高等数学基础公式
- 格式:pdf
- 大小:223.40 KB
- 文档页数:13
高等数学一(微积分)常用公式表-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n m aa =a nm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n n ba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式: (1)b a b a =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aN N a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln -= (7)Mn M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v / (2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f abba⎰⎰-= (4)⎰⎰⎰+=bac ab cdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。
高等数学公式汇总高等数学公式汇总第一章一元函数的极限与连续1.一些初等函数公式:,2.极限Ø 常用极限:;; Ø Ø 两个重要极限Ø3.连续:定义:第二章导数与微分1.基本导数公式:2.高阶导数:² 牛顿-莱布尼兹公式:3.微分:第三章微分中值定理与微分的应用1.基本定理2. ² 常用初等函数的展式:3.第四章不定积分1.常用不定积分公式:2.常用凑微分公式:3.有特殊技巧的积分第五章定积分1.基本概念,2.常用定积分公式:;;;; Wallis公式:无穷限积分:瑕积分:; ,第六章定积分应用1.平面图形的面积:直角坐标情形:;;参数方程情形:极坐标情形:2.空间立体的体积:由截面面积:旋转体:绕x轴旋转:绕y轴旋转:3.平面曲线的弧长:变力做功:抽水做功:液体压力做功:第七章向量代数与空间解析几何两点间距离公式:,方向余弦:单位向量:数量积:,夹角余弦:向量积:,,空间位置关系:平面的方程:点法式:;一般式:截距式:两平面的夹角:点到平面的距离:两平行平面的距离:直线与平面的夹角:空间曲线,曲线的投影,空间立体,曲面,曲面的投影球面:椭圆柱面:;双曲柱面:;抛物柱面:旋转曲面:圆柱面:;圆锥面:;双叶双曲面:单叶双曲面:;旋转椭球面: ;旋转抛物面:二次曲面:椭球面:抛物面:椭圆抛物面:;双曲抛物面:单叶双曲面:;双叶双曲面:椭圆锥面:总结求极限方法:1.极限定义;2.函数的连续性;3.极限存在的充要条件;4.两个准则;5.两个重要极限;6.等价无穷小;7.导数定义;8利用微分中值定理;9.洛必达法则;10.麦克劳林公式展开;求导法:1.导数的定义(求极限);2.导数存在的充要条件;3.基本求导公式;4.导数四则运算及反函数求导;5.复合函数求导;6.参数方程确定的函数求导;7.隐函数求导法;8.高阶导数求导法(莱布尼茨公式/常用的高阶导数);等式与不等式的证明:1.利用微粉中值定理;2.利用泰勒公式展开;3.函数的单调性;4.最大最小值;5.曲线的凸凹性第八章多元函数微分法及其应用一. 定义:二. 微分:,,全微分:三.四.曲线的切线和法平面1.曲线方程,切线:,法平面:2.曲线方程,切线:,法平面:3.曲线方程,切向量,切线:四.曲面的切平面和法线,法向量:,切平面:,法线:2.,切平面,法线:五.方向导数:梯度:第九章:重积分一. 二重积分:二.三重积分:1.直角坐标系:2.柱面坐标系:3.球面坐标系:二.重积分的应用:1.体积:2.曲面面积:3.质量:或4.质心:或5. 转动惯量:或第章:曲线积分和曲面积分一.第一类曲线积分:(对弧长的曲线积分):二.第二类曲线积分(对坐标的曲线积分):1.计算公式:2.格林公式:3.Stokes公式:4.封闭曲线围城的面积:三.第一类曲面积分:四.第二类曲面积分:1.计算公式:2.投影转化法:3.高斯公式:4第一章无穷级数一.常数项级数二.幂级数:1.收敛半径:2.常用等式:,,,,3.泰勒展开:三.第二章微分方程第20 页共20 页。
大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
