湖南省益阳市2017_2018学年七年级数学上学期期中试题(word版含答案)
- 格式:docx
- 大小:225.57 KB
- 文档页数:5
期中联考七年级数学试卷时量:120分钟满分:120分命题人:夏朝国审核人:段春燕一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题3分,共36分)1.如果“盈利5%”记作+5%,那么-3%表示( )A. 亏损3%B. 亏损8%C. 盈利2%D. 少赚2%2.﹣的相反数是()A. B. ﹣ C. ﹣2 D. 23.下列各数中是无理数的为()A. 0B.C.﹣3D.4.在数轴上与表示-1的点距离3个单位长度的点表示的数是()A. 2B. 4C. -4D. 2和-45.2017年春节黄金周我市共接待游客2234000人次,将2234000用科学记数法表示为( )A. 22.34×105B. 2.234×105C. 2.234×106D. 0.2234×1076.用四舍五入法对2.098176取近似值,其中正确的是()A. 2.09(精确到0.01)B. 2.098(精确到千分位)C. 2.0(精确到十分位)D. 2.0981(精确到0.0001)7.下列各式,,,,中单项式的个数有()A. 4个B. 3个C. 2个D. 1个8.下列说法正确的是()A. 的系数是B. 是单项式C. 是5次单项式D. 是四次多项式9.-(a-b+c)变形后的结果是().A. –a+b+cB. –a+b–cC. –a–b+cD. –a–b–c10.下列方程中,是一元一次方程的是()A. x2-4x=3 ,B. 3x-1=,C. x+2y=1D. xy-3=511.下列方程中,以x=-1为解的方程是()A. B. 7(x-1)=0C. 4x-7=5x+7D. x=-312.运用等式性质进行变形,不一定正确的是()A. 如果,那么B. 如果,那么C. 如果,那么D. 如果,那么二.填空题(本题共6个小题,每小题3分,共18分)13.若|a|=5,|b|=2,a<b,则a-b=__________14.如果,那么.15.在﹣3,﹣2,﹣1,4,6中取出三个数,把三个数相乘,所得到的最大乘积是16.当m=_____时,单项式x2m-1y2与-8x m+3y2是同类项.17.如图所示是计算机某计算程序,若开始输入x=﹣3,则最后输出的结果是_______.18.如图,边长为1的正方形ABCD,沿着数轴顺时针连续滚动.起点A和−2重合,则数轴上数2016所对应的字母是_______________.三.解答题(共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26每小题10分,共66分,解答应写出必要的文字说明或演算步骤.)三、说明、证明过程或演算步骤)19.有理数的运算(每小题4分,共8分)(1)3+(﹣11)﹣(﹣9)(2)20.整式的加减运算(每小题5分,共10分)(1)3xy﹣4xy﹣(﹣2xy)(2)3a﹣2b+4c﹣2a﹣6c+b21.化简求值:5(4a2-2ab3)-4(5a2-3ab3),其中a=-1,b=2.22.已知a,b互为相反数,c、d互为倒数,x的绝对值为5.试求下式的值:.23.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少?请解答上述问题.24.某共享单车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):(1)根据记录可知本周前三天共生产_____辆;(2)产量最多的一天比产量最少的一天多生产_____辆;(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25. 阅读下列材料:一般地,n个相同的因数a相乘记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b 的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算:log28=______;(2)计算:;(3)log55、log525、log5125之间满足怎样的关系式,请说明理由。
湖南省益阳市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)(2017·莒县模拟) 如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A . 点AB . 点BC . 点CD . 点D2. (2分)在数1,0,-1,-2中,最大的数是()A . -2B . -1C . 0D . 13. (2分)(2018·房山模拟) 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A .B .C .D .4. (2分)(2012·阜新) ﹣5的相反数是()A . ﹣5B .C . 5D . ﹣5. (2分)在﹣2,﹣, 0,2四个数中,最小的数是()A . ﹣2B . -C . 0D . 26. (2分)在数轴上,把表示-4的点移动2个单位长度后,所得到的对应点表示的数是()A . -1B . -6C . -2或-6D . 无法确定7. (2分) (2018七上·故城期末) 若a=﹣2×32 , b=(﹣2×3)2 , c=﹣(2×3)2 ,则下列大小关系中正确的是()A . a>b>cB . b>c>aC . b>a>cD . c>a>b8. (2分)目前我县在校学生约为21600名,21600用科学记数法表示正确的是()A . 2.16×103B . 21.6×103C . 0.216×104D . 2.16×1049. (2分)清晨蜗牛从树根沿着树干往上爬,树高10m,白天爬4m,夜间下滑3m,它从树根爬上树顶,需()A . 10天B . 9天C . 8天D . 7天10. (2分)某种细菌在培养过程中,每半小时分裂1次,每次一分为二.若这种细菌由1个分裂到16个,那么这个过程要经过()A . 1.5小时;B . 2小时;C . 3小时;D . 4小时11. (2分)如图,用16m长的铝合金做成一个长方形的窗框.设长方形窗框的横条长度为xm,则长方形窗框的面积为()A . x(16﹣x)m2B . x(8﹣x)m2C . x()m2D . x()m212. (2分)暑假里父母带小明外出旅行,了解到东方旅行社规定:若父母各买一张全票,则孩子的费用可按全票价七折优惠(即优惠30%);而光明旅行社规定:三人旅行可按团体票计价,即按全票价的90%收费,若已知旅行社的全票价相同,则实际收费()A . 东方旅行社比光明旅行社低B . 东方旅行社与光明旅行社相同C . 东方旅行社比光明旅行社高D . 谁高谁低视全票价多少而定13. (2分)如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2012次输出的结果为()A . 3B . 6C . 32012D . 6201214. (2分)(2017·连云港模拟) 下列各式结果是负数的是()A . ﹣(﹣3)B . ﹣|﹣3|C . 3﹣2D . (﹣3)2二、填空题 (共4题;共6分)15. (3分) -的相反数是________绝对值是________倒数是________16. (1分)计算(﹣2)×3×(﹣1)的结果是________.17. (1分)江西,简称赣,别称赣鄱大地,面积约166900平方公里,将近似数166900用科学记数法表示且保留三位有效数字应为________18. (1分)(2018·江苏模拟) 如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数的图象上,从左向右第3个正方形中的一个顶点A的坐标为,阴影三角形部分的面积从左向右依次记为、、、、,则的值为________ 用含n的代数式表示,n为正整数三、解答题 (共6题;共65分)19. (5分)出租车司机小张某天上午的营运全是东西走向的路线,假定向东为正,向西为负,他这天上午行车里程如下:(单位:km)+12,﹣4,+15,﹣13,+10,+6,﹣22.求:(1)小张在送第几位乘客时行车里程最远?(2)若汽车耗油0.1L/km,这天上午汽车共耗油多少升?20. (10分) (2017七上·卢龙期末) 计算:(1)(﹣3)2﹣×(﹣)2+4﹣23(2)﹣3(2a2﹣2ab)+4(a2+ab﹣6)21. (15分) (2016七上·腾冲期中) 计算:(1)(﹣7.3)﹣(﹣25.7)+(﹣13.7)﹣(﹣7.3)(2)( + ﹣)÷(﹣)(3)﹣32﹣|﹣6|﹣3×(﹣)+(﹣2)2÷ .22. (10分) (2017七上·云南月考) 已知长方形的长为a,宽为b,空白部分为半圆(1)求阴影部分的面积.(用a、b字母表示)(2)当a=3,b=1时,求阴影部分的面积.(结果用π表示)23. (15分)利用加法运算律简便运算.(1)(-5)+3+(+5)+(-2);(2)(3)24. (10分) (2019七上·荣昌期中) 某校计划购买 20 张书柜和一批书架(书架不少于 20 个),现从 A、B 两家超市了解到:同型号的产品价格相同,书柜每张 210 元,书架每个 70 元,A 超市的优惠政策为每买一张书柜赠送一个书架,B 超市的优惠政策为所有商品打八折.设购买书架 a 个.(1)若规定只能到其中一个超市购买所有物品,请分别用含有 a 的代数式写出在 A、B 两家超市购买所有物品所需的费用(要求:化简);(2)在什么情况下到两家超市购买所用价钱一样?参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共4题;共6分)15-1、16-1、17-1、18-1、三、解答题 (共6题;共65分) 19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
