等号.综上,.…[必做题](第25、26题,每小题0分,计20分.请把答案写在答题纸的指定区域内)25.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).【考点】离散型随机变量的期望与方差.【分析】(1)利用对立事件的概率关系求解;(2)两个班“在一星期的任一天同时上综合实践课”的概率为,一周中5天是5次独立重复试验,服从二项分布.【解答】解:(1)这两个班“在星期一不同时上综合实践课”的概率为.…(2)由题意得,.…所以X的概率分布表为:X012345P…所以,X的数学期望为.…26.设n∈N*,n≥3,k∈N*.(1)求值:k﹣1;①kC n k﹣nC n﹣1②k2C n k﹣n(n﹣1)C n﹣2k﹣2﹣nC n﹣1k﹣1(k≥2);(2)化简:12C n0+22C n1+32C n2+…+(k+1)2C n k+…+(n+1)2C n n.【考点】组合及组合数公式.【分析】(1)利用组合数的计算公式即可得出.(2)方法一:由(1)可知当k≥2时=.代入化简即可得出.方法二:当n≥3时,由二项式定理,有,两边同乘以x,得,两边对x求导,得,两边再同乘以x,得,两边再对x求导,得(1+x)n+n(1+x)n﹣1x+n(n﹣1)(1+x)n﹣2x2+2n(1+x)n ﹣1x=.令x=1,即可得出.【解答】解:(1)①=.…②==.…(2)方法一:由(1)可知当k≥2时=.故==(1+4n)+n(n﹣1)2n﹣2+3n(2n﹣1﹣1)+(2n﹣1﹣n)=2n﹣2(n2+5n+4).…方法二:当n≥3时,由二项式定理,有,两边同乘以x,得,两边对x求导,得,…两边再同乘以x,得,两边再对x求导,得(1+x)n+n(1+x)n﹣1x+n(n﹣1)(1+x)n﹣2x2+2n(1+x)n ﹣1x=.…令x=1,得2n+n2n﹣1+n(n﹣1)2n﹣2+2n2n﹣1=,即=2n﹣2(n2+5n+4).…xx2月1日24926 615E 慞# 35558 8AE6 諦36366 8E0E 踎26989 696D 業h40385 9DC1 鷁o39492 9A44 驄34218 85AA 薪32794 801A 耚31093 7975 祵。
2019一模集合命题不等式专题一、解答题(宝山区一模2)集合U R =,集合{}{}30,10A x x B x x =->=+>,则U B C A =__________. 答案:(]1,3- (虹口区一模2)不等式的解集为________. 【答案】(虹口区一模3)设全集,若,则________. 【答案】(浦东新区一模1) 已知全集R U =,集合(][)12,,=-∞+∞A ,则U=A ______________. 答案:()12,(青浦区一模1)已知集合{1,0,1,2}A =-,(,0)B =-∞,则A B =答案: {1}-(青浦区一模2)写出命题“若22am bm <,则a b <”的逆命题 答案: 若a b <,则22am bm < (青浦区一模3)不等式2433(1)12()2x x x ---<的解集为 答案:(2,3)-(徐汇区一模2)已知全集U R =,集合{}2|,,0A y y x x R x ==∈≠,则U C A =_________. 答案:(],0-∞(徐汇区一模3)若实数,x y 满足1xy =,则222x y +的最小值为_________.答案:(杨浦区一模1)设全集{1,2,3,4,5}U =,若集合{3,4,5}A =,则UA =21xx >-1,12⎛⎫⎪⎝⎭U R ={2,1,0,1,2}A =--{}2|log (1)B x y x ==-()U A C B ={}1,2答案: {1,2}(杨浦区一模5)若实数x 、y 满足221x y +=,则xy 的取值范围是 答案: 11[,]22-(杨浦区一模11)当0x a <<时,不等式22112()x a x +≥-恒成立,则实数a 的最大值为 答案: 2(长宁区一模1)已知集合{1,2,3,4}A =,{2,4,6}B =,则A B =答案:}6,4,3,2,1{(长宁区一模12) 已知1a 、2a 、3a 与1b 、2b 、3b 是6个不同的实数,若关于x 的方程123123||||||||||||x a x a x a x b x b x b -+-+-=-+-+-的解集A 是有限集,则集合A 中最多有 个元素 答案:3(崇明区一模2)已知集合{}{}|12,1,0,1,2,3A x x B =-<<=-,则=A B ⋂ . (松江区一模1) 设集合{|1}A x x =>,{|0}3xB x x =<-,则A B = 答案: (1,3)(虹口区一模13)已知,则“”是“”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】A(宝山区一模14)“,22x ππ⎡⎤∈-⎢⎥⎣⎦”是“()sin arcsin x x =”的( )条件..A 充分非必要 .B 必要非充分 .C 充要 .D 既非充分也非必要(浦东新区一模13) “14<a ”是“一元二次方程20-+=x x a 有实数解”的( ) (A )充分非必要条件 (B )充分必要条件 (C )必要非充分条件 (D )非充分非必要条件x R ∈1233x -<1x <答案: A(长宁区一模13)已知x ∈R ,则“0x ≥”是“3x >”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件 答案:B(崇明区一模13)若b a <<0,则下列不等式恒成立的是( ).A ba 11> .B b a >- .C 22b a > .D 33b a < (崇明区一模14 )“2<p ”是“关于x 的实系数方程012=++px x 有虚数根”的( ).A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件(松江区一模14)若0a >,0b >,则x y a b x y a b +>+⎧⎨⋅>⋅⎩是x ay b>⎧⎨>⎩的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分又非必要三、解答题(长宁区一模17) 求下列不等式的解集: (1)|23|5x -<;(2)442120x x-⋅->答案:(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)由5|32|<-x 得 5325<-<-x ,……………………4分 解得 41<<-x .所以原不等式的解集是 )4,1(-.…………………………………6分 (2)原不等式可化为()()22260x x +->, ……………………4分 因为220x+>,所以62>x, ……………………………………5分 解得 6log 2>x . ………………………………………7分所以原不等式的解集是()2log 6,+∞. ……………………………8分2019一模函数专题一、填空题(宝山区一模4)方程()ln 9310x x +-=的根为__________. 答案:0x =(宝山区一模8)函数()y f x =与ln y x =的图像关于直线y x =-对称,则()f x =__________. 答案:()x f x e -=-(宝山区一模10)将函数y =的图像绕y 轴旋转一周所得的几何容器的容积是__________. 答案:23π(虹口区一模4)设常数,若函数的反函数的图像经过点,则__________. 【答案】(虹口区一模6)函数的值域为__________.【答案】(虹口区一模12)若直线与曲线恰有两个公共点,则实数的取值范围为________. 【答案】(浦东新区一模5)若函数()=y f x 的图像恒过点01(,),则函数13()-=+y f x 的图像一定经过定点____. 答案:()13,(浦东新区一模10)已知函数()2||1=+-f x x x a 有三个不同的零点,则实数a 的取值范围为_____.答案:(,-∞a R ∈3()log ()f x x a =+()2,1a =88()([2,8])f x x x x=+∈y kx =2|log (2)|2|1|x y x +=--k (,0]{1}-∞(浦东新区一模12)已知函数()2,24161,22-⎧≥⎪+⎪=⎨⎛⎫⎪< ⎪⎪⎝⎭⎩x ax x x f x x ,若对任意的[)12,∈+∞x ,都存在唯一的()2,2∈-∞x ,满足()()12=f x f x ,则实数a 的取值范围为_________. 答案:[)2,6∈-a(普陀区一模1)函数()2f x x=的定义城为 . 答案: (,0)(0,1]-∞(普陀区一模3)设11{,,1,2,3}32α∈--,若()f x x α=为偶函数,则α= . 答案: 2-(普陀区一模12)设a 为常数,记函数()1log 2axf x a x=+- (0a >且1,0a x a ≠<< )的反函数为()1f x -,则1121f a -⎛⎫+⎪+⎝⎭111232++=212121a f f f a a a ---⎛⎫⎛⎫⎛⎫+⋅⋅⋅ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭.答案:2a(青浦区一模11)已知函数()2f x +=,当(0,1]x ∈时,2()f x x =,若在区间[1,1]-内()()(1)g x f x t x =-+有两个不同的零点,则实数t 的取值范围是(徐汇区一模9)已知函数()f x 是以2为周期的偶函数,当01x ≤≤时,()lg(1)f x x =+,令函数[]()()()1,2g x f x x =∈,则()g x 的反函数为_________. 答案:()[]1310,0,lg2x gx x -=-∈(徐汇区一模11)已知R λ∈,函数24,()43,x x f x x x x λλ-≥⎧=⎨-+<⎩,若函数()f x 恰有2个零点,则λ的取值范围是_________. 答案:(]()1,34+∞,(杨浦区一模8)若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+,且B A ⊆,则实数a 的取值范围为答案: [1,0]-(长宁区一模6) 已知幂函数()a f x x =的图像过点2,则()f x 的定义域为 答案:),0(+∞(长宁区一模8) 已知函数()log a f x x =和g()(2)x k x =-的图像如图所示,则不等式()0()f xg x ≥的解集是答案:)2,1[(崇明区一模9)若函数()1log 2+-=x ax x f 的反函数的图像过点()73,-,则=a .(崇明区一模11)设()x f 是定义在R 上的以2为周期的偶函数,在区间[]10,上单调递减,且满足()()22,1==ππf f ,则不等式组()⎩⎨⎧≤≤≤≤2121x f x 的解集为 .(松江区一模3)已知函数()y f x =的图像与函数xy a =(0,1)a a >≠的图像关于直线y x =对称,且点(4,2)P 在函数()y f x =的图像上,则实数a =答案:2(松江区一模9)若|lg(1)|0()sin 0x x f x x x ->⎧=⎨≤⎩,则()y f x =图像上关于原点O 对称的点共有 对 答案: 4(松江区一模12)已知函数()f x 的定义域为R ,且()()1f x f x ⋅-=和(1)(1)4f x f x +⋅-=对任意的x ∈R 都成立,若当[0,1]x ∈时,()f x 的值域为[1,2],则当[100,100]x ∈-时,函数()f x 的值域为 答案:二、选择题(虹口区一模15)已知函数,,若函数恰有两个零点,则实数的取值范围为( ) A.B.C.D.【答案】B(宝山区一模15)关于函数()232f x x =-的下列判断,其中正确的是( ) .A 函数的图像是轴对称图形 .B 函数的图像是中心对称图形 .C 函数有最大值 .D 当0x >时,()y f x =是减函数答案:A(普陀区一模16)设()f x 是定义在R 上的周期为4的函数,且()2sin 2,012log ,14x x f x x x π≤≤⎧=⎨<<⎩,记()()g x f x a =-,若102a <<,则函数()g x 在区间[]-45,上零点的个数是( ) .A 5 .B 6 .C 7 .D 8 答案:D(青浦区一模16)记号[]x 表示不超过实数x的最大整数,若2()[]30x f x =+,则(1)(2)(3)(29)(30)f f f f f +++⋅⋅⋅++的值为( )A. 899B. 900C. 901D. 902(徐汇区一模15)对于函数()y f x =,如果其图像上的任意一点都在平面区域{}(,)|()()0x y y x y x -+≤内,则称函数()f x 为“蝶型函数”,已知函数:①sin y x =;②y = )100100[2,2]-2()1f x ax x =-+1, 1(), 1 1 1, 1x g x x x x -≤-⎧⎪=-<<⎨⎪≥⎩()()y f x g x =-a (0,)+∞(,0)(0,1)-∞1(,)(1,)2-∞-+∞(,0)(0,2)-∞.A ①、②均不是“蝶型函数” .B ①、②均是“蝶型函数”.C ①是“蝶型函数”;②不是“蝶型函数 .D ①不是“蝶型函数”;②是“蝶型函数” 答案:B(杨浦区一模16)已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( )A. [0,4)B. [1,4)-C. [3,5]-D. [0,7) 答案:A(杨浦区一模15)已知x x f θsin log )(=,(0,)2πθ∈,设sin cos ()2a f θθ+=,b f =,sin 2()sin cos c f θθθ=+,则a 、b 、c 的大小关系是( )A. a c b ≤≤B. b c a ≤≤C. c b a ≤≤D. a b c ≤≤ 答案:D(杨浦区一模13)下列函数中既是奇函数,又在区间[1,1]-上单调递减的是( ) A. ()arcsin f x x = B. ()lg ||f x x = C. ()f x x =- D. ()cos f x x = 答案: C(长宁区一模16)某位喜欢思考的同学在学习函数的性质时提出了如下两个命题: 已知函数()y f x =的定义域为D ,12,x x D ∈,① 若当12()()0f x f x +=时,都有120x x +=,则函数()y f x =是D 上的奇函数; ② 若当12()()f x f x <时,都有12x x <,则函数()y f x =是D 上的增函数. 