高等数学公式导数公式:基本积分表:三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx xtgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec cscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin2cos cos 2cos 2cos 2cos cos 2sin2cos2sin sin 2cos 2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R Cc Bb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学公式大全一、方程1.一元一次方程一元一次方程是指由一个未知数及其平方项和一次项所组成的方程,它的标准形式为:ax + b = 0, 其解为: x = -b/a2.一元二次方程一元二次方程是指由一个未知数的二次项、一次项和常数项组成的方程,它的标准形式为:ax² + bx + c = 0,其解为:x1,2 = [-b ±√(b²-4ac)]/2a3.不定方程不定方程是指方程右端没有任何量,且没有可以代求解的未知数,它的标准形式为:ax + b = 0,其解为:任何实数x即为解4.幂指数方程幂指数方程是指指数函数方程经过变形后所得的方程,它的标准形式为:ax^m+bx^n=c,其解为:x=(c-b)/a5.二元一次方程二元一次方程是指有两个未知数,右端只有一次项的方程,它的标准形式为:ax + by = c,其解为:x = (c-b)/a, y = (c-a)/b6.二元二次方程二元二次方程是指有两个未知数,右端有两次项的方程,它的标准形式为:ax² + by² + cxy + dx + ey + f = 0,其解为: x=-ey/2c+【(ey/2c)² - (d+bx/c) 】^½ / (d+bx/c) 、 y=-dx/2c+【(dx/2c)² - (e+ax/c) 】^½ / (e+ax/c)二、椭圆方程1.一般形式一般形式是指将椭圆方程转化为一般形式来求解的方法,它的标准形式为:Ax²+By²+Cxy+Dx+Ey+F=0,其解为:X=-2CX0/(B-A)±b^½*[(CX0/(B-A))²-(2BX0²/B-A)];。
高等数学必背公式说明:这里有你想要的东西,高等数学必备公式一应俱全。
导数公式:a = sec" x (cfgx)f = -csc 2 x (secx)f = secx-^x (cscx/ = -cscx-ctgx {a x y = a x \na(arcsinx)'=〔——=vl-x 2 (arc COSY )"=1 x\na基本积分表:j tgxdx = -In |c osx| + C j ctgxdx = In |sin x| + C j secxdx = ln|secx ++ Cj c scxdx = In |cscx - ctg^ + C r dx1 x -I —一 =-arctg-+C J^r+对 aaf —2— = f sec 2 xdx = tgx+ C Jcos" x 」| ] *'、— = jcsc 2 xdx = -ctgx + C J secx ・ tgxclx = secx + C J c sex ・ ctgxdx = - c sex + Cjshxdx = chx + C f chxdx = shx + C72]I n = jsin ,xdx =jcos" xdx =-——on_______ _____________ 2 ______________ j* ylx 2 +a 2dx =扌 \/x 2 +a 2 + 牛ln(x + >Jx 2 +a~) + Cf y/x 2 -erdx =丄yjx 2 -a 2 J2 2-x 2+ —arcsin —+ C 2 a. 2u 1-M 2 Xsin x = ------- , cosx = -------- - , u =tQ —9\ + u 2 1 + M 2 2Per -;r= arcsin —+ C =ln(x + 土/ ) + C+ C- — In x + yjx 2 -a 2 +Cj* yja 1 -x 2dx = y 三角函数的有理式积分:1 + w2 a + x一些初等函数: 两个重要极限:双曲正弦皿r -X-x双曲余弦:C/2X =匚丄2双曲正切:〃X=—=chx e x +e ']・ sinxlim ------ = 1lim (1 + 丄)x=e = 2.718281828459045...xX->Xarshx = ln(x + V%2 +1)archx = ±\n(x + Jx? _])1 1 + xart hx = —In ----2 1 — x三角函数公式:•诱导公式:数角sin cos tg ctg-a -sina cosa -tga -ctga90°-a cosa sina ctga tga90°+a cosa -sina -ctga -tga180°-a sma -cosa -tga -ctga180°+a -sina ・ cosa tga ctga27O°-a -cosa -sina ctga tga27O°+a -cosa sma -ctga -tga360°-a -sina cosa -tga -ctga360°+a sma cosa tga ctga•和差化积公式:sin(a ±0) = sinacos0 土cosasin 0 sin a + sin 0 = 2sin a + ^cos—―— cos(tz±^)= cosacos/7 + sinasin 03土tg/3•和差角公式:恥±0匕珂"0 亦匕±0)仝曲50期2 2 sin a-sin 0 = 2cos Q "sin ―—2 2q c a + fl a_ 卩cosa + cosp = 2cos ---------- cos ------ —2 2 cosa-cos0 = 2sin ° + " sin ——2 2•倍角公式:•半角公式^叫宀+響宀+…W+…+S,中值定理与导数应用拉格朗日中值定理:f(b) - /(d) = f 《)0 - a)当F(x) = x 时,柯西中值定理就是立格朗日中值定理<:曲率:sin la = 2sincrcosacos2a = 2cos 2 cr-1 = l-2sin 2 a = cos' a-sin' a ctg2a = ------------2ctga fg2a = 2弋sin 3a = 3sina-4sin 、a cos3a = 4cos a-3cosa1一3妙 a・a sin —= 2a U-cosa l-cosa sin a tg — = ± \ ----------------------- = ----------- = ----------- '2 V 1 + cosa sine? 1 + cosaa , /1 + cosaCOS — =±a ---------2 V 2a ll + cosa 1 + cosa sin er etg — = ±A i---------- = ------------ = ------------ 2 Vl-cosa sin a l-cosa^— = 2RsinC•余弦定理:c 2=«2 +b 2 - labeQsC•反三角函数性质:arcsinx = — -arc COST 2aretgx = —- arcctgx高阶导数公式一莱布尼兹(Leibniz)公式: 柯西中值定理:F(b)-F ⑷广⑷ 陀)-正弦定理:bsinB弧微分公式:ds = y ]\ + y ,2dx,其中y = Fga平均曲率斤彳予卜a:从M 点到M ,点,切线斜率的倾角变化量;As : MM 弧长。
高等数学教材公式高等数学是理工科专业中必修的一门课程,它涵盖了许多重要的数学概念和公式。
本文将逐步介绍一些高等数学教材中常见的公式,帮助读者更好地理解和应用这些公式。
一、导数的基本公式1.1 基本导数公式(1) 常数函数导数公式:若y=c,其中c为常数,则dy/dx=0。
(2) 幂函数导数公式:若y=x^n,其中n为常数,则dy/dx=nx^(n-1)。
(3) 指数函数导数公式:若y=a^x,其中a为常数且a>0,a≠1,则dy/dx=a^x*ln(a)。
(4) 对数函数导数公式:若y=log_a(x),其中a为常数且a>0,a≠1,则dy/dx=1/(x*ln(a))。
1.2 基本求导法则(1) 和差法则:若f(x)=u(x)±v(x),则f'(x)=u'(x)±v'(x)。
(2) 函数乘积法则:若f(x)=u(x)*v(x),则f'(x)=u'(x)*v(x)+u(x)*v'(x)。
(3) 函数商法则:若f(x)=u(x)/v(x),则f'(x)=(u'(x)*v(x)-u(x)*v'(x))/(v(x))^2。
(4) 复合函数求导法则:设y=f(u),其中u=g(x),则dy/dx=f'(u)*g'(x)。
二、积分的基本公式2.1 基本积分公式(1) 幂函数积分公式:∫x^n dx=(x^(n+1))/(n+1)+C,其中n≠-1。
(2) 正弦函数积分公式:∫sin(x) dx=-cos(x)+C。
(3) 余弦函数积分公式:∫cos(x) dx=sin(x)+C。
(4) 指数函数积分公式:∫a^x dx=(a^x)/(ln(a))+C,其中a>0,a≠1。
(5) 对数函数积分公式:∫1/x dx=ln|x|+C。
2.2 基本积分法则(1) 基本求导法则的逆定理:若F'(x)=f(x),则∫f(x) dx=F(x)+C。