1 在代数式 x2 + 5, - 1, x 2 -3 x + 2, π , 5 , x 2 +x + 1 中,整式有(位 … 姓… C 、 -5abc 2 的系数是 -5 D 、 2 a + b是一次单项式 …… … … … … … … 2017~2018 学年第一学期考试七年级数学试卷题号 一 二 三 四 总分得分一、选择题(每小题 3 分,共 30 分)1xA 、3 个B 、4 个C 、5 个D 、6 个)… … 号 … 座装 … … … … … … … … 订 … … 名 … … … … … … 线 … … … … … 级 … 班… … …2、我国教育事业快速发展,去年普通高校招生人数达 540 万人,用科学记数法表示 540 万人为( )A 、5.4 ×102 人B 、0.54×104 人C 、5.4 ×106 人D 、5.4×107 人3、一潜水艇所在的海拔高度是-60 米,一条海豚在潜水艇上方 20 米,则海豚所在的高度是海拔( )A 、-60 米B 、-80 米C 、-40 米D 、40 米4、原产量 n 吨,增产 30%之后的产量应为( )A 、(1-30%)n 吨B 、(1+30%)n 吨C 、(n+30%)吨D 、30%n 吨5、下列说法正确的是( )①0 是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小A 、①②B 、①③C 、①②③D 、①②③④6、如果 0 < a < 1 ,那么 a 2 , a, 1 之间的大小关系是aA 、 a < a 2 < 1B 、 a 2 < a < 1C 、 1 < a < a 2D 、 1 < a 2 < aa a a a7、下列说法正确的是( )1A 、0.5ab 是二次单项式B 、 x 和 2x 是同类项( ) 9 38、已知:A和B都在同一条数轴上,点A表示-2,又知点B和点A相距5个单位长度,则点B表示的数一定是()A、3B、-7C、7或-3D、-7或39、一个多项式与x2-2x+1的和是3x-2,则这个多项式为()A、x2-5x+3B、-x2+x-1C、-x2+5x-3D、x2-5x-1310、观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32016的个位数字是()A、3B、9C、7D、1二、填空题(每题3分,共15分)11、单项式-2πxy2的系数是____________。
益阳市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七下·万州期中) 在有理数﹣6,3,0,﹣7中,最小的数是()A . ﹣6B . 3C . 0D . ﹣72. (2分)(2017·濮阳模拟) 如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是()A . 爱B . 国C . 善D . 诚3. (2分) (2017七上·乐清月考) 若实数a、b、c在数轴上对应点的位置如图所示, 则|c|-|b-a|+|b+c|等于()A . -aB . -a+2bC . -a-2cD . a-2b4. (2分) a-1与3-2a是某正数的两个平方根,则实数a的值是()A . 4B .C . 2D . -25. (2分)(2017·黔南) 2017的相反数是()A . ﹣2017B . 2017C . ﹣D .6. (2分)下面用数轴上的点P表示实数﹣2,正确的是()A .B .C .D .7. (2分)如图所示,将图沿虚线折起来,得到一个正方体,那么“1”的对面是()A . 2B . 4C . 5D . 68. (2分) (2019七上·郑州月考) 观察下列算式:观察下列算式:21-2=0,22-2=2,23-2=6,24-2=14,25-2=30,26-2=62,27-2=126,28-2=254,…根据上述算式中的规律,你认为22017-2的末位数字是()A . 6B . 0C . 2D . 8二、填空题 (共8题;共10分)9. (1分)单项式5x2y的系数为________10. (1分)(2017·海陵模拟) 2016年泰州市全市地区生产总值约为4100亿元,这个数据用科学记数法可表示为________元.11. (1分) (2019七上·利辛月考) 代数式4x2m-1y与-x5-my的和是单项式,则m=________。
2018-2019学年度第一学期期中质量检测七年级数学试题一 选择题:每小题3分,共8小题,共24分。
1.-3的相反数是( )A.3B.-3C.31 D.-312.如图所示的花瓶中,( )的表面,可以看作由所给的平面图形绕虚线旋转一周形成的。
3.根据国家旅游局数据中心综合测算,2016年国庆期间,全国累计旅游收入达四千八百亿元,四千八百亿元用科学记数法表示是( )A.4800×108B.48×1010 D.4.8×103 D.4.8×1011 4.一个六棱柱模型如图所示,底面边长都是5cm ,侧棱长为4cm ,这个六棱柱的所有侧面的面积之和是( )A.20cm 2B.60cm 2C.120cm 2D.240cm 25.下列各数:0,2-,-(-2),-32,21-,其中非负数有( )个.A.4B.3C.2D.16.一辆汽车a 秒行驶6m 米,则它2分钟行驶( ).A.3m 米 B.am 10米 C.am 20米 D.am 120米7.下列说法正确的有()①-43表示3个-4相乘;②一个有理数和它的相反数的积必为负数;③数轴上表示2和-2的点到原点的距离相等;④若a2=b2,则a=b.A.1个B.2个C.3个D.4个8.两堆棋子,将第一堆的3个棋子移动到第二堆之后,现在第二堆的棋子数是第一堆棋子的3倍,设第一堆原有m个棋子,则第二堆的棋子原有()个。
A.3mB.3m-3C.33m D.3m-12二填空题:每小题3分,共8小题,共24分。
9.如果收入50元记作+50元,那么支出35元记作.10.将一个长方体截去一角边长一个如图的新几何体,这个新几何体有个面,条棱,个顶点.11.某市2011年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高℃.12.请写出一个只含有字母x、y的三次二项式:.13.图1和图2中所有的正方形都全等。
将图1的正方形放在图2中的(从①②③④⑤中选填)位置,所组成的图形能够围成正方体。
湖南省益阳市某校初一(上)期中考试数学试卷一、选择题1. −1+2=( )A.−3B.3C.−1D.12. 多项式1+2x2y−3xy3的次数及项数为( )A.3,−3B.3,3C.4,3D.3,43. 下列代数式中符合书写要求的是( )A.ab4B.413m C.x÷y D.−5a24. 比m的平方的3倍大1的数是( )A.(3m)2+1B.3(m+1)2C.3m2+1D.(3m+1)25. −|−3|的值是( )A.−3B.3C.−(−3)D.16. 下列去括号错误的是( )A.3a2−(2a−b)=3a2−2a+bB.5x2+(−2x+y)=5x2−2x+yC.2m2−3(m−1)=2m2−3m−1D.−(2x−y)+(−x2+y2)=−2x+y−x2+y27. 下列各式中,是一元一次方程的是( )A.3x−1=2xB.4x+3C.1x=2 D.2x+y=58. 下列变形错误的是( )A.若x+1=2,则x=1B.若x−3=y−3,则x=yC.若2x+1=x,则2x−x=1D.若x+12=y+12,则x=y9. 已知方程(m−1)x|m|+3=0是关于x的一元一次方程,则m的值为( )A.1或−1B.1C.−1D.0或110. 点A,B在数轴上的位置如图所示,其对应的数分别是a和b,下列选项中,哪个是正确的( )①b+a<0②−a−b<0③|a|−2>|b|−2④−ba>0A.①②B.①④C.②③D.③④二、填空题如果节约20m的彩带记作+20m,那么浪费10m的彩带记为________.我国第一艘航母“辽宁舰”的最大的排水量约为68000t,用科学记数法将68000表示为:________.某种商品的标价为a元,当销售旺季过后,又以8折的价格开展促销活动,这时这种商品的销售单价为________元单项式−2πa2b3c3的系数是________.a−2a=________.已知2x−2y+3=7,则y−x的值为________.已知多项式x|m|+(m−2)x−10是二次三项式,m为常数,则m的值为________.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,⋯猜想13+23+33+⋯+103=________.三、解答题计算下列各题(1)(−125)÷94+125×(23)2(2)(5x−2y)−2(4x−2y)教室里原来有a位同学,后来有(b−2)位同学去打篮球,又有(b+3)位同学去参加兴趣小组,则最后教室里还有多少人?当a=30,b=5时,最后教室里还有多少人?当a=2时,求a2+6a+2a2−a+2的值.按要求列方程(不需要求解)(1)一个方程的解为x=2,请写出一个符合条件的方程(2)根据“x的3倍与5的和比x的12少3”列出方程a,b满足(a−2)2+|b+1|=0,求2ab2−2(ab+32a2b)+5ab的值.如图,长方形广场的四角都有一边为xm的正方形的草地,长方形的长为am,宽为bm.(1)试用代数式表示空白部分的面积;(2)若长方形广场的长为50m,宽为40m,正方形的边长为9m,求空白部分的面积.若mx2+(n+1)x+3−2x−2x2的值与x无关,试回答下列问题(1)求m,n的值;(2)在(1)的条件下,求3m2−2(m2+2m)−m2+2+4m的值.观察下列等式:第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);第4个等式:a4=17×9=12×(17−19);…请解答下列问题:(1)按以上述规律列出第5个等式:a5=________=________;(2)用含有n的代数式表示第n个等式:a n=________=________(n为正整数);(3)求a1+ a2+a3+a4+...+a100的值.参考答案与试题解析湖南省益阳市某校初一(上)期中考试数学试卷一、选择题1.【答案】D【考点】有理数的加法【解析】此题暂无解析【解答】解:−1+2=2−1=1.故选D.2.【答案】C【考点】多项式的项与次数【解析】此题暂无解析【解答】解:多项式1+2x2y−3xy3的次数为−3xy3的次数,共有三项,所以1+3=4,所以次数为4,项数为3.故选C.3.【答案】D【考点】代数式的概念【解析】依照代数式书写的要求可得知A、B、C均不合格,从而得出结论.【解答】解:按照代数式书写的要求可知:A,4ab;B,134m;C,xy.故选D.4.【答案】C【考点】列代数式【解析】根据题意表示出:m的平方的3倍,即3m2,进而得出答案.【解答】解:由题意可得:m的平方的3倍为3m2,所以比m的平方的3倍大1的数是3m2+1.故选C.5.【答案】A【考点】绝对值【解析】此题暂无解析【解答】解:−|−3|=−3.故选A.6.【答案】C【考点】去括号与添括号【解析】根据去括号法则将各项逐一判断即可,要注意括号前面的符号,以选用合适的法则.【解答】解:A,3a2−(2a−b)=3a2−2a+b,去括号正确,故本选项不符合题意;B,5x2+(−2x+y)=5x2−2x+y,去括号正确,故本选项不符合题意;C,2m2−3(m−1)=2m2−3m+3,去括号错误,故本选项符合题意;D,−(2x−y)+(−x2+y2)=−2x+y−x2+y2,去括号正确,故本选项不符合题意.故选C.7.【答案】A【考点】一元一次方程的定义【解析】根据一元一次方程的定义判断即可.【解答】解:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.A,符合一元一次方程的定义,是一元一次方程,故本项正确;B,不是方程,故本项错误;C,不是整式方程,故本项错误;D,含有两个未知数,故本项错误.故选A.8.【答案】C【考点】等式的性质【解析】根据等式的性质进行分析、判断.【解答】解:A,在等式x+1=2的两边同时减去1得到x=1,故A选项正确;B,在等式x−3=y−3的两边同时加上3得到x=y,故B选项正确;C,在等式2x+1=x的两边同时加上(−x−1)得到2x−x=−1,故C选项错误;D,在等式x+12=y+12的两边同时乘以2得到x+1=y+1,然后在等式的两边减去1,得到x=y,故D选项正确.