下列判断正确的是( )A. ①和②都是真命题B. ①是真命题,②是假命题C. ①和②都是假命题D. ①是假命题,②是真命题 答案:C(崇明区一模16)函数()(),,22+-==x x x g x x f 若存在,,,,,⎥⎦⎤⎢⎣⎡∈⋯29021n x x x 使得 ()()()()()()()(),n n n n x f x g x g x g x g x f x f x f +⋯++=++⋯++--121121则n 的最大值为( ).A 11 .B 13 .C 14 .D 18三、解答题(宝山区一模19)某温室大棚规定:一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工人作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y (单位:度)与时间t (单位:小时,[]20,0∈t )近似地满足函数213++-=t bt y 关系,其中,b 为大棚内一天中保温时段的通风量.(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1C ︒);(2)若要保持大棚一天中保温时段的最低温度不小于17C ︒.求大棚一天中保温时段通风最的最小值. 答案:(1)203(2)256(虹口区一模18)已知函数是定义在上的奇函数. (1)求实数的值及函数的值域;(2)若不等式在上恒成立,求实数的取值范围.【解析】(1)由解得,反之时, ,符合题意,故据此,,即值域为 ⑵在显然是单调增函数,,所以,故,令,则随的增大而增大, 最大值为,所求范围是16()1x f x a a+=-+(0,1)a a >≠R a ()f x ()33x t f x ⋅≥-[1,2]x ∈t (0)0f =3a =3a =16()133x f x +=-+23113131x x x -=-=++3131()()3131x x x x f x f x -----==-=-++3a =1()301()x f x f x +=>-()(1,1)f x ∈-(1,1)-32()131f x =-+[1,2]x ∈13[,]25x ∈31(33)31x xx t +≥-⋅-max31(33)31x x x t ⎡⎤+≥-⋅⎢⎥-⎣⎦31,[2,8]xm m -=∈31(33)(2)31x xx m +-⋅--24m m m m+⋅=-m 152∴15[,)2+∞(浦东新区一模19)(本小题满分14分,第1小题满分6分,第2小题满分8分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:①3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值.....E (单位:exp )与游玩时间t (小时)满足关系式:22016E t t a =++;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验....值.不变); ③超过5小时为不健康时间,累积经验值.....开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.(1)当1a =时,写出累积经验值.....E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累积经验值.....; (2)该游戏厂商把累积经验值.....E 与游玩时间t 的比值称为“玩家愉悦指数”,记作()H t ;若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.解:答案:(1)22016,03()85,3533550,5t t t E f t t t t ⎧++<≤⎪==<≤⎨⎪->⎩ (写对一段得1分,共3分)6t =时,(6)35E = (6分) (2)03t <≤时,16()=20aH t t t++ (8分) 16()244≥⇒+≥aH t t t①0319[,]4164a ⎧<≤⎪⇒∈⎨≥⎪⎩ (10分) ②39(,)1616343a a ⎧>⎪⇒∈+∞⎨+≥⎪⎩ (12分)综上,1[,)4a ∈+∞ (14分)(普陀区一模21)已知函数()2xf x =(x ∈R ),记()()()g x f x f x =--.(1)解不等式:(2)()6f x f x -≤;(2)设k 为实数,若存在实数0(1,2]x ∈,使得200(2)()1g x k g x =⋅-成立,求k 取值范围;(3)记()(22)()h x f x a f x b =++⋅+(其中a 、b 均为实数),若对于任意[0,1]x ∈,均 有1|()|2h x ≤,求a 、b 的值. 答案:(1)2(,log 3]-∞;(2)27119[,)2259;(3)12a =-,172b =.(青浦区一模19)对于在某个区间[,)a +∞上有意义的函数()f x ,如果存在一次函数()g x kx b =+使得对于任意的[,)x a ∈+∞,有|()()|1f x g x -≤恒成立,则称函数()g x 是函数()f x 在区间[,)a +∞上的弱渐近函数. (1)若函数()3g x x =是函数()3mf x x x=+在区间[4,)+∞上的弱渐近函数,求实数m 的取值范围;(2)证明:函数()2g x x =是函数()f x =[2,)+∞上的弱渐近函数. 答案:(1)[4,4]-;(2)略.(徐汇区一模18)已知函数()22ax f x x -=+,其中a R ∈. (1)解关于x 的不等式()1f x ≤-;(2)求a 的取值范围,使()f x 在区间()0+∞,上是单调减函数.答案:(1)1,2;1,20;1,02a x a x a x x =-≠->--<≤<-≥<-或 (2)1a <-(杨浦区一模19) 上海某工厂以x 千克/小时的速度匀速生产某种产品,每一小时可获得的利润是3(51)x x+-元,其中110x ≤≤.(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.答案:(1)[3,10];(2)6x =,最大值为4575.(长宁区一模20)已知函数2()1f x x mx =-++,()2sin()6g x x πω=+.(1)若函数()2y f x x =+为偶函数,求实数m 的值; (2)若0ω>,2()()3g x g π≤,且函数()g x 在[0,]2π上是单调函数,求实数ω的值; (3)若1ω=,若当1[1,2]x ∈时,总有2[0,]x π∈,使得21()()g x f x =,求实数m 的取值 范围.答案:(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)解:(1)设()()2h x f x x =+,则()()221h x x m x =-+++由于()h x 是偶函数,所以对任意R ∈x ,()()h x h x -=成立.……2分 即 1)2(1))(2()(22+++-=+-++--x m x x m x 恒成立.即 0)2(2=+x m 恒成立, …………………………………3分 所以 02=+m ,解得 2-=m .所以所求实数m 的值是 2-=m . …………………………………4分 (2)由()2()3g x g π≤, 得22,362k k Z πππωπ⋅+=+∈ ,即132k ω=+()k Z ∈ ………2分 当[0,]2x π∈时,[,]6626x ππωππω+∈+()0ω>,因为sin y x =在区间[,]62ππ的单调递增, 所以262ωπππ+≤,再由题设得203ω<<…………………………5分 所以12ω=. ……………………………………6分 (3)设函数()f x 在[]1,2上的值域为A ,()g x 在[]0,π上的值域为B , 由题意和子集的定义,得A B ⊆.………………………………………2分 当],0[π∈x 时,]67,6[6πππ∈+x ,]2,1[)(-∈x g . ………………3分 所以当[]1,2x ∈时,不等式2112x mx -≤-++≤恒成立, 由[]1,1,2m x x x≤+∈恒成立,得2m ≤, 由[]2,1,2m x x x≥-∈恒成立,得1m ≥, 综上,实数m 的取值范围为[]1,2 . ………………6分(崇明区一模19)(本题满分14分,本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分)某创业投资公司拟投资开发某种新能源产品,估计能活得25万元1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为()y f x =时,则公司对函数模型的基本要求是:当[]25,1600x ∈时,①()f x 是增函数;②()75f x ≤恒成立;(3)()5xf x ≤恒成立.) (1) 判断函数()1030xf x =+是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数()()51g x a =≥符合公司奖励方案函数模型要求,求实数a 的取值范围. (松江区一模18)已知函数2()21x f x a =-+(常数a ∈R ) (1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,若对任意的[2,3]x ∈,都有()2x mf x ≥成立,求m 的最大值. 答案:解:(1)若)(x f 为奇函数,必有(0)10f a =-= 得1a =,……………………2分当1a =时,221()12121x x x f x -=-=++,2112()()2121x xx x f x f x -----===-++∴当且仅当1a =时,)(x f 为奇函数 ………………………4分又2(1)3f a =-,4(1)3f a -=-,∴对任意实数a ,都有(1)(1)f f -≠∴)(x f 不可能是偶函数 ………………………6分(2)由条件可得:222()2(1)(21)32121x x x x x m f x ≤⋅=-=++-++恒成立, ……8分记21x t =+,则由[2,3]x ∈ 得[5,9]t ∈, ………………………10分此时函数2()3g t t t=+-在[5,9]t ∈上单调递增, ………………………12分所以()g t 的最小值是12(5)5g =, ………………………13分所以125m ≤ ,即m 的最大值是125 ………………………14分2019一模三角专题一、填空题(宝山区一模1)函数()()sin 2f x x =-的最小正周期为___________. 答案:π(宝山区一模9)已知()()2,3,1,4A B ,且()1sin ,cos ,,,222AB x y x y ππ⎛⎫=∈- ⎪⎝⎭,则x y +=__________. 答案:62or ππ-(宝山区一模11)章老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知45b A =∠=︒,求边c 。