高等数学必背公式大全1、勾股定理:a2+b2=c22、椭圆方程:(x-x0)2/a2+(y-y0)2/b2=13、两点公式:,P1P2,=√((x2-x1)2+(y2-y1)2)4、双曲线方程:a2(x2/b2)-(y2/c2)=15、圆的方程:(x-x0)2+(y-y0)2=r26、三角形公式:a2+b2=c27、直线方程:y = kx + b (斜率k和截距b)8、斜率定理:m1*m2=-1/K29、余弦定理:a2 = b2 + c2 - 2bc*cosA10、正弦定理:a * sinA = b * sinB = c * sinC11、贝塞尔曲线方程:(x-x0)4+(y-y0)4=r412、三角函数公式:sin2A + cos2A = 113、极坐标方程:r = a * e(acosθ + bsinθ)14、反正弦定理:y = arcsin(x/a) + c15、偏微分公式:dy/dx = (dy/du) * (du/dx)16、平面四边形公式:a2+b2=c2+d217、反余弦定理:y = arccos(x/a) + c18、三角形面积公式:S = 1/2 * a * b * sinC19、多边形内角和公式:(n-2)*π=∑(内角弧度)20、抛物线公式:y=ax2+bx+c21、多项式求导公式:f'(x) = an-1 * xn-1 + an-2 * xn-2 + …… + a1 * x + a022、函数变换公式:f(x+h) = f(x) + hf'(x)23、矩阵乘法公式:(AB)ij = ∑k=1n(Aik*Bkj)24、求和公式:∑(a1+an)*n/225、模除法:a / b = a mod b + b * (a div b)26、几何平均数公式:(a1*a2*a3*……*an)^(1/n)27、距离公式:L=(x2-x1)^2+(y2-y1)^228、几何中点公式:(x1+x2)/2,(y1+y2)/229、坐标转换公式:x = x0 + (x-x0)cosα - (y-y0)sinα。
高数微积分基本公式大全1.导数的基本公式:-基本导数:(常数)' = 0, (x^n)' = nx^(n-1), (e^x)' = e^x, (a^x)' = a^xln(a), (ln(x))' = 1/x, (sin(x))' = cos(x),(cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x), (sec(x))' = sec(x)tan(x), (csc(x))' = -csc(x)cot(x).-乘法法则:(uv)' = u'v + uv'.-除法法则:(u/v)' = (u'v - uv') / v^2.-链式法则:(f(g(x)))' = f'(g(x)) * g'(x).2.不定积分的基本公式:-基本积分:∫(k) dx = kx + C, ∫(x^n) dx =(1/(n+1))x^(n+1) + C, ∫(e^x) dx = e^x + C, ∫(1/x) dx =ln(|x|) + C, ∫(sin(x)) dx = -cos(x) + C, ∫(cos(x)) dx =sin(x) + C.-分部积分:∫(uv') dx = uv - ∫(u'v) dx.-特殊积分:∫(1/(1+x^2)) dx = arctan(x) + C,∫(1/(sqrt(1-x^2))) dx = arcsin(x) + C.3.微分方程的基本公式:-一阶线性微分方程:dy/dx + P(x)y = Q(x),解为y = e^(-∫P(x)dx) * (∫Q(x)e^(∫P(x)dx)dx + C).-齐次方程:dy/dx = f(y/x),令v = y/x,化为可分离变量的形式求解.-常系数线性齐次微分方程:ay'' + by' + cy = 0,其特征方程为ar^2 + br + c = 0,解为y = C1e^(r1x) + C2e^(r2x)。
大学高等数学所有的公式大全精华在大学的数学学习中,高等数学是一门非常重要和广泛应用的学科。
学好高等数学,不仅需要理解和掌握其概念和原理,还需要熟练掌握其中的各种公式。
本文将为大家汇总并分享一份大学高等数学的公式大全,帮助大家更好地学习和运用这门学科。
一、导数和微分1. 函数y=f(x)的导函数:f'(x)2. 基本微分公式:(1)常数函数微分公式:d(cf(x))/dx = cf'(x),其中c为常数(2)幂函数微分公式:d(x^n)/dx = nx^(n-1),其中n为实数(3)指数函数微分公式:d(e^x)/dx = e^x(4)对数函数微分公式:d(lnx)/dx = 1/x(5)三角函数微分公式:a) d(sin x)/dx = cos xb) d(cos x)/dx = -sin xc) d(tan x)/dx = sec^2xd) d(cot x)/dx = -csc^2xe) d(sec x)/dx = sec x * tan xf) d(csc x)/dx = -csc x * cot x(6)反三角函数微分公式:a) d(arcsin x)/dx = 1/√(1-x^2)b) d(arccos x)/dx = -1/√(1-x^2)c) d(arctan x)/dx = 1/(1+x^2)d) d(arccot x)/dx = -1/(1+x^2)e) d(arcsec x)/dx = 1/(x√(x^2-1))f) d(arccsc x)/dx = -1/(x√(x^2-1))二、积分1. 