故选C.9.【答案】C【考点】一元一次方程的定义【解析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意得:{|m|=1,m−1≠0,解得:m=−1.故选C.10.【答案】B【考点】数轴绝对值在数轴上表示实数有理数大小比较【解析】根据图示,可得0<a<2,b<−2,据此逐项判断即可.【解答】解:根据图示,可得0<a<2,b<−2,且|a|<|b|,①两数相加,取绝对值较大数的符号,故b+a取负号,结果为负,∴b+a<0,故①正确;②∵−a−b=−(a+b),∴−a−b>0,故②错误;③∵|a|<2,|b|>2,∴|a|−2<0,|b|−2>0,∴|a|−2<|b|−2,故③错误;④两数相除,异号得负,∴ba <0,即−ba>0,故④正确.∴①④正确.故选B.二、填空题【答案】−10m【考点】正数和负数的识别【解析】此题暂无解析【解答】解:节约20m的彩带记作+20m,则节约记作“+”,所以浪费记作“−”,则浪费10m的彩带记为−10m.故答案为:−10m.【答案】6.8×104【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将68000用科学记数法表示为:6.8×104.故答案为:6.8×104.【答案】0.8a【考点】列代数式【解析】数量关系为:现在的销售单价=标价×0.8,把相关数值代入即可.【解答】解:由题意得:数量关系为现在的销售单价=标价×0.8,所以这种商品的销售单价为0.8a元.故答案为:0.8a.【答案】−2π3【考点】单项式的系数与次数【解析】此题暂无解析【解答】解:单项式−2πa 2b3c3的系数是−2π3.故答案为:−2π3.【答案】−a【考点】合并同类项【解析】合并同类项即把系数相加,字母与字母的指数不变.【解答】解:a−2a=(1−2)a=−a.故答案为:−a.【答案】−2【考点】列代数式求值【解析】根据等式的基本性质,即可得到答案.【解答】解:∵2x−2y+3=7,∴2x−2y=4,∴2(x−y)=4,∴x−y=2,∴y−x=−(x−y)=−2.故答案为:−2.【答案】−2【考点】多项式的项与次数整式的加减【解析】根据已知二次三项式得出m −2≠0,|m|=2,求出即可.【解答】解:因为多项式x |m|+(m −2)x −10是二次三项式,可得m −2≠0,|m|=2,解得m =−2.故答案为:−2.【答案】552【考点】规律型:数字的变化类有理数的混合运算【解析】13=1213+23=(1+2)2=3213+23+33=(1+2+3)2=6213+23+33+43=(1+2+3+4)2=10213+23+33+...+103=(1+2+3...+10)2=552.【解答】解:根据数据可分析出规律为从1开始,连续n 个数的立方和=(1+2+...+n)2 所以13+23+33+...+103=(1+2+3...+10)2=552.故答案为:552.三、解答题【答案】解:(1)(−125)÷94+125×(23)2=(−125)×49+75×49=[(−125)+75]×49 =(−1)×49=−49. (2)(5x −2y )−2(4x −2y )=5x −2y −8x +4y=(5−8)x +(−2+4)y=−3x +2y .【考点】有理数的混合运算去括号与添括号【解析】首先计算乘方,然后计算利用乘法分配律,进行简便计算.根据去括号法则,然后再合并同类项即可.【解答】解:(1)(−125)÷94+125×(23)2 =(−125)×49+75×49=[(−125)+75]×49 =(−1)×49=−49.(2)(5x −2y )−2(4x −2y )=5x −2y −8x +4y=(5−8)x +(−2+4)y=−3x +2y .【答案】解:a −(b −2)−(b +3)=a −b +2−b −3=a −2b −1,当a =30,b =5时,a −2b −1=19.所以最后教室里还有19人.【考点】列代数式列代数式求值【解析】【解答】解:a −(b −2)−(b +3)=a −b +2−b −3=a −2b −1,当a =30,b =5时,a −2b −1=19.所以最后教室里还有19人.【答案】解:a 2+6a +2a 2−a +2=a 2+2a 2+6a −a +2=3a 2+5a +2,当a =2时,原式=3a 2+5a +2=3×22+5×2+2=24.【考点】整式的混合运算——化简求值【解析】首先化简代数式,然后再代入a =2求值.【解答】解:a 2+6a +2a 2−a +2=a 2+2a 2+6a −a +2=3a 2+5a +2,当a =2时,原式=3a 2+5a +2=3×22+5×2+2=24.【答案】解:(1)方程x +1=3的解是x =2 .故符合要求的一个方程是x +1=3.(2)由题意得:x 的3倍与5的和可表示为:(3x +5),x 的12少3可表示为:12x −3,所以列方程为:3x +5=12x −3.【考点】一元一次方程的解由实际问题抽象出一元一次方程【解析】根据题意可以写出符合要求的方程,答案不唯一:根据题意列方程即可.【解答】解:(1)方程x +1=3的解是x =2 .故符合要求的一个方程是x +1=3.(2)由题意得:x 的3倍与5的和可表示为:(3x +5),x 的12少3可表示为:12x −3,所以列方程为:3x +5=12x −3. 【答案】解:∵ (a −2)2+|b +1|=0,∴ a −2=0,b +1=0,∴ a =2,b =−1,∴ 当a =2,b =−1时,2ab 2−2(ab +32a 2b)+5ab =2ab 2+3ab −3a 2b=10.【考点】非负数的性质:绝对值非负数的性质:偶次方整式的混合运算——化简求值【解析】由于(a +2)2+|b +1|=0,而(a +2)2≥0,|b +1|≥0,由此即可得到(a +2)2=0,|b +1|=0,接着就可以求出a 、b 的值,然后化简多项式并把所求字母的取值代入计算即可求出结果.【解答】解:∵(a−2)2+|b+1|=0,∴a−2=0,b+1=0,∴a=2,b=−1,∴当a=2,b=−1时,2ab2−2(ab+32a2b)+5ab=2ab2+3ab−3a2b=10.【答案】解:(1)由题意可得,空白部分的面积是用长是a,宽是b的长方形的面积减去4个边长是x的正方形的面积.所以图中空白部分的面积为ab−4x2.(2)由题意,得:a=50,b=40,x=9,所以ab−4x2=50×40−4×92=1676.所以空白部分的面积是1676m2.【考点】列代数式列代数式求值【解析】(1)用长是a,宽是b的长方形的面积减去4个边长是x的正方形的面积,用代数式表示图中阴影部分的面积即可.(2)应用代入法,求出当a=50,b=40,x=9时,(1)中代数式的值是多少即可.【解答】解:(1)由题意可得,空白部分的面积是用长是a,宽是b的长方形的面积减去4个边长是x的正方形的面积.所以图中空白部分的面积为ab−4x2.(2)由题意,得:a=50,b=40,x=9,所以ab−4x2=50×40−4×92=1676.所以空白部分的面积是1676m2.【答案】解:(1)mx2+(n+1)x+3−2x−2x2=(m−2)x2+(n−1)x+3,∵mx2+(n+1)x+3−2x−2x2的值与x无关,∴ m−2=0,n−1=0,∴ m=2,n=1.(2)当m=2,n=1时,原式=3m2−2m2−4m−m2+2+4m=2.【考点】解一元一次方程整式的加减——化简求值【解析】(1)原式合并后,根据多项式的值与字母x 取值无关,确定出m 与n 的值即可;(2)原式去括号合并得到结果.【解答】解:(1)mx 2+(n +1)x +3−2x −2x 2=(m −2)x 2+(n −1)x +3,∵ mx 2+(n +1)x +3−2x −2x 2的值与x 无关,∴ m −2=0,n −1=0,∴ m =2,n =1.(2)当m =2,n =1时,原式=3m 2−2m 2−4m −m 2+2+4m=2.【答案】19×11,12×(19−111) 1(2n−1)(2n+1),12(12n−1−12n+1) (3)原式=11×3+13×5+15×7+...+1199×201=12×(1−13)+12×(13−15)+ 12×(15−17)+...+12×(1199−1201) =12×(1−13+13−15+15−17+...+1199−1201) =12×200201 =100201.【考点】规律型:数字的变化类有理数的混合运算【解析】(1)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.(2)运用(1)中变化规律计算得出即可.(3)运用以上规律裂项求和即可.【解答】解:(1)观察下列等式:第1个等式:a 1=11×3=12×(1−13);第2个等式:a 2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);第4个等式:a4=17×9=12×(17−19);则第5个等式:a5=19×11=12×(19−111).故答案为:19×11;12×(19−111).(2)由(1)知,a n=1(2n−1)(2n+1)=12(12n−1−12n+1).故答案为:1(2n−1)(2n+1);12(12n−1−12n+1).(3)原式=11×3+13×5+15×7+...+1199×201=12×(1−13)+12×(13−15)+1 2×(15−17)+...+12×(1199−1201)=12×(1−13+13−15+15−17+...+1199−1201)=12×200201=100201.。