2019学年长宁区第一学期高三数学质量抽测试卷(理)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸的相应编号空格内填写结果,每题填写对得4分,否则一律得零分. 1. 不等式1021xx -≥-的解集是__________. 2. 行列式101213131---中3-的代数余子式的值为__________. 3. 从总体中抽取一个样本是5,6,7,8,9,则该样本的方差是__________.4. 等比数列{}n a 的首项与公比分别是复数123i +(i 是虚数单位)的实部与虚部,则数列{}n a 的各项和的值为__________.5. 随机抽取10个同学中至少有2个同学在同一月份生日的概率为__________(精确到0.001). 6. 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,测得15,30,30BCD BDC CD ∠=︒∠=︒=米,并在点C 测得塔顶A 的仰角为60︒,则塔高AB =__________.7. 某程序框图如图所示,该程序运行后输出的n 值是8,则从集合{}0,1,2,3中取所有满足条件的0S 的值为__________.8. 圆锥和圆柱的底面半径和高都是R ,则圆锥的全面积与圆柱的全面积之比为__________. 9. 设n A 为()11+x n +的展开式中含1n x-项的系数,n B 为()11+x n -的展开式中二项式系数的和()*n N∈,则能使n n A B ≥成立的n 的最大值是__________.10.已知()y f x =是偶函数,()y g x =是奇函数,他们的定义域均为[]3,3-,且它们在[]0,3x ∈上的图像如图所示,则不等式()()0f x g x <的解集是__________. 11.等比数列{}n a 的前项和n S ,已知123,2,3S S S 成等差数列,则{}n a 公比为__________.12.10,0,23x y x y >>+=,则11x y +的最小值是__________.13.已知函数()f x 的定义域为R ,且对任意x Z ∈,都有()()()11f x f x f x =-++.若()()12,13f f-==,则()()20122012f f +-=__________. 14.把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{}n a ,若2011n a =,则n =__________.1 1234 2 456789 5 7 9 10 11 12 13 14 15 16 10 12 14 16 17 18 19 20 21 22 23 24 25 17 19 21 23 25 26 27 28 29 30 31 32 33 34 35 36 26 28 30 32 34 36图甲 图乙二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分. 15. 下列命题正确的是 ( )A .若x AB ∈⋃,则x A ∈且x B ∈B .ABC ∆中,sin sin A B >是A B >的充要条件 C. 若a b a c ⋅=⋅,则b c =D. 命题“若220x x -=,则2x =”的否命题是“若2x ≠,则220x x -≠”16.已知平面向量()()1,3,4,2a b =-=-,a b λ+与a 垂直,则λ是 ( ) A . 1 B. 2 C. -2 D. -1① 三点确定一个平面;② 若一条直线垂直与平面内的无数条直线,则该直线与平面垂直; ③ 同时垂直与一条直线的两条直线平行; ④ 底面边长为212正确的个数为 ( ) A . 0 B. 1 C. 2 D. 318.已知()()0,1x f x a a a =>≠,()g x 为()f x 的反函数,若()()220f g -⋅<,那么()f x 与()g x 在同一坐标系内的图像可能是 ( )三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸的相应编号规定区域内写出必须的步骤. 19. (本题满分12分)设1i i+(其中i 是虚数单位)是实系数方程220x mx n -+=的一个根,求m ni +的值.20.(本大题满分12分)本题共有2个小题,第1小题满分8分,第2小题满分4分.在正四棱柱1111ABCD A B C D -中,一直底面ABCD 的边长为2,点P 是1CC 的中点,直线AP与平面11BCC B 成30︒角.(1)求异面直线1BC 和AP 所成角的大小. (结果用反三角函数值表示); (2)求点C 到平面1BC D 的距离. P21.(本大题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知α为锐角,且tan 1α=.(1)设(),1,2tan ,sin(2)4m x n παα⎛⎫==+ ⎪⎝⎭,若m n ⊥,求x 的值; (2)在ABC ∆中,若2,,23A C BC πα∠=∠==,求ABC ∆的面积.22. (本小题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设函数()()()101x x f x a k a a a -=-->≠且是定义域为R 的奇函数. (1)求k 值;(2)若()10f <,试判断函数单调性并求使不等式()()240f x tx f x ++-<恒成立的的取值范围; (3)若()312f =,且()()222x xg x a a mf x -=+-,在[)1,+∞上的最小值为2-,求m 的值.23. (本小题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对数列{}n a 和{}n b ,若对任意正整数n ,恒有n n b a ≤,则称数列{}n b 是数列{}n a 的“下界数列”.(1)设数列21n a n =+,请写出一个公比不为1的等比数列{}n b ,使数列{}n b 是数列{}n a 的“下界数列”; (2)设数列222310,27n n n a n n b n +=-+=-,求证数列{}n b 是数列{}n a 的“下界数列”;(3)设数列21n a n =,*7,1,77,21n n b n N n n n =⎧⎪=∈⎨-≥⎪-⎩,构造 ()()()()()()2312111,111n n n n T a a a P b b b =---=++++++,求使n n T kP ≤对*2,n n N ≥∈恒成立k 的最小值.。
长宁区2018学年第一学期高三数学教学质量检测试卷考试注意:1.答题前,务必在答题纸上将姓名、学校班级等信息填写清楚,并贴好条形码;2. 本试卷共有21题,满分150分,考试时间120分钟.一、填空题(本大题有12题,满分54分,第1-6题每小题4分,第7-12题每小题5分)1、已知集合A={1,2,3,4},B={2,4,6},则A ∪B=2、已知211-x =3,则x= 3、二项式6)1(xx +的展开式中,常数项为 (结果用数值表示) 4、已知向量)2,1(),,3(-==m ,若向量∥,则实数m=5、若圆锥的侧面面积为2π,底面面积为π,则该圆锥的体积为6、已知幂函数x a x f =)(的图像经过点)22,2(,则)(x f 的定义域为 7、已知角),2(ππα∈,且2tan -=α,则)sin(απ-=8、已知函数x x f a log )(=和)2()(-=x k x g 的图像如右图所示,则不等式0)()(≥x g x f 的解集是9、如图,某学生社团在校园内测量远处某栋楼CD 的高度,D 为楼顶,线段AB 的长度为600m ,在A 处测得∠DAB=30°,在B 处测得∠DBA=105°,且此时看楼顶D 的仰角∠DBC=30°。
已知楼底C 和A 、B 在同一水平面上,则此楼高度CD= m (精确到1m ).10、若甲乙两位同学随机地从6门课程中选修3门,则两人选修的课程中恰有1门相同的概率是11、已知数列}{n a 的前n 项和为n S ,且n n n a a 211=++,若数列}{n S 收敛于常数A ,则首项1a 取值的集合为12、已知321,,a a a 与321,,b b b 是6个不同的实数,若方程||||||||||||321321b x b x b x a x a x a x -+-+-=-+-+-的解集A 是有限集,则集合A 中最多有 个元素.二、选择题(本大题共有4个小题,满分20分,每小题5分)13、已知R x ∈,则“0≥x ”是“3>x ”的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分又非必要条件14、有一批种子,对于1颗种子来说,它可能1天发芽,也可能2天发芽,……,下表是发芽天数的种子数的记录:统计每个种子发芽天数得到一组数据,则这组数据的中位数是( )(A )2 (B )3 (C )3.5 (D )15、已知向量a 和b 的夹角为3π,且3||,2||==,则=+-)2)(2(( ) (A )-10 (B )-7 (C )-4 (D )-116、某位喜欢思考的同学在学习函数的性质时提出了如下两个命题:已知函数)(x f y =的定义域为D ,D x x ∈21、.①若当0)()(21=+x f x f 时,都有021=+x x ,则函数)(x f y =是D 上的奇函数; ②若当)()(21x f x f <时,都有21x x <,则函数)(x f y =是D 上的增函数.下列判断正确的是( )(A )①和②都是真命题 (B )①是真命题,②是假命题(C )①和②都是假命题 (D )①是假命题,②是真命题三、解答题(本大题共有5小题,满分76分)17、(本题满分14分,第1小题6分,第2小题8分)求下列不等式的解集:(1)5|32|<-x (2)012244>-⋅-x x18、(本题满分14分,第1小题6分,第2小题8分)《九章算术》中,将地面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.首届中国国际进口博览会的某展馆顶棚一角的钢结构可以抽象为空间图形阳马,如图所示,在阳马P-ABCD 中,PD ⊥底面ABCD.(1)已知AD=CD=4m ,斜梁PB 与底面ABCD 所成角为15°,求立柱PD 的长(精确到0.01m );(2)证明:四面体PDBC 为鳖臑.19、(本题满分14分,第1小题6分,第2小题8分)已知△ABC 得三个内角A 、B 、C 所对应的边分别为a 、b 、c ,复数B i A z bi a z cos cos ,21+=+=(其中i 是虚数单位),且i z z 321=⋅. (1)求证:c bcoaA B a =+cos ,并求边长c 的值;(2)判断△ABC 的形状,并求当3=b 时,角A 的大小.20、(本题满分16分,第1小题4分,第2小题6分,第3小题6分) 已知函数)6sin(2)(,1)(2πω+=++-=x x g mx x x f .(1)若函数x x f y 2)(+=为偶函数,求实数m 的值;(2)若0>ω,)32()(πg x g ≤,且函数)(x g 在]2,0[π上单调,求实数ω的值; (3)令1=ω,若当]2,1[1∈x 时,总有],0[2π∈x ,使得)()(12x f x g =,求实数m 取值范围.21、(本题满分18分,第1小题4分,第2小题6分,第3小题8分)已知数列}{n a 的前n 项和为n S ,且a a a ==21,1.(1)若数列}{n a 是等差数列,且158=a ,求实数a 的值;(2)若数列}{n a 满足)(2*2N n a a n n ∈=-+,且101919a S =,求证:数列}{n a 是等差数列;(3)设数列}{n a 是等比数列,试探究当正实数a 满足市民条件时,数列}{n a 具有如下性质M :对于任意的)(2*N n n ∈≥,都存在*N m ∈,使得数列0))((1<--+n m n m a S a S ,写出你的探究过程,并写出满足条件的正实数a 的集合.。
上海市长宁区2019-2020学年高考数学一模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( ) A .40243B .70243C .80243D .38243【答案】C 【解析】 【分析】先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果. 【详解】从6个球中摸出2个,共有2615C =种结果,两个球的号码之和是3的倍数,共有(1,2),(1,5),(2,4),(3,6),(4,5)∴摸一次中奖的概率是51153=, 5个人摸奖,相当于发生5次试验,且每一次发生的概率是13, ∴有5人参与摸奖,恰好有2人获奖的概率是35222180()()33243C ⋅⋅=, 故选:C . 【点睛】本题主要考查了n 次独立重复试验中恰好发生k 次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.22,SA 是一条母线,P 点是底面圆周上一点,则P 点到SA 所在直线的距离的最大值是( )A .3B .3C .3D .4【答案】C 【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解P 的位置,推出结果即可.2,SA 是一条母线,P 点是底面圆周上一点,P 在底面的射影为O ;90ASQ ∠>︒,过Q 作QT SA ⊥于T ,则QT QS <,在底面圆周,选择P ,使得90PSA ∠=︒,则P 到SA 的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.3.已知数列{}n a 的前n 项和为n S ,且()()()212*111N ()n n n S S S n ++++=+∈,121,2a a ==,则n S =( )A .()12n n + B .12n + C .21n - D .121n ++【答案】C 【解析】 【分析】根据已知条件判断出数列{}1n S +是等比数列,求得其通项公式,由此求得n S . 