基本积分表达式:(1)常数函数积分:∫c*dx = cx,其中c为常数(2)幂函数积分:∫x^n*dx = (1/(n+1))x^(n+1),其中n≠-1(3)指数函数积分:∫e^x*dx = e^x(4)对数函数积分:∫(1/x)*dx = ln|x|(5)三角函数积分:a) ∫sin x*dx = -cos xb) ∫cos x*dx = sin xc) ∫tan x*dx = -ln|cos x|d) ∫cot x*dx = ln|sin x|e) ∫sec x*dx = ln|sec x + tan x|f) ∫csc x*dx = ln|csc x - cot x|(6)反三角函数积分:a) ∫(1/√(1-x^2))*dx = arcsin xb) ∫(-1/√(1-x^2))*dx = arccos xc) ∫(1/(1+x^2))*dx = arctan xd) ∫(-1/(1+x^2))*dx = arccot xe) ∫(1/(x√(x^2-1)))*dx = sec^(-1)xf) ∫(-1/(x√(x^2-1)))*dx = csc^(-1)x三、级数1. 等差数列求和:(1)数列前n项和:Sn = (a1+an)*n/2(2)数列前n项和(已知首项和公差):Sn = (n/2)*(2a1+(n-1)d) 2. 等比数列求和:(1)数列前n项和(|q|<1):Sn = a1*(1-q^n)/(1-q)(2)无穷等比数列和(|q|<1):S = a1/(1-q)3. 幂级数收敛性:收敛:∑(n=0,∞)a^n(|a|<1)发散:∑(n=0,∞)a^n(|a|≥1)四、微分方程1. 常微分方程:(1)一阶线性常微分方程:dy/dx + P(x)y = Q(x)(2)一阶齐次线性常微分方程:dy/dx + P(x)y = 0(3)二阶齐次线性常微分方程:d^2y/dx^2 + P(x)dy/dx + Q(x)y = 0(4)常系数齐次线性常微分方程:d^n/dx^n + a_(n-1)d^(n-1)/dx^(n-1) + ... + a_1dy/dx + a_0y = 02. 偏微分方程:(1)一维波动方程:∂^2u/∂t^2=c^2∂^2u/∂x^2(2)二维泊松方程:∂^2u/∂x^2+∂^2u/∂y^2=f(x,y)(3)三维拉普拉斯方程:∂^2u/∂x^2+∂^2u/∂y^2+∂^2u/∂z^2=0五、概率与统计1. 古典概型计数原理:若一个事件可由n个步骤进行描述,第k个步骤有n_k种可能,则该事件共有n_1*n_2*...*n_k种可能2. 排列组合:(1)排列数公式:A(n,m) = n!/(n-m)!(2)组合数公式:C(n,m) = n!/(m!*(n-m)!)3. 随机事件概率计算:(1)基本事件概率公式:P(A) = n(A)/n(S),其中n(A)为事件A 发生的可能结果数,n(S)为样本空间S的可能结果数通过以上列举的公式,希望能够帮助大家更好地学习和理解大学高等数学。
高等数学常用公式大全常用高数公式以下是常用的平方立方公式:1) a² - b² = (a + b) (a - b)2) a² + 2ab + b² = (a + b)²3) a² - 2ab + b² = (a - b)²4) a³ + b³ = (a + b) (a² - ab + b²)5) a³ - b³ = (a - b) (a² + ab + b²)6) a³ + 3a²b + 3ab² + b³ = (a + b)³7) a³ - 3a²b + 3ab² - b³ = (a - b)³8) a² + b² + c² + 2ab + 2bc + 2ca = (a + b + c)²9) an - bn = (a - b) (an-1 + an-2b +。