益阳市七年级上学期期中数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) -56的相反数是()A .B . -C . -56D . 562. (2分)(2020·铜仁模拟) (﹣1)2020等于()A . ﹣2020B . 2020C . ﹣1D . 13. (2分)计算﹣3+(﹣1)的结果是()A . 2B . -2C . 4D . -44. (2分)四个数﹣4,﹣2,0,1中最小的数是()A . -4B . -2C . 0D . 15. (2分) (2018七上·杭州期中) 下列运算中正确的是A .B .C .D .6. (2分)下列方程是一元一次方程的是()A . x-y=6B . x–2=xC . x2+3x=1D . 1+x=37. (2分)下列各数中,负数是()A . (-3)2B . -(-3)C . (-3)3D . -(-3)38. (2分) (2018七上·郓城期中) 下列结论错误的是()A . 两个正数之和必为正数B . 两数之和为正,则至少有一个数为正C . 两数之和不一定大于某个加数D . 两数之和为负,则这两个数均为负数9. (2分) 2011年我国国内生产总值(CDP)为471564亿元.471564用科学记数法表示为()A . 4. 71564 ×l05B . 4. 71564×l04C . 47.1564 ×l04D . 0. 471564× l0610. (2分) (2019七上·兰州期中) 下列说法正确的是()A . 3a-5的项是3a,5B . 是二次三项式C . 是单项式D . 和都是多项式11. (2分) (2018七上·安达期末) 若a是有理数,则a+|a|()A . 可以是负数B . 不可能是负数C . 必是正数D . 可以是正数也可以是负数12. (2分)下列说法错误的是()A . 所有的有理数都可以用数轴上的点表示B . 数轴上的原点表示的数是零C . 在数轴上表示-2的点与表示+2的点距离是4D . 数轴上的点表示的数不是正数就是负数二、填空题 (共6题;共6分)13. (1分)单项式的系数是________.14. (1分)(2020·铜川模拟) 在实数-5,中,最小的一个无理数是________.15. (1分) (2019七上·东城期中) 将 0.249 用四舍五入法保留到十分位的结果是________.16. (1分)请你写出一个解为的一元一次方程________.17. (1分)点A在原点的左侧,且点A表示的数的绝对值是3,则点A表示的数为________.18. (1分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第63个三角形数是________三、解答题 (共8题;共72分)19. (5分) (2019七上·新蔡期中) 画一条数轴,并在数轴上表示:3.5和它的相反数,和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.20. (10分)计算:(1)﹣10﹣2﹣1×3﹣1×[2﹣(﹣3)2](2).21. (10分) (2020七下·偃师期中) 解方程:x﹣22. (5分) (2019七上·北碚期末) 阅读下列材料.让我们规定一种运算 =ad-cb,如=2×5-3×4=-2,再如 =4x-2.按照这种运算规定,请解答下列问题.(1)计算:;;的值;(2)当x=-1时,求的值(要求写出计算过程).23. (10分)定义一种新运算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x﹣3)⊕(x+1)=1,求x的值.24. (15分)小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,﹣3,+7,﹣3,+11,﹣4,﹣3,+11,+6,﹣7,+9 (1)李师傅这天最后到达目的地时,在下午出车点的什么位置?(2)若李师傅的车平均行驶每千米耗油a升,则这天下午李师傅用了多少升油?25. (2分)如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(1)把圆片沿数轴向左滚动1周,点B到达数轴上点C的位置,点C表示的数是什么数,这个数是多少;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是多少;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?26. (15分) (2019七上·绍兴期末) 已知,如图,A、B、C分别为数轴上的三点,A点对应的数为-200,B 点对应的数为-20,C点对应的数为40.甲从C点出发,以6单位/秒的速度向左运动.(1)当甲在B点、C点之间运动时,设运时间为x秒,请用x的代数式表示:甲到A点的距离:________;甲到B点的距离:________;甲到C点的距离:________.(2)当甲运动到B点时,乙恰好从A点出发,以4单位/秒的速度向右运动,设两人在数轴上的D点相遇,求D点对应的数;(3)若当甲运动到B点时,乙恰好从A点出发,以4单位/秒的速度向左运动,设两人在数轴上的E点相遇,求E点对应的数.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共72分)19-1、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、26-1、26-2、26-3、。
2017-2018学年集益初中七年级(上)期中数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)1.(4分)2017的相反数是()A.2017B.﹣2017C.D.﹣2.(4分)计算(﹣3)+(﹣2)的结果是()A.5B.﹣5C.1D.﹣13.(4分)在﹣(﹣5),﹣(+5),+(﹣5),﹣|﹣5|这四个数中,正数的个数是()A.4个B.3个C.2个D.1个4.(4分)下列计算正确的是()A.3a+2a=5a2B.3a﹣a=3C.2a3+3a2=5a5D.﹣a2b+2a2b=a2b5.(4分)下列说法中,正确的是()A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式6.(4分)用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 7.(4分)某地今年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的是()A.1月1日B.1月2日C.1月3日D.1月4日8.(4分)已知代数式x﹣2y的值是3,则代数式1﹣x+2y的值是()A.﹣2B.2C.4D.﹣49.(4分)若代数式xy2与﹣3x m﹣1y2n的和是﹣2xy2,则2m+n的值是()A.3B.4C.5D.610.(4分)下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第9个图案中基础图形个数为()A.27B.28C.30D.3611.(4分)已知数a,b,c的大小关系如图所示,则下列各式:①b+a+(﹣c)>0;②bc﹣a>0;③(a﹣b)(b﹣c)>0;④(﹣a)﹣b+c>0;⑤=1.其中正确的个数为()A.1个B.2个C.3个D.4个12.(4分)某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,九折优惠;(3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠.某公司分两次在该供应商处购买原料,分别付款7800元和25200元.如果该公司把两次购买的原料改为一次购买的话,那么该公司一共可少付款()A.1460元B.2780元C.3360元D.1360元二、填空题(本大题6个小题,每小题4分,共24分)13.(4分)据报道,2017年重庆主城区私家车拥有量近785000辆.将数据785000用科学记数法表示为.14.(4分)2xy2+x2y2﹣7x3y+7按x的降幂排列:.15.(4分)若﹣7x m+2y与﹣3x3y n是同类项,则m=,n=.16.(4分)某服装店,第一天销售a件,第二天销售量是第一天的2倍少12件,则第二天销售了件.17.(4分)数学家发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b+1.例如把(3,﹣2)放入其中,就会得到32+(﹣2)+1=8.现将实数对(﹣2,3)放入其中得到实数m,再将实数对(m,1)放入其中后,得到的实数是.18.(4分)初一某班以6个同学为一组,一共分了n组.在捐书活动中,各组捐书的本数按一定规律增加,第1组捐了10本,第2组捐了13本,第3组捐了16本,…,第n组捐的本数比第1组的3倍还多1本,由此可知该班一共有学生人.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.19.(8分)计算:﹣12017+(﹣3+2)×(5﹣9)﹣(﹣2)2÷.20.(8分)化简:(﹣a2+2ab﹣b2)﹣2(ab﹣3a2+b2).四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)计算:﹣14+×[|﹣2|﹣(﹣3)3﹣(﹣2)2]÷(﹣)2.22.(10分)先化简,再求值:5x2y﹣[xy2﹣2(2xy2﹣3x2y)+x2y]﹣4xy2,其中x,y满足(x+2)2+|y﹣3|=0.23.(10分)化简求值:3a2b﹣2[2ab2﹣4(ab﹣a2b)+ab]+(4ab2﹣a2b),其中a、b使得关于x的多项式2x3+(a+1)x2+(b﹣)x+3不含x2项和x项.24.(10分)某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+15,﹣2,﹣6,+7,﹣18,+12,﹣4,﹣5,+24,﹣3.(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每千米耗油量为0.08升,每升油7.5元,则这辆出租车这天下午耗油费用多少元?(3)若出租车起步价为8元,起步里程为3千米(包括3千米),超过部分每千米2.4元,问这天下午这辆出租车司机的营业额是多少元?25.(12分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节水的目的.如图所示是该市自来水收费价格见价目表.(1)填空:若该户居民2月份用水4m3,则应收水费元;(2)若该户居民3月份用水am3(其中6<a<10),则应收水费多少元?(用a 的整式表示并化简)(3)若该户居民4,5月份共用水15m3(5月份用水量超过了4月份),设4月份用水xm3,求该户居民4,5月份共交水费多少元?(用x的整式表示并化简)五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程做在答题卷上.26.(10分)每年春节前夕,重庆市中山古镇老街居民都将在千米长街上大摆百家宴,吸引众多游客慕名前来,共享团圆宴.百家宴用的桌子都是一样的,一张桌子可坐6人,有如图所示两种摆放方式.(1)若有8张这样的桌子,两种摆放方式各能坐________人?(2)当有n张这样的桌子时,两种摆放方式各能坐_______人?(3)若有若干名游客预约了今年除夕这天的午餐,由于人数较多,古镇老街百家宴组委会决定分批接待这些游客,现已备好480张这样的餐桌,若一批想要同时接待2000位游客共同就餐,组委会备好的这些餐桌够用吗?如果够用,请说明理由;如果不够用,请计算说明至少还需要准备多少张这样的餐桌?第6页七年级数学期中考试数学答题卡姓名一、 选择题(每题4分,共48分)5 13. 14.15.16. 17. 18. 三、解答题(每小题 8分,共16分)第7页第8页。