【详解】由于()()()212*111N ()n n n S S S n ++++=+∈,所以数列{}1n S +是等比数列,其首项为11112S a +=+=,第二项为212114S a a +=++=,所以公比为422=.所以12n n S +=,所以21n n S =-. 故选:C 【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题. 4.已知数列{}n a 对任意的*n N ∈有111(1)n n a a n n +=-++成立,若11a =,则10a 等于( )A .10110B .9110C .11111D .12211【答案】B 【解析】观察已知条件,对111(1)n n a a n n +=-++进行化简,运用累加法和裂项法求出结果.【详解】 已知111(1)n n a a n n +=-++,则1111111()11()(1)11n n a a n n n n n n +--+=--+=--+++=,所以有21111()12a a ---=,32111()23a a ---=,43111()34a a ---=,L109111()910a a ---=,两边同时相加得10119(1)10a a ---=,又因为11a =,所以101919(11)1010a --==+.故选:B 【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如1n(n 1)+时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.5.已知等比数列{}n a 的各项均为正数,设其前n 项和n S ,若14+=nn n a a (n *∈N ),则5S =( )A .30 B.C.D .62【答案】B 【解析】 【分析】根据14+=nn n a a ,分别令1,2n =,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n 项和公式进行求解即可. 【详解】设等比数列{}n a 的公比为q ,由题意可知中:10,0a q >>.由14+=nn n a a ,分别令1,2n =,可得124a a =、2316a a =,由等比数列的通项公式可得:1112114162a a q a a q a q q ⎧⋅⋅=⎧=⎪⇒⎨⎨⋅⋅⋅==⎪⎩⎩因此552)12S -==-故选:B 【点睛】本题考查了等比数列的通项公式和前n 项和公式的应用,考查了数学运算能力.A .-2B .2C .4D .7【答案】B 【解析】 【分析】在等差数列中由等差数列公式与下标和的性质求得3a ,再由等差数列通项公式求得公差. 【详解】在等差数列{}n a 的前n 项和为n S ,则()155********a a S a a +===⇒=则3123272a a d d d =+=+=⇒= 故选:B 【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.7.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1 B .2 C .3 D .4【答案】D 【解析】 【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >, 则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.8.已知集合{|A x y ==,2{|}10B x x x =-+≤,则A B I =( )A .[12]-, B .[1-C .(1-D .⎡⎣【答案】C计算2,2A ⎡⎤=-⎣⎦,(]1,2B =-,再计算交集得到答案.【详解】{}22|2,2A x y x ⎡⎤=-=-⎣=⎦,(]2{|},1012x x B x -=-+=≤,故1(]2A B -=I ,. 故选:C . 【点睛】本题考查了交集运算,意在考查学生的计算能力.9.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( ) A .多1斤 B .少1斤C .多13斤 D .少13斤 【答案】C 【解析】设这十等人所得黄金的重量从大到小依次组成等差数列{}n a , 则123891043a a a a a a ++=++=,, 由等差数列的性质得2929441,1,1333a a a a =∴-=-== , 故选C 10.函数2sin 1x xy x +=+的部分图象大致为( )A .B .C .D .【答案】B 【解析】 【分析】图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。
2019学年第一学期高三数学教学质量检测试卷考生注意:1.答题前,务必在答题纸上将姓名、学校、班级等信息填写清楚,并贴好条形码.2.解答试卷必须在答题纸规定的相应位置书写,超出答题纸规定位置或写在试卷、草稿纸上的答案一律不予评分.3.本试卷共有21道试题,满分150分,考试时间120分钟.一.填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1.已知集合{}1,2,3,4,5A =,{}2,4,6,8B =,则AB =_______.2. 方程23x=的解为_______. 3.行列式2112-的值为_______.4. 计算2lim1n nn →∞=+_______.5.若圆锥的侧面面积为π2,底面面积为π,则该圆锥的母线长为_______.6. 已知向量1(,22AB =,31(,)22AC =,则BAC ∠=_______. 7. 2位女生3位男生排成一排,则2位女生不相邻的排法共有_______种.8. 已知点()2,y -在角α终边上,且()tan πα-=sin α=_______.9. 近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数方式都使用过的概率为_______.10. 已知非零向量a 、b 、c 两两不平行,且()//a b c +,()//b a c +,设c xa yb =+,,x y ∈R ,则2x y +=_______.11. 已知数列{}n a 满足:11a =,{}112,,,n n n a a a a a +-∈⋅⋅⋅(*n ∈N ),记数列{}n a 的前n 项和为n S .若对所有满足条件的{}n a ,10S 的最大值为M 、最小值为m ,则M m +=_______.12. 已知函数()1f x x a x=++,若对任意实数a ,关于x 的不等式()f x m ≥在区间1[,3]2上总有解,则实数m 的取值范围为_______. 二.选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.已知R ∈x ,则“0x > ”是“1x > ”的 ( ).A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 14. 下列函数中,值域为()0,+∞的是( ).A.2xy = B.12y x = C.ln y x = D.cos y x =15. 已知正方体1111ABCD A B C D -,点P 是棱1CC 的中点,设直线AB 为a ,直线11A D 为b .对于下列两个命题:①过点P 有且只有一条直线l 与a 、b 都相交;②过点P 有且只有一条直线l 与a 、b 都成45角.以下判断正确的是( ). A.①为真命题,②为真命题; B.①为真命题,②为假命题;C.①为假命题,②为真命题;D.①为假命题,②为假命题.16. 某港口某天0时至24时的水深y (米)随时间x (时)变化曲线近似满足如下函数模型:0.5sin() 3.24(06)y x πωπω=++>.若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为( ). A .16时 B .17时 C .18时 D .19时三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤. 17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,底面为矩形的直棱柱1111ABCD A B C D -满足:14AA =,3AD =,2CD =.(1)求直线1A C 与平面11AA D D 所成的角θ的大小; (2)设M 、N 分别为棱1BB 、CD 上的动点, 求证:三棱锥1N A AM -的体积V 为定值,并求出该值.ABCD1A1B1C1DMNDB 118.(本题满分14分,第1小题满分6分,第2小题满分8分)在复平面内复数1z 、2z 所对应的点为1Z 、2Z ,O 为坐标原点,i 是虚数单位. (1)112i z =+,234i z =-,计算12z z ⋅与12OZ OZ ⋅;(2)设1i z a b =+,2i z c d =+(,,,a b c d ∈R ),求证:2121OZ OZ z z ⋅≤⋅,并指出向量1OZ 、2OZ 满足什么条件时该不等式取等号.19.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,某城市有一矩形街心广场ABCD ,如图. 其中4AB =百米,3BC =百米.现将在其内部挖掘一个三角形水池DMN 种植荷花,其中点M 在BC 边上,点N 在AB 边上,要求4MDN π∠=.(1)若2AN CM ==百米,判断DMN ∆是否符合要求,并说明理由;(2)设CDM θ∠=,写出DMN ∆面积的S 关于θ的表达式,并求S 的最小值.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知数列{}n a 各项均为正数,n S 为其前n 项的和,且2,,n n n a S a (*N n ∈)成等差数列.(1)写出1a 、2a 、3a 的值,并猜想数列{}n a 的通项公式n a ; (2)证明(1)中的猜想;(3)设()10n n b ta t =->,n T 为数列{}n b 的前n 项和.若对于任意*n N ∈,都有{}*n m T b m N ∈∈, 求实数t 的值.AB CDMN21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知函数()||f x x x a =-,其中a 为常数. (1)当1a =时,解不等式()2f x <;(2)已知()g x 是以2为周期的偶函数,且当10≤≤x 时,有()()g x f x =. 若0a <,且35()24g =,求函数()[]()1,2y g x x =∈的反函数; (3)若在[0,2]上存在n 个不同的点(1,2,,.3)i x i n n =≥,12n x x x <<<,使得()()()()()()122318n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=,求实数a 的取值范围.。
2019年上海市长宁区高考数学一模试卷一、填空题(本大题共有12题,满分54分,第16题每题4分,第7-12题每题5分)考生应在答题纸相应位置直接填写结果1.(4分)已知集合A={1,2,3,4},B={1,3,5},则A∪B=2.(4分)已知=3,则x=.3.(4分)在(1+x)6的二项展开式中,x2项的系数为(结果用数值表示).4.(4分)已知向量=(m,3),=(2,﹣1),若向量,则实数m为.5.(4分)已知函数f(x)=x a的图象过点(2,),则f(x)的定义域为.6.(4分)若圆锥的侧面积为15π,底面面积为9π,则该圆锥的体积为.7.(5分)已知α∈(),且tanα=﹣2,则sin(π﹣α)=.8.(5分)已知函数f(x)=log a x和g(x)=k(x﹣2)的图象如图所示,则不等式≥0的解集是.9.(5分)如图,某学生社团在校园内测量远处某栋楼CD的高度,D为楼顶,线段AB的长度为600m,在A处测得∠DAB=30°,在B处测得∠DBA=105°,且此时看楼顶D 的仰角∠DBC=30°,已知楼底C和A、B在同一水平面上,则此楼高度CD=m (精确到1m)10.(5分)若甲、乙两位同学随机地从6门课程中各选修3门,则两人选修的课程中恰有1门相同的概率为.11.(5分)已知数列{a n}的前n项和为S n,且a n+a n+1=,若数列{S n}收敛于常数A,则首项a1的取值的集合为.12.(5分)已知a1,a2,a3与b1,b2,b3是6个不同的实数,若关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解集A是有限集,则集合A中,最多有个元素.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项考生应在答题纸的相应位置将代表正确选项的小方格涂黑.13.(5分)已知x∈R,则“x≥0”是“x>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.(5分)有一批种子共有98颗,对于一颗种子来说,它可能1天发芽,也可能2天发芽,……,如表是不同发芽天数的种子数的记录:发芽天数1234567种子数82622241242统计每颗种子种子发芽天数得到一组数据,则这组数据的中位数是()A.2B.3C.3.5D.415.