+ abn-2 + bn-1) (n ≥ 2)三角函数公式大全以下是两角和公式:sin(A + B) = sinAcosB + cosAsinBsin(A - B) = sinAcosB - cosAsinBcos(A + B) = cosAcosB - sinAsinBcos(A - B) = cosAcosB + sinAsinBtan(A + B) = (tanA + tanB) / (1 - tanAtanB)tan(A - B) = (tanA - tanB) / (1 + tanAtanB)cot(A + B) = (cotAcotB - 1) / (cotB + cotA)cot(A - B) = (cotAcotB + 1) / (cotB - cotA)以下是倍角公式:tan2A = 2tanA / (1 - tan²A)sin2A = 2sinAcosAcos2A = cos²A - sin²A = 2cos²A - 1 = 1 - 2sin²A 以下是三倍角公式:sin3A = 3sinA - 4sin³Acos3A = 4cos³A - 3cosAtan3A = tanA · tan(A + π/3) · tan(A - π/3)以下是半角公式:sin(A/2) = ±√[(1 - cosA) / 2]cos(A/2) = ±√[(1 + cosA) / 2]tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]cot(A/2) = ±√[(1 + cosA) / (1 - cosA)]以下是和差化积公式:sinA + sinB = 2sin[(A + B)/2]cos[(A - B)/2] sinA - sinB = 2cos[(A + B)/2]sin[(A - B)/2] cosA + cosB = 2cos[(A + B)/2]cos[(A - B)/2] cosA - cosB = -2sin[(A + B)/2]sin[(A - B)/2]tan(A + B) = sin(A + B) / cosAcosB以下是积化和差公式:sinAcosB = (sin(A + B) + sin(A - B)) / 2cosAcosB = (cos(A + B) + cos(A - B)) / 2总结以上是常用的高数公式,掌握这些公式可以帮助我们更好地解决数学问题。
高等数学公式汇总(大全)导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学必背公式说明:这里有你想要的东西,高等数学必备公式一应俱全。
导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学所有公式大全高等数学是一门涉及到多个概念和公式的学科,其中包括微积分、线性代数、概率论等的知识。
下面将介绍一些高等数学中常见的公式。
微积分部分:1. 泰勒展开式:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... +f^n(a)(x-a)^n/n! + R_n(x),其中 f'(a) 表示函数 f(x) 在点 a 处的导数,f''(a) 表示函数 f(x) 在点 a 处的二阶导数,f^n(a) 表示函数 f(x) 在点 a 处的 n 阶导数。
2. 拉格朗日中值定理:如果函数 f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导,则存在一点 c ∈ (a, b),使得 f(b)-f(a) = f'(c)(b-a)。
3. 法拉第定律:对于闭曲线 C 上的可微函数 f(x, y),有∮C f(x, y)ds = 0,其中 ds 表示 C 上的长度元素。
4. 一元函数积分学基本公式:- 定积分的线性性质:∫[a, b] (f(x) + g(x))dx = ∫[a, b] f(x)dx +∫[a, b] g(x)dx。
- 定积分的加减法则:∫[a, b] f(x)dx - ∫[a, c] f(x)dx = ∫[c, b]f(x)dx。
- 定积分的换元法则:∫[a, b] f(g(x))g'(x)dx = ∫[g(a), g(b)]f(u)du。
- 分部积分法:∫[a, b] u(x)v'(x)dx = [u(x)v(x)]_[a, b] - ∫[a, b]u'(x)v(x)dx。
线性代数部分:1. 向量的线性变换:对于一个 n 维向量 V 和一个实数 a,线性变换 T(aV) = aT(V)。
2. 矩阵乘法:对于一个 m×n 的矩阵 A 和一个 n×p 的矩阵 B,它们之间的乘积为一个 m×p 的矩阵 C,其中C(i,j) = ∑[k=1->n] A(i,k)B(k,j)。
高等数学公式大全(免费)高等数学公式大全初等函数中有两个重要的极限:$e^x-e^{-x}$和$\frac{e^x+e^{-x}}{2}$分别对应着双曲正弦和双曲余弦,它们的公式分别为:$\operatorname{sh}x=\frac{e^x-e^{-x}}{2}$和$\operatorname{ch}x=\frac{e^x+e^{-x}}{2}$。