七年级上册数学期中考试题(含答案)一.选择题(共12小题,满分48分)1.3的相反数是()A.﹣3 B.3 C.D.﹣2.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×323.绝对值大于3而不大于6的整数有()A.3个B.4个C.6个D.多于6个5.计算:(﹣3)4=()A.﹣12 B.12 C.﹣81 D.816.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能7.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)2D.﹣|﹣2|8.如果|x﹣2|+(y+3)2=0,那么y x的值为()A.9 B.﹣9 C.6 D.﹣69.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×10810.我们定义一种新运算a⊕b=,例如5⊕2==,则式子7⊕(﹣3)的值为()A.B.C.D.﹣11.绝对值小于3的所有整数的和与积分别是()A.0,﹣2 B.0,0 C.3,2 D.0,212.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱()A.128元B.130元C.150 元D.160元二.填空题(共6小题,满分24分,每小题4分)13.数学竞赛85分以上的为优秀,以85分为基准简记,例如89分记作+4分,83分记作﹣2分,老师将某班6名同学的成绩记作(单位:分):+9,﹣5,0,+6,﹣4,﹣1,则这6名同学的实际成绩从高到底依次是:.14.比较大小:.(填“>”、“<”或“=”)15.近似数0.0730的有效数字有个.16.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是.17.有一运算程序如下:若输出的值是25,则输入的值可以是.18.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=.三.解答题(共6小题,满分54分)19.(8分)12﹣(﹣18)+(﹣7)﹣15.20.(8分)计算:(1)3×(﹣4)+18÷(﹣6)(2)(﹣2)2×5+(﹣2)3÷4.21.(8分)把下列各数填入相应集合的括号内:+8.5,﹣3,0.3,0,﹣3.4,12,﹣9,4,﹣1.2,﹣2.(1)正数集合:{ …};(2)整数集合:{ …};(3)自然数集合:{ …};(4)负分数集合:{ …}.22.(12分)已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012的值.23.(6分)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA =|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA =|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA =|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=,如果AB=2,则x的值为.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为.24.(12分)某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+26,﹣32,﹣15,+34,﹣38,﹣20(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)经过这3天,仓库管理员结算时发现库里还存300吨粮,那么3天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨6元,那么这3天要付多少装卸费?四.解答题(共2小题,满分24分,每小题12分)25.(12分)如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.26.(12分)如图已知数轴上点A、B分别表示a、b,且|b+6|与(a﹣9)2互为相反数,O 为原点.(1)a=,b=;(2)若将数轴折叠点A与表示﹣10的点重合,则与点B重合的点所表示的数为;(3)若点M、N分别从点A、B同时出发,点M以每秒1个单位长度的速度沿数轴向左匀速运动,点N以每秒2个单位长度的速度沿数轴向右匀速运动,N到点A后立刻原速返回,设运动时间为t(t>0)秒.①点M表示的数是(用含t的代数式表示);②求t为何值时,2MO=MA;③求t为何值时,点M与N相距3个单位长度.参考答案一.选择题1.解:3的相反数是﹣3.故选:A.2.解:A、34=81,43=64,数值不相等;B、﹣42=﹣16,(﹣4)2=16,数值不相等;C、﹣23=(﹣2)3=﹣8,数值相等;D、(﹣2×3)2=36,﹣22×32=﹣36,数轴不相等,故选:C.3.解:绝对值大于3而不大于6的整数有4,5,6,﹣4,﹣5,﹣6共6个.故选:C.4.解:﹣3的相反数是3.故选:C.5.解:(﹣3)4=(﹣3)×(﹣3)×(﹣3)×(﹣3)=81.故选:D.6.解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.7.解:A、﹣(﹣2)=2,是正数,错误;B、|﹣2|=2是正数,错误;C、(﹣2)2=4是正数,错误;D、﹣|﹣2|=﹣2是负数,正确;故选:D.8.解:∵|x﹣2|+(y+3)2=0,∴x=2,y=﹣3.∴原式=(﹣3)2=9.故选:A.9.解:5 300万=5 300×103万美元=5.3×107美元.故选C.10.解:根据题中的新定义得:7⊕(﹣3)==.故选:B.11.解:设这个数为x,则:|x|<3,∴x为0,±1,±2,∴它们的和为0+1﹣1+2﹣2=0;它们的积为0×1×(﹣1)×2×(﹣2)=0.故选:B.12.解:设一件甲商品x元,乙y元,丙z元,根据题意得:①+②得:4x+4y+4z=600,∴x+y+z=150,故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:∵以85分为基准简记,∴6名同学的实际成绩为:94,80,85,91,81,84,则这6名同学的实际成绩从高到低依次是:94,91,85,84,81,80.14.解:∵=,∴﹣=.∵(9﹣4)×(9+4)=81﹣80=1>0,9+4>0,∴9﹣4>0,∴﹣>0,即>.故答案为:>.15.解:近似数0.0730的有效数字为7、3、0这3个,故答案为:3.16.解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6,故答案为:2或﹣617.解:根据题意可得:(x+1)2=25,x+1=±5,解得x1=4,x2=﹣6.故答案为4或﹣6.18.解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为:1.三.解答题(共6小题,满分54分)19.解:原式=12+18﹣7﹣15=30﹣22=8.20.解:(1)3×(﹣4)+18÷(﹣6)=﹣12+(﹣3)=﹣15;(2)(﹣2)2×5+(﹣2)3÷4=4×5+(﹣8)÷4=20+(﹣2)=18.21.解:(1)正数集合:{+8.5、0.3、12、4,};(2)整数集合:{0、12、﹣9、﹣2,};(3)自然数集合:{ 0、12,};(4)负分数集合:{﹣3、﹣3.4、﹣1.2,}.故答案为:(1)+8.5、0.3、12、4,;(2)0、12、﹣9、﹣2,;(3)0、12;(4)﹣3、﹣3.4、﹣1.2,22.解:由已知可得,a+b=0,cd=1,x=±2;当x=2时,x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012=22﹣(0+1)×2+02011+(﹣1)2012=4﹣2+0+1=3当x=﹣2时,x2﹣(a+b+cd)x+(a+b)2011+(﹣cd)2012=(﹣2)2﹣(0+1)×(﹣2)+02011+(﹣1)2012=4+2+0+1=723.解:(1)综上所述,数轴上A、B两点之间的距离AB=|a﹣b|;(2)数轴上表示2和﹣4的两点A和B之间的距离AB=2﹣(﹣4)=2+4=6;(3)数轴上表示x和﹣2的两点A和B之间的距离AB=|x+2|,如果AB=2,则x的值为0或﹣4;(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为5.故答案为:(1)|a﹣b|;(2)6;(3)|x+2|;0或﹣4;(4)524.解:(1)26+(﹣32)+(﹣15)+34+(﹣38)+(﹣20)=﹣45(吨),答:库里的粮食是减少了45吨;(2)300+45=345(吨),答:3天前库里有粮345吨;(3)(26+|﹣32|+|﹣15|+34+|﹣38|+|﹣20|)×6=165×6=990(元),答:这3天要付990元装卸费.四.解答题(共2小题,满分24分,每小题12分)25.解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.26.解:(1)依题意有|b+6|+(a﹣9)2=0,b+6=0,a﹣9=0,解得a=9,b=﹣6;(2)(9﹣10)÷2=﹣0.5,﹣0.5+6=5.5,﹣0.5+5.5=5.故与点B重合的点所表示的数为5;(3)①点M表示的数是9﹣t;②M在原点右边时,依题意有2(9﹣t)=t,解得t=6;M在原点左边边时,依题意有﹣2(9﹣t)=t,解得t=18.故t为6或18秒时,2MO=MA;③点M与N第一次相遇前,依题意有3t=15﹣3,解得t=4;点M与N第一次相遇后,依题意有3t=15+3,解得t=6;(6+9)÷2=7.5(秒),点M与N第二次相遇前,2(t﹣7.5)﹣(t﹣7.5)=7.5﹣3,解得t=12;点M与N第二次相遇后,2(t﹣7.5)﹣(t﹣7.5)=7.5+3,解得t=18.故t为4或6或12或18秒时,点M与N相距3个单位长度.故答案为:9,﹣6;5.人教版数学七年级上册期中考试试题(答案)一、选择题(每小题3分,共36分)1.﹣3的绝对值是()A.3B.﹣3C.D.2.如果高出海平面20米,记作+20米,那么﹣30米表示()A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米3.2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录.7000这个数据用科学记数法表示为()A.70×102B.0.7×104C.7×103D.7×1044.下列各组数中是同类项的是()A.4x和4y B.4xy2和4xyC.4xy2和﹣8x2y D.﹣4xy2和4y2x5.下列各式中不是单项式的是()A.B.﹣C.0D.6.下列计算正确的是()A.4x﹣9x+6x=﹣x B.xy﹣2xy=3xyC.x3﹣x2=x D.7.方程x﹣2=2﹣x的解是()A.x=1B.x=﹣1C.x=2D.x=08.方程﹣=1,去分母,得()A.2x﹣1﹣x+1=6B.3(2x﹣1)﹣2(x+1)=6C.2(2x﹣1)﹣3(x+1)=6D.3x﹣3﹣2x﹣2=19.已知长方形的设长为xcm,则宽为ycm,则长方形的周长为()A.(x+y)cm B.