(5分)已知向量和的夹角为,||=2,||=3,则(2﹣)(+2)=()A.﹣10B.﹣7C.﹣4D.﹣116.(5分)某位喜欢思考的同学在学习函数的性质时提出了如下两个命题:已知函数y=f(x)的定义域为D,x1,x2∈D.①若当f(x1)+f(x2)=0时,都有x1+x2=0,则函数y=f(x)是D上的奇函数.②若当f(x1)<f(x2)时,都有x1<x2,则函数y=f(x)是D上的奇函数.下列判断正确的是()A.①和②都是真命题B.①是真命题,②是假命题C.①和②都是假命题D.①是假命题,②是真命题三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)求下列不等式的解集:(1)|2x﹣3|<5;(2)4x﹣4×2x﹣12>0.18.(14分)《九章算术》中,将地面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.首届中国国际进口博览会的某展馆棚顶一角的钢结构可以抽象为空间图形阳马,如图所示,在阳马P﹣ABCD中,PD⊥底面ABCD.(1)已知AD=CD=4m,斜梁PB与底面ABCD所成角为15°,求立柱PD的长(精确导0.01m).(2)求证:四面体PDBC为鳖臑.19.(14分)已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,复数z1=a+bi,z2=cos A+i cos B(其中i是虚数单位),且z1•z2=3i.(1)求证:a cos B+b cos A=c,并求边长c的值;(2)判断△ABC的形状,并求当b=时,角A的大小.20.(16分)已知函数f(x)=﹣x2+mx+1,g(x)=2sin(ωx+).(1)若函数y=f(x)+2x为偶函数,求实数m的值;(2)若ω>0,g(x)≤g(),且g(x)在[0,]上是单调函数,求实数ω的值;(3)若ω=1,且当x1∈[1,2]时,总有x2∈[0,π],使得g(x2)=f(x1),求实数m的取值范围.21.(18分)已知数列{a n}的前n项和为S n,且a1=1,a2=a.(1)若数列{a n}是等差数列,且a8=15,求实数a的值;(2)若数列{a n}满足a n+2﹣a n=2(n∈N*),且S19=19a10,求证:数列{a n}是等差数列;(3)设数列{a n}是等比数列,试探究当正实数a满足什么条件时,数列{a n}具有如下性质M:对于任意的n≥2(n∈N*),都存在m∈N*使得(S m﹣a n)(S m﹣a n+1)<0,写出你的探求过程,并求出满足条件的正实数a的集合.2019年上海市长宁区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第16题每题4分,第7-12题每题5分)考生应在答题纸相应位置直接填写结果1.(4分)已知集合A={1,2,3,4},B={1,3,5},则A∪B={1,2,3,4,5}【考点】1D:并集及其运算.【专题】11:计算题;37:集合思想;49:综合法;5J:集合.【分析】进行并集的运算即可.【解答】解:A∪B={1,2,3,4,5}.故答案为:{1,2,3,4,5}.【点评】考查列举法的定义,以及并集的定义及运算.2.(4分)已知=3,则x=1.【考点】OM:二阶行列式的定义.【专题】11:计算题;34:方程思想;4O:定义法;5R:矩阵和变换.【分析】利用二阶行列式展开式直接求解.【解答】解:∵=3,∴2x+1=3,解得x=1.故答案为:1.【点评】本题考查二阶行列式的求法,考查行列式展开法则等基础知识,考查运算求解能力,是基础题.3.(4分)在(1+x)6的二项展开式中,x2项的系数为15(结果用数值表示).【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】通过二项展开式的通项公式求出展开式的通项,利用x的指数为2,求出展开式中x2的系数.【解答】解:展开式的通项为T r+1=C6r x r.令r=2得到展开式中x2的系数是C62=15.故答案为:15.【点评】本题是基础题,考查利用二项展开式的通项公式解决二项展开式的特定项问题.考查计算能力.4.(4分)已知向量=(m,3),=(2,﹣1),若向量,则实数m为﹣6.【考点】96:平行向量(共线).【专题】11:计算题;35:转化思想;41:向量法;5A:平面向量及应用.【分析】根据即可得出﹣m﹣6=0,解出m即可.【解答】解:∵;∴﹣m﹣6=0;∴m=﹣6.故答案为:﹣6.【点评】考查向量坐标的概念,平行向量的坐标关系.5.(4分)已知函数f(x)=x a的图象过点(2,),则f(x)的定义域为(0,+∞).【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】33:函数思想;4R:转化法;51:函数的性质及应用.【分析】求出幂函数的解析式,然后求解函数的定义域即可.【解答】解:设幂函数为y=xα,∵幂函数y=f(x)的图象经过点(2,),∴=2α,解得α=﹣,故f(x)=,故函数的定义域是(0,+∞),故答案为:(0,+∞).【点评】本题考查幂函数的解析式的求法,基本知识的考查.6.(4分)若圆锥的侧面积为15π,底面面积为9π,则该圆锥的体积为12π.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】求出圆锥的底面周长,然后利用侧面积求出圆锥的母线,求出圆锥的高,即可求出圆锥的体积.【解答】解:根据题意,圆锥的底面面积为9π,则其底面半径是3,底面周长为6π,圆锥的侧面积为15π,又×6πl=15π,∴圆锥的母线为5,则圆锥的高=4,所以圆锥的体积×4×9π=12π.故答案为:12π.【点评】本题是基础题,考查圆锥的有关计算,圆锥的侧面积,体积的求法,考查计算能力.7.(5分)已知α∈(),且tanα=﹣2,则sin(π﹣α)=.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题;38:对应思想;4O:定义法;56:三角函数的求值.【分析】由题意可得sinα>0,再结合tan a==﹣2,sin2a+cos2a=1,求得sin a 的值【解答】解:α∈(),且tanα=﹣2,∴sinα=﹣2cosα,∵sin2α+cos2α=1,∴sin2α=1,∴sinα=,∴sin(π﹣α)=sinα=,故答案为:.【点评】本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.8.(5分)已知函数f(x)=log a x和g(x)=k(x﹣2)的图象如图所示,则不等式≥0的解集是[1,2).【考点】3A:函数的图象与图象的变换.【专题】32:分类讨论;44:数形结合法;51:函数的性质及应用.【分析】根据f(x)=log a x和g(x)=k(x﹣2)图象可得f(x)和g(x)的正负,即可求解不等式≥0的解集.【解答】解:由图象f(x)=log a x可得x∈(0,1)时,f(x)<0,x∈(1,+∞)时,f(x)>0,当x=1时f(x)=0由图象g(x)=k(x﹣2)可得x∈(﹣∞,2)时,g(x)>0,x∈(2,+∞)时,g(x)<0,不等式≥0,即或;∴x∈[1,2)∴不等式≥0的解集为[1,2)故答案为:[1,2)【点评】本题考查了函数图象求解x范围解决不等式的问题,是基础题.9.(5分)如图,某学生社团在校园内测量远处某栋楼CD的高度,D为楼顶,线段AB的长度为600m,在A处测得∠DAB=30°,在B处测得∠DBA=105°,且此时看楼顶D 的仰角∠DBC=30°,已知楼底C和A、B在同一水平面上,则此楼高度CD=212m (精确到1m)【考点】HU:解三角形.【专题】31:数形结合;4O:定义法;58:解三角形.【分析】根据题意,利用正弦定理求得BD的长,再由直角三角形的边角关系求出CD的值.【解答】解:△ABD中,AB=600,∠DAB=30°,∠DBA=105°,∴∠ADB=45°,由正弦定理得=,解得BD==300;在Rt△BCD中,∠DBC=30°,∴CD=BD=150≈212,即楼高CD约212米.故答案为:212.【点评】本题考查了解三角形的应用问题,是基础题.10.(5分)若甲、乙两位同学随机地从6门课程中各选修3门,则两人选修的课程中恰有1门相同的概率为.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题;34:方程思想;4O:定义法;5I:概率与统计.【分析】甲、乙两位同学随机地从6门课程中各选修3门,基本事件总数n==400,两人选修的课程中恰有1门相同包含的基本事件个数m==180,由此能求出两人选修的课程中恰有1门相同的概率.【解答】解:甲、乙两位同学随机地从6门课程中各选修3门,基本事件总数n==400,两人选修的课程中恰有1门相同包含的基本事件个数m==180,∴两人选修的课程中恰有1门相同的概率p===.故答案为:.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11.(5分)已知数列{a n}的前n项和为S n,且a n+a n+1=,若数列{S n}收敛于常数A,则首项a1的取值的集合为{}.【考点】8H:数列递推式.【专题】32:分类讨论;49:综合法;54:等差数列与等比数列.【分析】对n分类讨论,利用等比数列的求和公式、极限的运算性质即可得出.【解答】解:n=2k(k∈N*)为偶数时,a1+a2=,a3+a4=,……,a2k﹣1+a2k=,S n==→.(k→+∞).n=2k﹣1(k∈N*)为奇数时,a2+a3=,a4+a5=,……,a2k﹣2+a2k﹣1=,S n =a1+=a1+→a1+.∵数列{S n}收敛于常数A,∴a1+=.解得a1=.故答案为:{}.【点评】本题考查了分类讨论、等比数列的求和公式、极限的运算性质,考查了推理能力与计算能力,属于中档题.12.(5分)已知a1,a2,a3与b1,b2,b3是6个不同的实数,若关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解集A是有限集,则集合A中,最多有1个元素.【考点】1A:集合中元素个数的最值.【专题】15:综合题;29:规律型;31:数形结合;35:转化思想;44:数形结合法.【分析】由题意,可将关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解的个数问题转化为f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|两个函数图象交点个数问题,将两个函数变为分段函数,由于两个函数都是折线,分别讨论折线端点处的函数值,作出符合题意的图象,即可得出图象交点个数,从而得出方程解的个数【解答】解:令f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|,将关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解的个数的问题转化为两个函数图象交点个数的问题不妨令a1<a2<a3<,b1<b2<b3,由于f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|=,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|=,考查两个函数,可以看到每个函数都是由两条射线与两段拆线所组成的,且两条射线的斜率对应相等,两条线段的斜率对应相等.当a1,a2,a3的和与b1,b2,b3的和相等时,此时两个函数射线部分完全重合,这与题设中方程的解集是有限集矛盾不妨令a1,a2,a3的和小于b1,b2,b3的和即a1+a2+a3<b1+b2+b3,﹣a1﹣a2﹣a3>﹣b1﹣b2﹣b3,两个函数图象射线部分端点上下位置不同,即若左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在上,右边射线端点一定在下,反之亦有可能.不妨认为左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在上,右边射线端点一定在下,且射线互相平行,中间线段也对应平行,图象只能如图:故两函数图象只能有一个交点,即方程的解集是有限集时,最多有一个元素,故答案为:1.【点评】本题考查函数的综合运用,属于函数中较难理解的题,用到数形结合的思想,转化化归的思想,属于能开拓思维训练能力的好题,也是易错题二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项考生应在答题纸的相应位置将代表正确选项的小方格涂黑.13.(5分)已知x∈R,则“x≥0”是“x>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】35:转化思想;4O:定义法;5L:简易逻辑.【分析】根据充分条件和必要条件的定义分别进行判断即可.【解答】解:∵x≥0推不出x>1,x>1⇒x≥0,∴“x≥0”是“x>1”的必要非充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.14.