双曲正切的公式为$\operatorname{th}x=\frac{\operatorname{sh}x}{\operatorname{ ch}x}=\frac{e^x-e^{-x}}{e^x+e^{-x}}$,反双曲正弦的公式为$\operatorname{arsh}x=\ln(x+\sqrt{x^2+1})$,反双曲余弦的公式为$\operatorname{arch}x=\pm\ln(x+\sqrt{x^2-1})$,反双曲正切的公式为$\operatorname{arth}x=\ln\frac{1+x}{1-x}$。
三角函数中有许多公式,其中包括诱导公式和和差角公式。
诱导公式的形式如下:begin{array}{|c|c|c|c|c|c|c|c|c|c|}XXXtext{函数} & \text{角A} & -\alpha & 90^\circ-\alpha &90^\circ+\alpha & 180^\circ-\alpha & 180^\circ+\alpha &270^\circ-\alpha & 270^\circ+\alpha & 360^\circ-\alpha &360^\circ+\alpha \\XXXsin x &。
& \sin x & \cos x & \cos x & \sin x & -\sin x & -\cos x & -\cos x & -\sin x & \sin x \\XXXcos x &。
高数的基本公式大全高等数学(简称高数)是大多数理工科专业的重要学科之一,其理论基础和应用广泛深入。
在学习高数的过程中,熟练掌握各类基本公式是非常关键的。
本文将为大家总结并介绍一些高数中常用的基本公式,希望能对广大学生有所指导和帮助。
一、导数公式1. 基本导数:常数导数为0,幂函数求导是将幂次降低一次并乘以原幂次系数。
2. 乘积法则:$(u * v)' = u' * v + u * v'$3. 商法则:$\left(\frac{u}{v}\right)' = \frac{u' * v - u * v'}{v^2}$4. 复合函数求导法则:$(f(g(x)))' = f'(g(x)) * g'(x)$5. 反函数求导法则:$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$6. 指数函数求导法则:$(a^x)' = a^x * \ln(a)$7. 对数函数求导法则:$(\log_a{x})' = \frac{1}{x *\ln(a)}$8. 三角函数求导法则:$(\sin{x})' = \cos{x}$,$(\cos{x})' = -\sin{x}$,$(\tan{x})' = \sec^2{x}$9. 反三角函数求导法则:$(\arcsin{x})' = \frac{1}{\sqrt{1- x^2}}$,$(\arccos{x})' = -\frac{1}{\sqrt{1 - x^2}}$,$(\arctan{x})' = \frac{1}{1 + x^2}$二、积分公式1. 基本积分:幂函数的积分是将幂次升高一次并除以新的幂次。
2. 基本定积分:$\int_a^b{f(x)dx} = F(b) - F(a)$,其中$F(x)$为$f(x)$的一个原函数。
高等数学所有公式高等数学涵盖了多个方向和领域,包括微积分、线性代数、常微分方程等。
下面列出一些高等数学中常见的公式:微积分方面:1. 导数定义:$f'(x)=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$2. 基本导数公式:$(C)'=0$、$(x^n)'=nx^{n-1}$、$(\sin x)'=\cos x$、$(\cos x)'=-\sin x$、$(e^x)'=e^x$、$\left(\lnx\right)'=\frac{1}{x}$等3. 链式法则:$\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$积分与不定积分方面:1. 不定积分定义:$\int f(x)dx=F(x)+C$2. 基本积分公式:$\int x^n dx=\frac{1}{n+1}x^{n+1}+C$、$\int \sin x dx=-\cos x +C$、$\int \cos x dx=\sin x+C$、$\int e^x dx=e^x +C$3. 牛顿-莱布尼茨公式:$\int_a^b f(x)dx=F(b)-F(a)$级数与数列方面:1. 数列极限的定义:$\lim\limits_{n\to\infty}a_n=A$2. 数列收敛的判定:夹逼准则、单调有界准则等3. 级数收敛的判定:比较判别法、比值判别法、根值判别法等4. 幂级数的收敛半径:$\frac{1}{R}=\lim\limits_{n\to\infty}\left(\frac{a_{n+1}}{a_n}\ri ght)$线性代数方面:1. 矩阵的逆:若$AB=BA=I$,则称$A$是可逆矩阵,且$B$为$A$的逆矩阵,记作$A^{-1}$2. 