(2x+y)cm C.2(x+y)cm D.xycm10.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>011.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或212.我们知道,无限循环小数都可以转化为分数,例如:将0.=x,则x=0.3+x,解得x=,即0.=,仿此方法,将0.化成分数是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,它的倒数是.14.单项式﹣的系数是,次数是,多项式2a2b2+5a3﹣1的次数是.15.当n=时,单项式7x2y2n+1与﹣x2y5是同类项.16.数轴上距离原点为4个单位长度的数是.17.若5x+2与﹣2x+7互为相反数,则x的值为.18.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为.三、解答题(本大题共7个小题,共66分.解答应写出必要的文字说明、过程或演算步骤)19.(16分)计算(1)﹣26﹣(﹣15)(2)(+7)+(﹣4)﹣(﹣3)﹣14(3)(﹣3)×÷(﹣2)×(﹣)(4)﹣(3﹣5)+32×(﹣3)20.(10分)化简求值(1)x2﹣4(x﹣x2)+3x,其中x=﹣1.(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2004.21.(8分)解方程(1)3x+7=32﹣2x(2)=1﹣22.(6分)在数轴上表示下列各数,并将下列各数用“<”连接.﹣22,﹣(﹣1),0,﹣2.5,|﹣|23.(8分)已知多项式(m+1)x2﹣xy+3y2﹣x+10不含x2项,求2m2﹣m2003+3的值.24.(8分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、﹣15、45、…的第4项是.(2)如果一列数a1,a2,a3,a4是等比数列,且公比为q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3则:a5=.(用a1与q的式子表示)(3)一个等比数列的第2项是10,第4项是40,求它的公比.25.(10分)点A、B、C在数轴上表示的数a、b、c满足(b+3)2+|c﹣24|=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.(1)a的值为,b的值为,c的值为;(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以3个单位/秒的速度向右运动,同时点Q从点C出发,以7个单位/秒的速度向左运动:①若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;②若点P运动到点B处,动点Q再出发,则P运动几秒后这两点之间的距离为5个单位?参考答案一、选择题1.﹣3的绝对值是()A.3B.﹣3C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如果高出海平面20米,记作+20米,那么﹣30米表示()A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米【分析】本题可从题意进行分析,高出海平面20米,记作+20米,“+”代表高出,则“﹣”代表低于,即可求得答案.【解答】解:由分析可得:“+”代表高出,“﹣”代表低于,则﹣30米表示低于海平面30米.故选:B.【点评】本题考查正数,负数的基本性质,看清题意即可.3.2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录.7000这个数据用科学记数法表示为()A.70×102B.0.7×104C.7×103D.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7000用科学记数法表示为:7×103.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中是同类项的是()A.4x和4y B.4xy2和4xyC.4xy2和﹣8x2y D.﹣4xy2和4y2x【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、4x和4y所含字母不同,不是同类项,故本选项错误;B、4xy2和4xy所含字母相同,但相同字母的指数不相同,不是同类项,故本选项错误;C、4xy2和﹣8x2y所含字母相同,但相同字母的指数不相同,不是同类项,故本选项错误;D、﹣4xy2和4y2x所含字母相同,并且相同字母的指数也相同,是同类项,故本选项正确.故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.5.下列各式中不是单项式的是()A.B.﹣C.0D.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【解答】解:A、是数与字母的积的形式,是单项式;B、C都是数字,是单项式;D、分母中有字母,是分式,不是单项式.故选:D.【点评】本题考查单项式的定义,较为简单,要准确掌握定义.6.下列计算正确的是()A.4x﹣9x+6x=﹣x B.xy﹣2xy=3xyC.x3﹣x2=x D.【分析】根据同类项的定义和合并同类项的法则求解.【解答】解:A、4x﹣9x+6x=x,故选项错误;B、xy﹣2xy=﹣xy,故选项错误;C、x3x2=不是同类项,不能合并,故选项错误;D、正确.故选:D.【点评】本题主要考查同类项的定义和合并同类项的法则.同类项的定义:所含字母相同,并且相同字母的指数也相同的项是同类项.合并同类项的法则:系数相加作为系数,字母和字母的指数不变.注意不是同类项的一定不能合并.7.方程x﹣2=2﹣x的解是()A.x=1B.x=﹣1C.x=2D.x=0【分析】解本题的过程是移项,合并同类项,最后把系数化为1,就可求出x的值.【解答】解:移项得:x+x=2+2即2x=4∴x=2.故选:C.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式;同时要注意在移项的过程中要变号.8.方程﹣=1,去分母,得()A.2x﹣1﹣x+1=6B.3(2x﹣1)﹣2(x+1)=6C.2(2x﹣1)﹣3(x+1)=6D.3x﹣3﹣2x﹣2=1【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:方程﹣=1,去分母得:3(2x﹣1)﹣2(x+1)=6,故选:B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.已知长方形的设长为xcm,则宽为ycm,则长方形的周长为()A.(x+y)cm B.(2x+y)cm C.2(x+y)cm D.xycm【分析】根据“长方形的周长=2(长+宽)”,列出代数式,即可得到答案.【解答】解:根据题意得:长方形的周长为:2(x+y),故选:C.【点评】本题考查列代数式,正确掌握长方形的周长公式是解题的关键.10.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>0【分析】由数轴可知:a<﹣1<0<b<1,再根据不等式的基本性质即可判定谁正确.【解答】解:∵a<﹣1<0<b<1,A、∴b﹣a>0,故本选项正确;B、a﹣b<0;故本选项错误;C、ab<0;故本选项错误;D、a+b<0;故本选项错误.故选:A.【点评】主要考查了数轴上数的大小比较和不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或2【分析】首先根据相反数,绝对值的概念分别求出x、y的值,然后代入x+y,即可得出结果.【解答】解:x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选:D.【点评】此题主要考查相反数、绝对值的意义.绝对值相等但是符号不同的数是互为相反数.一个数到原点的距离叫做该数的绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.我们知道,无限循环小数都可以转化为分数,例如:将0.=x,则x=0.3+x,解得x=,即0.=,仿此方法,将0.化成分数是()A.B.C.D.【分析】设x=0.•45,则x=0.4545…,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.【解答】解:设x=0…45,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,99x=45解方程得:x==.故选:D.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,它的倒数是﹣.【分析】直接利用倒数以及相反数和绝对值的性质分别分析得出答案.【解答】解:﹣的相反数是:,绝对值是:,它的倒数是:﹣.故答案为:,,﹣.【点评】此题主要考查了倒数以及相反数和绝对值的性质,正确把握相关定义是解题关键.14.单项式﹣的系数是﹣,次数是4,多项式2a2b2+5a3﹣1的次数是4.【分析】直接利用单项式的次数与系数以及多项式的次数确定方法分别分析得出答案.【解答】解:单项式﹣的系数是:﹣,次数是:4,多项式2a2b2+5a3﹣1的次数是:4.故答案为:﹣,4,4.【点评】此题主要考查了单项式和多项式,正确把握相关定义是解题关键.15.当n=2时,单项式7x2y2n+1与﹣x2y5是同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2n+1=5,求出n的值即可.【解答】解:∵单项式7x2y2n+1与﹣x2y5是同类项,∴2n+1=5,∴n=2,故答案为2.【点评】本题考查同类项的定义、关键是根据同类项的定义列出方程解答.16.数轴上距离原点为4个单位长度的数是±4.【分析】根据互为相反数的数到原点的距离都相等,可得结论.【解答】解:数轴上,距离原点4个单位长度的数是±4.故答案为:±4.【点评】本题考察了数轴上距离的意义.注意互为相反数的数到数轴上原点的距离相等.17.若5x+2与﹣2x+7互为相反数,则x的值为﹣3.【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x+2﹣2x+7=0,移项合并得:3x=﹣9,解得:x=﹣3,故答案为:﹣3【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.18.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为3.【分析】根据运算程序可推出第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为6,第六次输出的结果为3,…,依此类推,即可推出从第三次开始,第偶数次输出的为3,第奇数次输出的为6,可得第2010此输出的结果为3.