(5分)有一批种子共有98颗,对于一颗种子来说,它可能1天发芽,也可能2天发芽,……,如表是不同发芽天数的种子数的记录:发芽天数1234567种子数82622241242统计每颗种子种子发芽天数得到一组数据,则这组数据的中位数是()A.2B.3C.3.5D.4【考点】BB:众数、中位数、平均数.【专题】11:计算题;5I:概率与统计.【分析】根据中位数的概念可求得.【解答】解:将这98颗种子发芽天数从左到右按照从小到大的顺序排成一列,可知正中间两颗种子的发芽天数都是3,所以中位数为=3,故选:B.【点评】本题考查了中位数的概念.属基础题.15.(5分)已知向量和的夹角为,||=2,||=3,则(2﹣)(+2)=()A.﹣10B.﹣7C.﹣4D.﹣1【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;5A:平面向量及应用.【分析】首先把原式展开,再利用数量积求值.【解答】解:(2﹣)•()=2﹣2=8﹣18+3×2×3cos=﹣1,故选:D.【点评】此题考查了数量积计算问题,属容易题.16.(5分)某位喜欢思考的同学在学习函数的性质时提出了如下两个命题:已知函数y=f(x)的定义域为D,x1,x2∈D.①若当f(x1)+f(x2)=0时,都有x1+x2=0,则函数y=f(x)是D上的奇函数.②若当f(x1)<f(x2)时,都有x1<x2,则函数y=f(x)是D上的奇函数.下列判断正确的是()A.①和②都是真命题B.①是真命题,②是假命题C.①和②都是假命题D.①是假命题,②是真命题【考点】2K:命题的真假判断与应用.【专题】33:函数思想;4O:定义法;51:函数的性质及应用.【分析】由奇函数的定义,注意定义域关于原点对称,其次可考虑f(﹣x)=﹣f(x),即可判断①②.【解答】解:函数y=f(x)的定义域为D,x1,x2∈D.①若当f(x1)+f(x2)=0时,都有x1+x2=0,可得D关于原点对称,由奇函数的定义可得函数y=f(x)是D上的奇函数,故①正确;②若当f(x1)<f(x2)时,都有x1<x2,则函数y=f(x)是D上的增函数,奇偶性不确定,故②错误.故选:B.【点评】本题考查函数的奇偶性的定义和应用,考查理解能力,属于基础题.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)求下列不等式的解集:(1)|2x﹣3|<5;(2)4x﹣4×2x﹣12>0.【考点】R5:绝对值不等式的解法.【专题】11:计算题;5T:不等式.【分析】(1)根据|f(x)|<a(a>0)⇔﹣a<f(x)<a解得;(2)把2x看成整体,先解一元二次不等式,再解指数不等式可得.【解答】解:(1)|2x﹣3|<5⇔﹣5<2x﹣3<5⇔﹣1<x<4,所以不等式的解集为{x|﹣1<x<4};(2)原不等式可化为:(2x﹣6)(2x+2)>0,∴2x>6,∴x>log26,所以原不等式的解集为{x|x>log26}.【点评】本题考查了绝对值不等式的解法.属中档题.18.(14分)《九章算术》中,将地面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.首届中国国际进口博览会的某展馆棚顶一角的钢结构可以抽象为空间图形阳马,如图所示,在阳马P﹣ABCD中,PD⊥底面ABCD.(1)已知AD=CD=4m,斜梁PB与底面ABCD所成角为15°,求立柱PD的长(精确导0.01m).(2)求证:四面体PDBC为鳖臑.【考点】LW:直线与平面垂直;MI:直线与平面所成的角.【专题】14:证明题;23:新定义;31:数形结合;49:综合法.【分析】(1)推导出侧棱PB在底面ABCD上的射影是DB,从而∠PDB是侧棱PB与底面ABCD所成角,∠PBD=15°,由此能求出立柱PD的长.(2)底面ABCD是长方形,从而△BCD是直角三角形,推导出PD⊥DC,PD⊥DB,PD ⊥BC,从而△PDC,△PDB是直角三角形,由BC⊥平面PDC,得△PBC是直角三角形,由此能证明四面体PDBC为鳖臑.【解答】解:(1)∵侧棱PD⊥底面ABCD,∴侧棱PB在底面ABCD上的射影是DB,∴∠PDB是侧棱PB与底面ABCD所成角,∴∠PBD=15°,在△PBD中,∠PDB=90°,DB==4(m),由tan∠PDB=,得tan15°=,解得PD≈1.52(m),∴立柱PD的长约1.52m.(2)由题意知底面ABCD是长方形,∴△BCD是直角三角形,∵侧棱PD⊥底面ABCD,∴PD⊥DC,PD⊥DB,PD⊥BC,∴△PDC,△PDB是直角三角形,∵BC⊥DC,BC⊥PD,PD∩DC=D,∴BC⊥平面PDC,∵PC⊂平面PDC,∴BC⊥PC,∴△PBC是直角三角形,∴四面体PDBC为鳖臑.【点评】本题考查立柱长的求法,考查四面体为鳖臑的证明,考查线面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.19.(14分)已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,复数z1=a+bi,z2=cos A+i cos B(其中i是虚数单位),且z1•z2=3i.(1)求证:a cos B+b cos A=c,并求边长c的值;(2)判断△ABC的形状,并求当b=时,角A的大小.【考点】A5:复数的运算.【专题】11:计算题;14:证明题;5N:数系的扩充和复数.【分析】(1)利用余弦定理和复数实部虚部对应,不难证明;(2)利用第一步的实部为0,结合正弦定理,可得等腰,进而求得A.【解答】解:(1)证明:a cos B+b cos A===c,z1•z2=a cos A﹣b cos B+(a cos B+b cos A)i=3i,∴a cos A﹣b cos B=0,…(*)a cos B+b cos A=3,∴c=3;(2)由(*)式得,a cos A=b cos B,…①由正弦定理得,,…②得,sin2A=sin2B,得,A=B,或A+B=∴△ABC为等腰三角形或直角三角形,若为等腰三角形,当b=时,cos A=,A=.若为直角三角形,当b=时,cos A=,A=arccos.【点评】本题考查了复数代数形式的乘法运算,余弦定理,正弦定理等,难度适中.20.(16分)已知函数f(x)=﹣x2+mx+1,g(x)=2sin(ωx+).(1)若函数y=f(x)+2x为偶函数,求实数m的值;(2)若ω>0,g(x)≤g(),且g(x)在[0,]上是单调函数,求实数ω的值;(3)若ω=1,且当x1∈[1,2]时,总有x2∈[0,π],使得g(x2)=f(x1),求实数m的取值范围.【考点】H6:正弦函数的奇偶性和对称性.【专题】11:计算题;32:分类讨论;4R:转化法;51:函数的性质及应用.【分析】(1)根据偶函数图象关于y轴对称,二次函数的一次项系数为0,可得m的值;(2)根据g(x)≤g(),可知x=时,g(x)取得最大值,且g(x)在[0,]上是单调函数,即,即可求解实数ω的值.(3)求解f(x)的值域M和g(x)的值域N,可得M⊆N,即可求解实数m的取值范围.【解答】解:(1)∵函数y=f(x)+2x=﹣x2+(m+2)x+1,为偶函数,可得m+2=0,可得m=﹣2即实数m的值为﹣2;(2)由g(x)≤g(),可知x=时,g(x)取得最大值,即+=+2kπ,k∈Z可得:ω=且g(x)在[0,]上是单调函数,∴,即T≥π可得:ω≤2.当k=0时,可得ω=,故得实数ω的值为.(3)由ω=1,可得g(x)=2sin(x+).∵x∈[0,π],∴x+∈[,],那么g(x)的值域N=[﹣1,2].当x1∈[1,2]时,总有x2∈[0,π],使得g(x2)=f(x1)转化为函数f(x)的值域是g(x)的值域的子集;即:当x∈[1,2]时,﹣1≤f(x)≤2函数f(x)=﹣x2+mx+1,其对称轴x=,开口向下,当≤1时,即m≤2,可得f(x)min=f(2)=2m﹣3;f(x)max=f(﹣1)=﹣m;可得解:1≤m≤2当1<≤2时,即2<m≤4可得f(x)max=f()=;f(x)min=2m﹣3或﹣m;此时无解.当>2时,即m>4,可得f(x)min=f(﹣1)=﹣m;f(x)max=f(2)=2m﹣3;此时无解.综上可得实数m的取值范围为[1,2].【点评】本题主要考查三角函数的化简,图象即性质的应用,二次函数的最值问题;21.(18分)已知数列{a n}的前n项和为S n,且a1=1,a2=a.(1)若数列{a n}是等差数列,且a8=15,求实数a的值;(2)若数列{a n}满足a n+2﹣a n=2(n∈N*),且S19=19a10,求证:数列{a n}是等差数列;(3)设数列{a n}是等比数列,试探究当正实数a满足什么条件时,数列{a n}具有如下性质M:对于任意的n≥2(n∈N*),都存在m∈N*使得(S m﹣a n)(S m﹣a n+1)<0,写出你的探求过程,并求出满足条件的正实数a的集合.【考点】8H:数列递推式.【专题】33:函数思想;49:综合法;54:等差数列与等比数列.【分析】(1)设等差数列{a n}的公差为d,由已知结合等差数列的通项公式即可求得a的值;(2)由S19=19a10,得a值,由a n+2﹣a n=2,且a1=1,a2=2,得数列{a n}的通项公式,即可证明数列{a n}是等差数列;(3)由题意,,然后对a分类分析,可得当0<a<1,当a=1,当1<a<2时,数列{a n}不具有性质M;当a≥2时,对任意n≥2(n∈N*),都有(S m﹣a n)(S m﹣a n+1)<0,即当a≥2时,数列{a n}具有性质M,由此可得,使得数列{a n}具有性质M的正实数a的集合为[2,+∞).【解答】(1)解:设等差数列{a n}的公差为d,由a1=1,a8=15,得1+7d=15,解得d=2,则a2=a1+d=1+2=3,∴a=3;(2)证明:由S19=19a10,得,解得a=2,由a n+2﹣a n=2,且a1=1,a2=2,得当n为奇数时,;当n为偶数时,.∴对任意n∈N*,都有a n=n,当n≥2时,a n﹣a n﹣1=1,即数列{a n}是等差数列;(3)解:由题意,,①当0<a<1时,a3<a2<a1≤S m,∴对任意m∈N*,都有(S m﹣a2)(S m﹣a3)>0,因此数列{a n}不具有性质M.②当a=1时,a n=1,S n=n,∴对任意m∈N*,都有(S m﹣a2)(S m﹣a3)=(m﹣1)2≥0,因此数列{a n}不具有性质M.③当1<a<2时,(a﹣1)2>0⇔a(2﹣a)<1⇔>a⇔>1.n≥⇔⇔S n≥a n+1,n<⇔<a n⇔S n<a n+1.取[]=n0([x]表示不小于x的最小整数),则,<.∴对于任意m∈N*,.即对于任意m∈N*,S m都不在区间()内,∴数列{a n}不具有性质M.④当a≥2时,<0,且S n>a n,即对任意n≥2(n∈N*),都有(S m﹣a n)(S m﹣a n+1)<0,∴当a≥2时,数列{a n}具有性质M.综上,使得数列{a n}具有性质M的正实数a的集合为[2,+∞).【点评】本题考查数列递推式,考查等差关系的确定,考查逻辑思维能力与推理论证能力,体现了分类讨论的数学思想方法,属于难题.。
第1页,总17页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………上海市长宁区2019届高三上学期理数期末质量检测一模试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共4题)1. 已知,则“”是“”的( )A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件2. 有一批种子,对于一颗种子来说,它可能 天发芽,也可能 天发芽, ,下表是不同发芽发芽天数 1 2 3 4 5 6 7种子数 8 26 22 24 12 4 2 0统计每颗种子发芽天数得到一组数据,则这组数据的中位数是( ) A . B . C . D .3. 已知向量 和 的夹角为 ,且 ,则 ( )A .B .C .D .4. 某位喜欢思考的同学在学习函数的性质时提出了如下两个命题:已知函数的定义域为 ,,① 若当时,都有 ,则函数是 上的奇函数;② 若当时,都有,则函数是 上的增函数.下列判断正确的是( )答案第2页,总17页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . ①和②都是真命题B . ①是真命题,②是假命题C . ①和②都是假命题D . ①是假命题,②是真命题第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共12题)1. 已知集合 ,,则2. 已知 ,则3. 在 的二项展开式中,常数项为 (结果用数值表示)4. 已知向量 ,,若向量 ∥ ,则实数5. 若圆锥的侧面积为,底面积为 ,则该圆锥的体积为 。