矩阵行列式:设$A=(a_{ij})_{n\times n}$为$n$阶矩阵,则$|A|=\sum\limits_{j=1}^n(-1)^{i+j}a_{ij}\cdot M_{ij}$,其中$M_{ij}$为元素$a_{ij}$的代数余子式3. 特征值与特征向量:设$A$为$n$阶矩阵,若存在数$\lambda$和非零向量$X$,使得$AX=\lambda X$,则称$\lambda$为$A$的特征值,$X$为对应于$\lambda$的特征向量常微分方程方面:1. 一阶线性常微分方程:$\frac{dy}{dx}+P(x)y=Q(x)$,其中$P(x)$和$Q(x)$为已知函数2. 二阶常系数齐次线性方程:$a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=0$,其中$a,b,c$均为常数3. 欧拉公式:$e^{ix}=\cos x + i\sin x$,其中$i$为虚数单位需要注意的是,以上只列举了部分高等数学中的公式,且实际应用中还涉及到更多的公式和概念。
高等数学函数基本公式1. 基本初等函数求导公式函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间xI 内也可导,且)(1)(y x f ϕ'=' 或 dy dx dx dy 1=复合函数求导法则设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=2. 双曲函数与反双曲函数的导数.双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.可以推出下表列出的公式:三、基本初等函数的微分公式与微分运算法则 从函数的微分表达式:d ()d y f x x '=可以看出,要计算函数的微分,只要计算函数的导数,再乘以自变量的微分.因此,可得如下的微分公式和微分运算法则. 1. 基本初等函数的微分公式由基本初等函数的导数公式,可以直接写出基本初等函数的微分公式.为了便于对照,列表于下:2.函数和、差、积、商的微分法则由于函数和、差、积、商的求导法则,可推得相应的微分法则.为了便于对照,列成下表(表中)(),(xvvxuu==都可导).现在我们仅证明乘积的微分法则.3. 复合函数的微分法则(一阶微分形式的不变性)一阶微分形式不变性:设f是可微函数,)(ufy=,则无论u是自变量,或是另一个变量x的可微函数,都同样有d()dy f u u'=.4.例题例3)12sin(+=xy,求d y.例42ln(1e)xy=+,求d y.例513e cosxy x-=,求d y.例6在下列等式左端的括号中填入适当的函数,使等式成立.(1)()d d x x=;(2)()d cos d t tω=.。
高等数学上常用公式定理1.导数的基本公式:(a) (c^k)' = kc^(k-1) * f'(x) ,其中c为常数,k为常数(b) (ax^n)' = anx^(n-1),其中a为常数,n为常数(c) (sinx)' = cosx, (cosx)' = -sinx, (tanx)' = sec^2x, (cotx)' = -csc^2x(d) (lnx)' = 1/x,(ex)' = ex , (a^x)' = a^x * ln(a)2.基本积分公式:(a) ∫kdx = kx + C,其中k为常数,C为常数(b) ∫x^n dx = (x^(n+1))/(n+1) + C,其中n≠-1,C为常数(c) ∫1/x dx = ln,x, + C,其中C为常数(d) ∫e^xdx = e^x + C3.基本微分方程:(a) dy/dx + P(x)y = Q(x),其中P(x)和Q(x)为已知函数,求解y(x)(b)y'+P(x)y=g(x),其中P(x)和g(x)为已知函数,求解y(x)(c)y'+yP(x)=Q(x),其中P(x)和Q(x)为已知函数,求解y(x)4.泰勒级数展开:函数f(x)在a点的n阶泰勒级数展开式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n(x),其中R_n(x)为剩余项5.定积分的基本定理:(a) 若F(x)是f(x)的一个原函数,则有∫[a,b] f(x)dx = F(b) -F(a)(b) 若F(x)是f(x)的一个原函数,则有∫[a,b]f(x)dx =∫[a,c]f(x)dx + ∫[c,b]f(x)dx,其中a < c < b6.常用级数:(a)等比数列求和公式:Sn=a(1-q^n)/(1-q),其中a为首项,q为公比(b)幂级数:f(x)=Σ(a_n*x^n),其中a_n为常数,n从0到无穷大7.连续函数定理:如果函数f(x)在区间[a,b]上连续,且在[a,b]的任意一点x处可导,则f(x)在[a,b]上有界。