【解答】解:∵第二次输出的结果为12,∴第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为6,第六次输出的结果为3,…,∴从第三次开始,第偶数次输出的为3,第奇数次输出的为6,∴第2010次输出的结果为3.故答案为3.【点评】本题主要要考查有理数的乘法和加法运算,关键在于每次输出的结果总结出规律.三、解答题(本大题共7个小题,共66分.解答应写出必要的文字说明、过程或演算步骤)19.(16分)计算(1)﹣26﹣(﹣15)(2)(+7)+(﹣4)﹣(﹣3)﹣14(3)(﹣3)×÷(﹣2)×(﹣)(4)﹣(3﹣5)+32×(﹣3)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式从左到右依次计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣26+15=﹣11;(2)原式=7﹣4+3﹣14=8;(3)原式=﹣;(4)原式=2﹣27=﹣25.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(10分)化简求值(1)x2﹣4(x﹣x2)+3x,其中x=﹣1.(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2004.【分析】先将原式化简,然后将未知数的值代入即可求出答案.【解答】解:(1)原式=x2﹣4x+4x2+3x=5x2﹣x当x=﹣1时,原式=5×1+1=6;(2)原式=﹣3a2+4ab+(a2﹣4a﹣4ab)=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2,b=2004时,原式=﹣2×4﹣4×(﹣2)=﹣8+8=0.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.(8分)解方程(1)3x+7=32﹣2x(2)=1﹣【分析】(1)依次移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)移项得:3x+2x=32﹣7,合并同类项得:5x=25,系数化为1得:x=5,(2)方程两边同时乘以6得:2(2y﹣1)=6﹣3y,去括号得:4y﹣2=6﹣3y,移项得:4y+3y=6+2,合并同类项得:7y=8,系数化为1得:y=.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程得方法是解题的关键.22.(6分)在数轴上表示下列各数,并将下列各数用“<”连接.﹣22,﹣(﹣1),0,﹣2.5,|﹣|【分析】直接将各数在数轴上表示,进而得出大小关系.【解答】解:如图所示:,故﹣22<﹣2.5<0<|﹣|<﹣(﹣1).【点评】此题主要考查了有理数大小比较,正确在数轴上找到各数是解题关键.23.(8分)已知多项式(m+1)x2﹣xy+3y2﹣x+10不含x2项,求2m2﹣m2003+3的值.【分析】根据题意得出m的值,进而代入原式求出答案.【解答】解:∵多项式(m+1)x2﹣xy+3y2﹣x+10不含x2项,∴m+1=0,解得:m=﹣1,故2m2﹣m2003+3=2×1﹣(﹣1)2003+3=6.【点评】此题主要考查了多项式,正确得出m的值是解题关键.24.(8分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、﹣15、45、…的第4项是﹣135.(2)如果一列数a1,a2,a3,a4是等比数列,且公比为q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3则:a5=a1q4.(用a1与q的式子表示)(3)一个等比数列的第2项是10,第4项是40,求它的公比.【分析】(1)根据题意可得等比数列5,﹣15,45,…中,从第2项起,每一项与它前一项的比都等于﹣3;故第4项是45×(﹣3)=﹣135;(2)观察数据可得a n=a1q n﹣1;即可得出a5的值;(3)根据(2)的关系式,可得公比的性质,进而得出第2项是10,第4项是40时它的公比.【解答】解:(1)等比数列5、﹣15、45、…的第4项是﹣135.(2)则:a5=a1q4.(用a1与q的式子表示),(3)设公比为x,10x2=40,解得:x=±2.【点评】此题主要考查了数字变化规律,要求学生通过观察,分析、归纳发现其中的规律,应用发现的规律解决问题.分析数据获取信息是必须掌握的数学能力,如观察数据可得a n=a1q n﹣1.25.(10分)点A、B、C在数轴上表示的数a、b、c满足(b+3)2+|c﹣24|=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.(1)a的值为﹣6,b的值为﹣3,c的值为24;(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以3个单位/秒的速度向右运动,同时点Q从点C出发,以7个单位/秒的速度向左运动:①若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;②若点P运动到点B处,动点Q再出发,则P运动几秒后这两点之间的距离为5个单位?【分析】(1)利用非负数的性质求出b与c的值,根据多项式为五次四项式求出a的值;(2)①利用点P、Q所走的路程=AC列出方程;②此题需要分类讨论:相遇前和相遇后两种情况下PQ=5所需要的时间.【解答】解:(1)∵(b+3)2+|c﹣24|=0,∴b=﹣3,c=24,∵多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式,∴|a+3|=5﹣2,﹣a≠0,∴a=﹣6.故答案是:﹣6;﹣3;24;(2)①依题意得3t+7t=|﹣6﹣24|=30,解得t=3,则3t=9,所以﹣6+9=3,所以出t的值是3和点D所表示的数是3.②设点P运动x秒后,P、Q两点间的距离是5.当点P在点Q的左边时,3x+5+7(x﹣1)=30,解得x=3.2.当点P在点Q的右边时,3x﹣5+7(x﹣1)=30,解得x=4.2.综上所述,当点P运动3.2秒或4.2秒后,这两点之间的距离为5个单位.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.人教版数学七年级上册期中考试试题(答案)一、选择题(每小题3分,共36分)1.﹣3的绝对值是()A.3B.﹣3C.D.2.如果高出海平面20米,记作+20米,那么﹣30米表示()A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米3.2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录.7000这个数据用科学记数法表示为()A.70×102B.0.7×104C.7×103D.7×1044.下列各组数中是同类项的是()A.4x和4y B.4xy2和4xyC.4xy2和﹣8x2y D.﹣4xy2和4y2x5.下列各式中不是单项式的是()A.B.﹣C.0D.6.下列计算正确的是()A.4x﹣9x+6x=﹣x B.xy﹣2xy=3xyC.x3﹣x2=x D.7.方程x﹣2=2﹣x的解是()A.x=1B.x=﹣1C.x=2D.x=08.方程﹣=1,去分母,得()A.2x﹣1﹣x+1=6B.3(2x﹣1)﹣2(x+1)=6C.2(2x﹣1)﹣3(x+1)=6D.3x﹣3﹣2x﹣2=19.已知长方形的设长为xcm,则宽为ycm,则长方形的周长为()A.(x+y)cm B.(2x+y)cm C.2(x+y)cm D.xycm10.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>011.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或212.我们知道,无限循环小数都可以转化为分数,例如:将0.=x,则x=0.3+x,解得x=,即0.=,仿此方法,将0.化成分数是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,它的倒数是.14.单项式﹣的系数是,次数是,多项式2a2b2+5a3﹣1的次数是.15.当n=时,单项式7x2y2n+1与﹣x2y5是同类项.16.数轴上距离原点为4个单位长度的数是.17.若5x+2与﹣2x+7互为相反数,则x的值为.18.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为.三、解答题(本大题共7个小题,共66分.解答应写出必要的文字说明、过程或演算步骤)19.(16分)计算(1)﹣26﹣(﹣15)(2)(+7)+(﹣4)﹣(﹣3)﹣14(3)(﹣3)×÷(﹣2)×(﹣)(4)﹣(3﹣5)+32×(﹣3)20.(10分)化简求值(1)x2﹣4(x﹣x2)+3x,其中x=﹣1.(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2004.21.(8分)解方程(1)3x+7=32﹣2x(2)=1﹣22.(6分)在数轴上表示下列各数,并将下列各数用“<”连接.﹣22,﹣(﹣1),0,﹣2.5,|﹣|23.(8分)已知多项式(m+1)x2﹣xy+3y2﹣x+10不含x2项,求2m2﹣m2003+3的值.24.(8分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、﹣15、45、…的第4项是.(2)如果一列数a1,a2,a3,a4是等比数列,且公比为q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3则:a5=.(用a1与q的式子表示)(3)一个等比数列的第2项是10,第4项是40,求它的公比.25.(10分)点A、B、C在数轴上表示的数a、b、c满足(b+3)2+|c﹣24|=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.(1)a的值为,b的值为,c的值为;(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以3个单位/秒的速度向右运动,同时点Q从点C出发,以7个单位/秒的速度向左运动:①若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;②若点P运动到点B处,动点Q再出发,则P运动几秒后这两点之间的距离为5个单位?参考答案一、选择题1.﹣3的绝对值是()A.3B.﹣3C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如果高出海平面20米,记作+20米,那么﹣30米表示()A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米【分析】本题可从题意进行分析,高出海平面20米,记作+20米,“+”代表高出,则“﹣”代表低于,即可求得答案.【解答】解:由分析可得:“+”代表高出,“﹣”代表低于,则﹣30米表示低于海平面30米.故选:B.【点评】本题考查正数,负数的基本性质,看清题意即可.3.2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录.7000这个数据用科学记数法表示为()A.70×102B.0.7×104C.7×103D.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7000用科学记数法表示为:7×103.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.。