2019年上海市长宁区高考数学一模试卷一、填空题(本大题共有12题,满分54分,第16题每题4分,第7-12题每题5分)考生应在答题纸相应位置直接填写结果1.(4分)已知集合A={1,2,3,4},B={1,3,5},则A∪B=2.(4分)已知=3,则x=.3.(4分)在(1+x)6的二项展开式中,x2项的系数为(结果用数值表示).4.(4分)已知向量=(m,3),=(2,﹣1),若向量,则实数m为.5.(4分)已知函数f(x)=x a的图象过点(2,),则f(x)的定义域为.6.(4分)若圆锥的侧面积为15π,底面面积为9π,则该圆锥的体积为.7.(5分)已知α∈(),且tanα=﹣2,则sin(π﹣α)=.8.(5分)已知函数f(x)=log a x和g(x)=k(x﹣2)的图象如图所示,则不等式≥0的解集是.9.(5分)如图,某学生社团在校园内测量远处某栋楼CD的高度,D为楼顶,线段AB的长度为600m,在A处测得∠DAB=30°,在B处测得∠DBA=105°,且此时看楼顶D 的仰角∠DBC=30°,已知楼底C和A、B在同一水平面上,则此楼高度CD=m (精确到1m)10.(5分)若甲、乙两位同学随机地从6门课程中各选修3门,则两人选修的课程中恰有1门相同的概率为.11.(5分)已知数列{a n}的前n项和为S n,且a n+a n+1=,若数列{S n}收敛于常数A,则首项a1的取值的集合为.12.(5分)已知a1,a2,a3与b1,b2,b3是6个不同的实数,若关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解集A是有限集,则集合A中,最多有个元素.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项考生应在答题纸的相应位置将代表正确选项的小方格涂黑.13.(5分)已知x∈R,则“x≥0”是“x>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.(5分)有一批种子共有98颗,对于一颗种子来说,它可能1天发芽,也可能2天发芽,……,如表是不同发芽天数的种子数的记录:发芽天数1234567种子数82622241242统计每颗种子种子发芽天数得到一组数据,则这组数据的中位数是()A.2B.3C.3.5D.415.(5分)已知向量和的夹角为,||=2,||=3,则(2﹣)(+2)=()A.﹣10B.﹣7C.﹣4D.﹣116.(5分)某位喜欢思考的同学在学习函数的性质时提出了如下两个命题:已知函数y=f(x)的定义域为D,x1,x2∈D.①若当f(x1)+f(x2)=0时,都有x1+x2=0,则函数y=f(x)是D上的奇函数.②若当f(x1)<f(x2)时,都有x1<x2,则函数y=f(x)是D上的奇函数.下列判断正确的是()A.①和②都是真命题B.①是真命题,②是假命题C.①和②都是假命题D.①是假命题,②是真命题三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)求下列不等式的解集:(1)|2x﹣3|<5;(2)4x﹣4×2x﹣12>0.18.(14分)《九章算术》中,将地面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.首届中国国际进口博览会的某展馆棚顶一角的钢结构可以抽象为空间图形阳马,如图所示,在阳马P﹣ABCD中,PD⊥底面ABCD.(1)已知AD=CD=4m,斜梁PB与底面ABCD所成角为15°,求立柱PD的长(精确导0.01m).(2)求证:四面体PDBC为鳖臑.19.(14分)已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,复数z1=a+bi,z2=cos A+i cos B(其中i是虚数单位),且z1•z2=3i.(1)求证:a cos B+b cos A=c,并求边长c的值;(2)判断△ABC的形状,并求当b=时,角A的大小.20.(16分)已知函数f(x)=﹣x2+mx+1,g(x)=2sin(ωx+).(1)若函数y=f(x)+2x为偶函数,求实数m的值;(2)若ω>0,g(x)≤g(),且g(x)在[0,]上是单调函数,求实数ω的值;(3)若ω=1,且当x1∈[1,2]时,总有x2∈[0,π],使得g(x2)=f(x1),求实数m的取值范围.21.(18分)已知数列{a n}的前n项和为S n,且a1=1,a2=a.(1)若数列{a n}是等差数列,且a8=15,求实数a的值;(2)若数列{a n}满足a n+2﹣a n=2(n∈N*),且S19=19a10,求证:数列{a n}是等差数列;(3)设数列{a n}是等比数列,试探究当正实数a满足什么条件时,数列{a n}具有如下性质M:对于任意的n≥2(n∈N*),都存在m∈N*使得(S m﹣a n)(S m﹣a n+1)<0,写出你的探求过程,并求出满足条件的正实数a的集合.2019年上海市长宁区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第16题每题4分,第7-12题每题5分)考生应在答题纸相应位置直接填写结果1.(4分)已知集合A={1,2,3,4},B={1,3,5},则A∪B={1,2,3,4,5}【考点】1D:并集及其运算.【专题】11:计算题;37:集合思想;49:综合法;5J:集合.【分析】进行并集的运算即可.【解答】解:A∪B={1,2,3,4,5}.故答案为:{1,2,3,4,5}.【点评】考查列举法的定义,以及并集的定义及运算.2.(4分)已知=3,则x=1.【考点】OM:二阶行列式的定义.【专题】11:计算题;34:方程思想;4O:定义法;5R:矩阵和变换.【分析】利用二阶行列式展开式直接求解.【解答】解:∵=3,∴2x+1=3,解得x=1.故答案为:1.【点评】本题考查二阶行列式的求法,考查行列式展开法则等基础知识,考查运算求解能力,是基础题.3.(4分)在(1+x)6的二项展开式中,x2项的系数为15(结果用数值表示).【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】通过二项展开式的通项公式求出展开式的通项,利用x的指数为2,求出展开式中x2的系数.【解答】解:展开式的通项为T r+1=C6r x r.令r=2得到展开式中x2的系数是C62=15.故答案为:15.【点评】本题是基础题,考查利用二项展开式的通项公式解决二项展开式的特定项问题.考查计算能力.4.(4分)已知向量=(m,3),=(2,﹣1),若向量,则实数m为﹣6.【考点】96:平行向量(共线).【专题】11:计算题;35:转化思想;41:向量法;5A:平面向量及应用.【分析】根据即可得出﹣m﹣6=0,解出m即可.【解答】解:∵;∴﹣m﹣6=0;∴m=﹣6.故答案为:﹣6.【点评】考查向量坐标的概念,平行向量的坐标关系.5.(4分)已知函数f(x)=x a的图象过点(2,),则f(x)的定义域为(0,+∞).【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】33:函数思想;4R:转化法;51:函数的性质及应用.【分析】求出幂函数的解析式,然后求解函数的定义域即可.【解答】解:设幂函数为y=xα,∵幂函数y=f(x)的图象经过点(2,),∴=2α,解得α=﹣,故f(x)=,故函数的定义域是(0,+∞),故答案为:(0,+∞).【点评】本题考查幂函数的解析式的求法,基本知识的考查.6.(4分)若圆锥的侧面积为15π,底面面积为9π,则该圆锥的体积为12π.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】求出圆锥的底面周长,然后利用侧面积求出圆锥的母线,求出圆锥的高,即可求出圆锥的体积.【解答】解:根据题意,圆锥的底面面积为9π,则其底面半径是3,底面周长为6π,圆锥的侧面积为15π,又×6πl=15π,∴圆锥的母线为5,则圆锥的高=4,所以圆锥的体积×4×9π=12π.故答案为:12π.【点评】本题是基础题,考查圆锥的有关计算,圆锥的侧面积,体积的求法,考查计算能力.7.(5分)已知α∈(),且tanα=﹣2,则sin(π﹣α)=.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题;38:对应思想;4O:定义法;56:三角函数的求值.【分析】由题意可得sinα>0,再结合tan a==﹣2,sin2a+cos2a=1,求得sin a 的值【解答】解:α∈(),且tanα=﹣2,∴sinα=﹣2cosα,∵sin2α+cos2α=1,∴sin2α=1,∴sinα=,∴sin(π﹣α)=sinα=,故答案为:.【点评】本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.8.(5分)已知函数f(x)=log a x和g(x)=k(x﹣2)的图象如图所示,则不等式≥0的解集是[1,2).【考点】3A:函数的图象与图象的变换.【专题】32:分类讨论;44:数形结合法;51:函数的性质及应用.【分析】根据f(x)=log a x和g(x)=k(x﹣2)图象可得f(x)和g(x)的正负,即可求解不等式≥0的解集.【解答】解:由图象f(x)=log a x可得x∈(0,1)时,f(x)<0,x∈(1,+∞)时,f(x)>0,当x=1时f(x)=0由图象g(x)=k(x﹣2)可得x∈(﹣∞,2)时,g(x)>0,x∈(2,+∞)时,g(x)<0,不等式≥0,即或;∴x∈[1,2)∴不等式≥0的解集为[1,2)故答案为:[1,2)【点评】本题考查了函数图象求解x范围解决不等式的问题,是基础题.9.(5分)如图,某学生社团在校园内测量远处某栋楼CD的高度,D为楼顶,线段AB的长度为600m,在A处测得∠DAB=30°,在B处测得∠DBA=105°,且此时看楼顶D 的仰角∠DBC=30°,已知楼底C和A、B在同一水平面上,则此楼高度CD=212m (精确到1m)【考点】HU:解三角形.【专题】31:数形结合;4O:定义法;58:解三角形.【分析】根据题意,利用正弦定理求得BD的长,再由直角三角形的边角关系求出CD的值.【解答】解:△ABD中,AB=600,∠DAB=30°,∠DBA=105°,∴∠ADB=45°,由正弦定理得=,解得BD==300;在Rt△BCD中,∠DBC=30°,∴CD=BD=150≈212,即楼高CD约212米.故答案为:212.【点评】本题考查了解三角形的应用问题,是基础题.10.(5分)若甲、乙两位同学随机地从6门课程中各选修3门,则两人选修的课程中恰有1门相同的概率为.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题;34:方程思想;4O:定义法;5I:概率与统计.【分析】甲、乙两位同学随机地从6门课程中各选修3门,基本事件总数n==400,两人选修的课程中恰有1门相同包含的基本事件个数m==180,由此能求出两人选修的课程中恰有1门相同的概率.【解答】解:甲、乙两位同学随机地从6门课程中各选修3门,基本事件总数n==400,两人选修的课程中恰有1门相同包含的基本事件个数m==180,∴两人选修的课程中恰有1门相同的概率p===.故答案为:.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11.(5分)已知数列{a n}的前n项和为S n,且a n+a n+1=,若数列{S n}收敛于常数A,则首项a1的取值的集合为{}.【考点】8H:数列递推式.【专题】32:分类讨论;49:综合法;54:等差数列与等比数列.【分析】对n分类讨论,利用等比数列的求和公式、极限的运算性质即可得出.【解答】解:n=2k(k∈N*)为偶数时,a1+a2=,a3+a4=,……,a2k﹣1+a2k=,S n==→.(k→+∞).n=2k﹣1(k∈N*)为奇数时,a2+a3=,a4+a5=,……,a2k﹣2+a2k﹣1=,S n =a1+=a1+→a1+.∵数列{S n}收敛于常数A,∴a1+=.解得a1=.故答案为:{}.【点评】本题考查了分类讨论、等比数列的求和公式、极限的运算性质,考查了推理能力与计算能力,属于中档题.12.(5分)已知a1,a2,a3与b1,b2,b3是6个不同的实数,若关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解集A是有限集,则集合A中,最多有3个元素.【考点】1A:集合中元素个数的最值.【专题】15:综合题;29:规律型;31:数形结合;35:转化思想;44:数形结合法.【分析】由题意,可将关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解的个数问题转化为f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|两个函数图象交点个数问题,将两个函数变为分段函数,由于两个函数都是折线,分别讨论折线端点处的函数值,作出符合题意的图象,即可得出图象交点个数,从而得出方程解的个数【解答】解:令f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|,将关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解的个数的问题转化为两个函数图象交点个数的问题不妨令a1<a2<a3,b1<b2<b3,由于f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|=,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|=,考查两个函数,可以看到每个函数都是由两条射线与两段拆线所组成的,且两条射线的斜率对应相等,两条线段的斜率对应相等.