2017-2018学年七年级上学期数学期中考试试卷班级________ 姓名_______________ 座号_______ 考试号_______________ 一、选择题:(每题4分,共40分) 1.2017的倒数是( ).A .2017-B .2017C .12017-D .120172.下列各数中负数是( ).A .()2-- B. 2-- C. ()22- D. ()32-- 3.1光年大约是9500 000 000 000㎞,这个数据用科学记数法表示是( ). A .131095.0⨯ ㎞ B .12105.9⨯ ㎞ C .111095⨯ ㎞ D .1010950⨯ ㎞ 4.在数轴上与表示数4的点距离5个单位长度的点表示的数是( ). A .5 B .-1 C .9 D .-1或9 5.近似数53.2010⨯的精确度说法正确的是( ).A .精确到百分位B .精确到十分位C .精确到千位D .精确到万位6.在代数式2335,,,,0,,732 x ya b a b x m a a b -++--中,单项式的个数是( ).A .6B .5C .4D .3 7.下列各式运算正确的是( ).A .235x x +=B .2358a a a += C .22321a b a b -= D .220ab b a -= 8.下列去括号正确的是( ).A .22(3)3x x y x x y --=--B .22223(2)32x y xy x y xy --=-+C .224(1)44m m m m --=-+ D .222(3)26a a a a --=+-9x 值为-2,则输出的结果为( ).A.6B.-6C.14D. -1410.化简()()201922-+-结果是( ).A .2B .-2C .202D .192 二、填空题:(每4分,共24分)11.比较大小:11________32--.12.若236x =,则x =_________.13.已知3>x ,化简:3x -= ______________.14.单项式2435a b π-的系数是______, 次数是______. 15.已知33a b -=,则代数式395a b -+-=__________.16.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是____________________________.三、解答题:(共86分)17.计算:(每小题5分,共20分)(1)121252344343⎛⎫⎛⎫⎛⎫--+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)359(24)4812⎛⎫--+⨯- ⎪⎝⎭(3)()()3431543-÷⨯⨯- (4)()()34201712103(1)-+----÷-18.合并同类项(每小题5分,共10分)(1)22235m m m -- (2)3(25)4(35)5x y x y ---+ 19.(8分)先化简,再求值:()()222211124a b ab ab a b----,其中3,2 b a =-=.20.(6分)如果关于x 的多项式()()21225231n x y mx x +---+的值与x 的取值无关,且该多项式的次数是三次.求, m n 的值21.(6分)若“*”是一种新的运算符号,并且规定2a b a b b +*=.例如:2358355+*==,求()()223*-*-⎡⎤⎣⎦的值. 22.(9分)股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)(1)星期四收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?23.(6分)如图,已知数轴上的点A 表示的数为6,点B 表示的数为﹣4,点C 到点A 、点B 的距离相等,动点P 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x (x 大于0)秒.(1)点C 表示的数是________;(2)当x =________秒时,点P 到达点A 处?(3)运动过程中点P 表示的数是________(用含字母x 的式子表示); (4)当P ,C 之间的距离为2个单位长度时,求x 的值.24.(7分)某校七年级三位老师带部分学生去红色旅游,联系了甲、乙两家旅行社,甲旅行社说:“老师免费,学生打八折。
湖南省益阳市2017-2018学年七年级数学上学期期中试题
时 量:90分钟 总分:150分
一.认真选一选 (每小题4分,共40分)
1.如果记收入500元为+500,则支出200元应记为………………( ) A .+300 B .-300 C .+200 D .-200 2.在2,-2,-5.5,0,,3.19六个数中,非负数的个数有…( ) A . 1个B . 2个C . 3个D .4个 3.如果的相反数等于1,则………………………………( )
A . 1
B . -1
C .2017
D .-2017
4. 点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论: ① ②
③ ④
正确的是……………………………………………………………( ) A .①② B .②③ C .②④ D .③④ 5. 某商店上月的营业额是a 万元,本月比上月增长15%,则本月营业额是( ) A .15%(a +1)万元B .15%a 万元C .(1+15%)a 万元D .(1+15%)2
a 万元
6. 据某市统计局2016年公布的数据显示,全市总人口为458.55万人,那么用科学记数法表示为………………………………………………( ) A .4.58556
人 B .4.5855×106
人 C .4.5855×107
人 D .4.5855×108
人 7. 下列说法错误..的是…………………………………………………( ) A .数字0是单项式 B .单项式的系数与次数都是1 C .单项式
的次数是6 D .的次数是2
8. 下列计算结果正确..
的是…………………………………………..…( ) A .B . C . D .
3
4
-
a =2017
a
0>-a b a b >-b a ->-0>a
b
a π
3
22xy -2
22y xy x +-2
a a a =+33=-m m 5
3
2
54a a a =+222246xy xy xy =-
B
A
9.某同学解一元一次方程:时,处在印刷过程中被油墨盖住了,查后面的答案知这个方程的解是,则处的数字是( ) A .2 B .3 C .4 D .5
10.一艘轮船在A ,B 两个码头之间航行,顺水航行需4h ,逆水航行需5h. 已知水流速度为2km/h ,求轮船在静水中的航行速度。
若设轮船在静水中的航行速度为x km/h ,则可列一元一次方程为……………………( )
A .
B .
C .
D .
二.细心填一填 (每小题5分,共30分)
11.的相反数是________________;
12.若“”表示一种新运算,它的意义是: , 请计算:= ;
13.若,则 ;
14.如果那么 ;
15.如果多项式与关于x 的多项式的和.
不含二次项,则 ;
16 .如图,用相同的小正方形按照
某种规律进行摆放,则第9个图形的小正方形的个数是;
三、用心做一做:(共80分)
17.计算:(每小题8分,共计16分)
(1) (2)
x x =+∆+3)1(2∆1-=x ∆2524-=+x x )2(5)2(4-=+x x 2524+=-x x )2(5)2(4+=-x x 2-⊗()b a b a b a +-⨯=⊗)2()1(-⊗-2=-y x =+-722y x 0)2(12
=-++b a =-2
2b a 18223-+-x x x 73232
3-++x mx x =m ()()42213
10
÷-+⨯-)2
3()2017()41(2017)43
(2017-⨯-+-⨯--⨯
18. 先化简,再求值(每小题10分,共计20分) (1)
(2) 其中;
19. 解一元一次方程(本题10分)
20. 将各数,,0, ,,在数轴上表示出来,并按从小到大的顺序用“<”号连接起来。
(本题10分)
21.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:(本题10分)
,,,,,,,,,
(1)这10名同学中最高分是多少?最低分是多少?(6分)
2,3),23(4)32(=-=---+y x y x y y x 其中)2(2)42(2
2
2
2
y x xy xy y x ----11,2
x y =-=-14
4
3312=---x x 2--)3(--10
)1(-22-2
1
1
8+3-12+7-10-3-8-1+010+
(2)10名同学的平均成绩是多少?(4分)
22. 为了开展阳光体育运动,让学生每天能锻炼一小时,某学校去体育用品商店购买篮球与足球,篮球每只定价100元,足球每只定价50元.体育用品商店向学校提供两种优惠方案:①买一只篮球送一只足球;②篮球和足球都按定价的80%付款.现学校要到该体育用品商店购买篮球30只,足球x只(x>30).(本题14分)
(1)若该学校按方案①购买,
篮球需付款元,足球需付款元(用含x的式子表示);
若该学校按方案②购买,
篮球需付款元,足球需付款元(用含x的式子表示);(8分)
(2)若x=40,请通过计算说明按方案①、方案②哪种方案购买较为合算?(6分)
2017年下学期期中学业水平检测
七年级数学答案
一.认真选一选 (每小题4分,共40分)
1-5 DCBBC 6-10BCDBB
二.细心填一填 (每小题5分,共30分)
11、2 12、5 13、11 14、 -3 15、4 16、109 三.用心做一做:(共80分)
17题计算:(每小题8分,共计16分)
(1) -1 (2) 2017
18题先化简,再求值(每小题10分,共计20分)
(1) 5
(2) -2
19题解一元一次方程(本题10分)
-- 4
20题(本题10分)略
21题(1)92 70
(2)80
22题
(1)3000
2400
(2)方案①= 3500元
方案②= 4000元
因为,方案① <方案②
所以选方案①。