当a1,a2,a3的和与b1,b2,b3的和相等时,此时两个函数射线部分完全重合,这与题设中方程的解集是有限集矛盾不妨令a1,a2,a3的和小于b1,b2,b3的和即a1+a2+a3<b1+b2+b3,﹣a1﹣a2﹣a3>﹣b1﹣b2﹣b3,两个函数图象射线部分端点左右位置不同,即若左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在左,右边射线端点一定在右,反之亦然.不妨认为左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在左,右边射线端点一定在右,且射线互相平行,中间线段也对应平行,如图A点在左,F点在右,此时若B,C点在线段AD的上方,则只有一个交点;若BC线段位置在如图位置,则有三个交点,探究知,当a1,a2,a3的值依次是1、4、5,b1,b2,b3的值分别是2、3、6,可得到如图的图象,所以此两函数在本题条件下,最多有三个元素:故两函数图象最多有三个交点,即方程的解集是有限集时,最多有三个元素,故答案为:3.【点评】本题考查函数的综合运用,属于函数中较难理解的题,用到数形结合的思想,转化化归的思想,属于能开拓思维训练能力的好题,也是易错题,本题解答中要用到特值法,因为这是一个存在的问题,有的问题,可举出一些特殊的例子以说明结论的存在性,学习时多思考,想明白各种情况,才能最大挖掘出本题的价值二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项考生应在答题纸的相应位置将代表正确选项的小方格涂黑.13.(5分)已知x∈R,则“x≥0”是“x>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】35:转化思想;4O:定义法;5L:简易逻辑.【分析】根据充分条件和必要条件的定义分别进行判断即可.【解答】解:∵x≥0推不出x>1,x>1⇒x≥0,∴“x≥0”是“x>1”的必要非充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.14.(5分)有一批种子共有98颗,对于一颗种子来说,它可能1天发芽,也可能2天发芽,……,如表是不同发芽天数的种子数的记录:发芽天数1234567种子数82622241242统计每颗种子种子发芽天数得到一组数据,则这组数据的中位数是()A.2B.3C.3.5D.4【考点】BB:众数、中位数、平均数.【专题】11:计算题;5I:概率与统计.【分析】根据中位数的概念可求得.【解答】解:将这98颗种子发芽天数从左到右按照从小到大的顺序排成一列,可知正中间两颗种子的发芽天数都是3,所以中位数为=3,故选:B.【点评】本题考查了中位数的概念.属基础题.15.(5分)已知向量和的夹角为,||=2,||=3,则(2﹣)(+2)=()A.﹣10B.﹣7C.﹣4D.﹣1【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;5A:平面向量及应用.【分析】首先把原式展开,再利用数量积求值.【解答】解:(2﹣)•()=2﹣2=8﹣18+3×2×3cos=﹣1,故选:D.【点评】此题考查了数量积计算问题,属容易题.16.(5分)某位喜欢思考的同学在学习函数的性质时提出了如下两个命题:已知函数y=f(x)的定义域为D,x1,x2∈D.①若当f(x1)+f(x2)=0时,都有x1+x2=0,则函数y=f(x)是D上的奇函数.②若当f(x1)<f(x2)时,都有x1<x2,则函数y=f(x)是D上的奇函数.下列判断正确的是()A.①和②都是真命题B.①是真命题,②是假命题C.①和②都是假命题D.①是假命题,②是真命题【考点】2K:命题的真假判断与应用.【专题】33:函数思想;4O:定义法;51:函数的性质及应用.【分析】由奇函数的定义,注意定义域关于原点对称,其次可考虑f(﹣x)=﹣f(x),即可判断①②.【解答】解:函数y=f(x)的定义域为D,x1,x2∈D.①若当f(x1)+f(x2)=0时,都有x1+x2=0,可得D关于原点对称,由奇函数的定义可得函数y=f(x)是D上的奇函数,故①正确;②若当f(x1)<f(x2)时,都有x1<x2,则函数y=f(x)是D上的增函数,奇偶性不确定,故②错误.故选:B.【点评】本题考查函数的奇偶性的定义和应用,考查理解能力,属于基础题.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)求下列不等式的解集:(1)|2x﹣3|<5;(2)4x﹣4×2x﹣12>0.【考点】R5:绝对值不等式的解法.【专题】11:计算题;5T:不等式.【分析】(1)根据|f(x)|<a(a>0)⇔﹣a<f(x)<a解得;(2)把2x看成整体,先解一元二次不等式,再解指数不等式可得.【解答】解:(1)|2x﹣3|<5⇔﹣5<2x﹣3<5⇔﹣1<x<4,所以不等式的解集为{x|﹣1<x<4};(2)原不等式可化为:(2x﹣6)(2x+2)>0,∴2x>6,∴x>log26,所以原不等式的解集为{x|x>log26}.【点评】本题考查了绝对值不等式的解法.属中档题.18.(14分)《九章算术》中,将地面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.首届中国国际进口博览会的某展馆棚顶一角的钢结构可以抽象为空间图形阳马,如图所示,在阳马P﹣ABCD中,PD⊥底面ABCD.(1)已知AD=CD=4m,斜梁PB与底面ABCD所成角为15°,求立柱PD的长(精确导0.01m).(2)求证:四面体PDBC为鳖臑.【考点】LW:直线与平面垂直;MI:直线与平面所成的角.【专题】14:证明题;23:新定义;31:数形结合;49:综合法.【分析】(1)推导出侧棱PB在底面ABCD上的射影是DB,从而∠PDB是侧棱PB与底面ABCD所成角,∠PBD=15°,由此能求出立柱PD的长.(2)底面ABCD是长方形,从而△BCD是直角三角形,推导出PD⊥DC,PD⊥DB,PD ⊥BC,从而△PDC,△PDB是直角三角形,由BC⊥平面PDC,得△PBC是直角三角形,由此能证明四面体PDBC为鳖臑.【解答】解:(1)∵侧棱PD⊥底面ABCD,∴侧棱PB在底面ABCD上的射影是DB,∴∠PDB是侧棱PB与底面ABCD所成角,∴∠PBD=15°,在△PBD中,∠PDB=90°,DB==4(m),由tan∠PDB=,得tan15°=,解得PD≈1.52(m),∴立柱PD的长约1.52m.(2)由题意知底面ABCD是长方形,∴△BCD是直角三角形,∵侧棱PD⊥底面ABCD,∴PD⊥DC,PD⊥DB,PD⊥BC,∴△PDC,△PDB是直角三角形,∵BC⊥DC,BC⊥PD,PD∩DC=D,∴BC⊥平面PDC,∵PC⊂平面PDC,∴BC⊥PC,∴△PBC是直角三角形,∴四面体PDBC为鳖臑.【点评】本题考查立柱长的求法,考查四面体为鳖臑的证明,考查线面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.19.(14分)已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,复数z1=a+bi,z2=cos A+i cos B(其中i是虚数单位),且z1•z2=3i.(1)求证:a cos B+b cos A=c,并求边长c的值;(2)判断△ABC的形状,并求当b=时,角A的大小.【考点】A5:复数的运算.【专题】11:计算题;14:证明题;5N:数系的扩充和复数.【分析】(1)利用余弦定理和复数实部虚部对应,不难证明;(2)利用第一步的实部为0,结合正弦定理,可得等腰,进而求得A.【解答】解:(1)证明:a cos B+b cos A===c,z1•z2=a cos A﹣b cos B+(a cos B+b cos A)i=3i,∴a cos A﹣b cos B=0,…(*)a cos B+b cos A=3,∴c=3;(2)由(*)式得,a cos A=b cos B,…①由正弦定理得,,…②得,sin2A=sin2B,得,A=B,或A+B=∴△ABC为等腰三角形或直角三角形,若为等腰三角形,当b=时,cos A=,A=.若为直角三角形,当b=时,cos A=,A=arccos.【点评】本题考查了复数代数形式的乘法运算,余弦定理,正弦定理等,难度适中.20.(16分)已知函数f(x)=﹣x2+mx+1,g(x)=2sin(ωx+).(1)若函数y=f(x)+2x为偶函数,求实数m的值;(2)若ω>0,g(x)≤g(),且g(x)在[0,]上是单调函数,求实数ω的值;(3)若ω=1,且当x1∈[1,2]时,总有x2∈[0,π],使得g(x2)=f(x1),求实数m的取值范围.【考点】H6:正弦函数的奇偶性和对称性.【专题】11:计算题;32:分类讨论;4R:转化法;51:函数的性质及应用.【分析】(1)根据偶函数图象关于y轴对称,二次函数的一次项系数为0,可得m的值;(2)根据g(x)≤g(),可知x=时,g(x)取得最大值,且g(x)在[0,]上是单调函数,即,即可求解实数ω的值.(3)求解f(x)的值域M和g(x)的值域N,可得M⊆N,即可求解实数m的取值范围.【解答】解:(1)∵函数y=f(x)+2x=﹣x2+(m+2)x+1,为偶函数,可得m+2=0,可得m=﹣2即实数m的值为﹣2;(2)由g(x)≤g(),可知x=时,g(x)取得最大值,即+=+2kπ,k∈Z可得:ω=且g(x)在[0,]上是单调函数,∴,即T≥π可得:ω≤2.当k=0时,可得ω=,故得实数ω的值为.(3)由ω=1,可得g(x)=2sin(x+).∵x∈[0,π],∴x+∈[,],那么g(x)的值域N=[﹣1,2].当x1∈[1,2]时,总有x2∈[0,π],使得g(x2)=f(x1)转化为函数f(x)的值域是g(x)的值域的子集;即:当x∈[1,2]时,﹣1≤f(x)≤2函数f(x)=﹣x2+mx+1,其对称轴x=,开口向下,当≤1时,即m≤2,可得f(x)min=f(2)=2m﹣3;f(x)max=f(﹣1)=﹣m;可得解:1≤m≤2当1<≤2时,即2<m≤4可得f(x)max=f()=;f(x)min=2m﹣3或﹣m;此时无解.当>2时,即m>4,可得f(x)min=f(﹣1)=﹣m;f(x)max=f(2)=2m﹣3;此时无解.综上可得实数m的取值范围为[1,2].【点评】本题主要考查三角函数的化简,图象即性质的应用,二次函数的最值问题;21.(18分)已知数列{a n}的前n项和为S n,且a1=1,a2=a.(1)若数列{a n}是等差数列,且a8=15,求实数a的值;(2)若数列{a n}满足a n+2﹣a n=2(n∈N*),且S19=19a10,求证:数列{a n}是等差数列;(3)设数列{a n}是等比数列,试探究当正实数a满足什么条件时,数列{a n}具有如下性质M:对于任意的n≥2(n∈N*),都存在m∈N*使得(S m﹣a n)(S m﹣a n+1)<0,写出你的探求过程,并求出满足条件的正实数a的集合.【考点】8H:数列递推式.【专题】33:函数思想;49:综合法;54:等差数列与等比数列.【分析】(1)设等差数列{a n}的公差为d,由已知结合等差数列的通项公式即可求得a的值;(2)由S19=19a10,得a值,由a n+2﹣a n=2,且a1=1,a2=2,得数列{a n}的通项公式,即可证明数列{a n}是等差数列;(3)由题意,,然后对a分类分析,可得当0<a<1,当a=1,当1<a<2时,数列{a n}不具有性质M;当a≥2时,对任意n≥2(n∈N*),都有(S m﹣a n)(S m﹣a n+1)<0,即当a≥2时,数列{a n}具有性质M,由此可得,使得数列{a n}具有性质M的正实数a的集合为[2,+∞).【解答】(1)解:设等差数列{a n}的公差为d,由a1=1,a8=15,得1+7d=15,解得d=2,则a2=a1+d=1+2=3,∴a=3;(2)证明:由S19=19a10,得,解得a=2,由a n+2﹣a n=2,且a1=1,a2=2,得当n为奇数时,;当n为偶数时,.∴对任意n∈N*,都有a n=n,当n≥2时,a n﹣a n﹣1=1,即数列{a n}是等差数列;(3)解:由题意,,①当0<a<1时,a3<a2<a1≤S m,∴对任意m∈N*,都有(S m﹣a2)(S m﹣a3)>0,因此数列{a n}不具有性质M.②当a=1时,a n=1,S n=n,∴对任意m∈N*,都有(S m﹣a2)(S m﹣a3)=(m﹣1)2≥0,因此数列{a n}不具有性质M.③当1<a<2时,(a﹣1)2>0⇔a(2﹣a)<1⇔>a⇔>1.n≥⇔⇔S n≥a n+1,n<⇔<a n⇔S n<a n+1.取[]=n0([x]表示不小于x的最小整数),则,<.∴对于任意m∈N*,.即对于任意m∈N*,S m都不在区间()内,∴数列{a n}不具有性质M.④当a≥2时,<0,且S n>a n,即对任意n≥2(n∈N*),都有(S m﹣a n)(S m﹣a n+1)<0,∴当a≥2时,数列{a n}具有性质M.综上,使得数列{a n}具有性质M的正实数a的集合为[2,+∞).【点评】本题考查数列递推式,考查等差关系的确定,考查逻辑思维能力与推理论证能力,体现了分类讨论的数学思想方法,属于难题.。