华师大版数学上册中位线教学计划模板
- 格式:doc
- 大小:30.50 KB
- 文档页数:4
23.4 中位线1.掌握中位线的定义以及中位线定理;(重点)2.综合运用平行四边形的判定及中位线定理解决问题.(难点)一、情境导入如图所示,吴伯伯家有一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?二、合作探究探究点:三角形的中位线【类型一】 利用三角形中位线定理求线段的长如图,在△ABC 中,D 、E 分别为AC 、BC 的中点,AF 平分∠CAB ,交DE 于点F .若DF =3,则AC 的长为( )A.32B .3C .6D .9 解析:∵D 、E 分别为AC 、BC 的中点,∴DE ∥AB ,∴∠2=∠3,又∵AF 平分∠CAB ,∠1=∠3,∴∠1=∠2,∴AD =DF =3,∴AC =2AD =6.故选C.方法总结:本题考查了三角形中位线定理,等腰三角形的判定与性质.解题的关键是熟记性质并熟练应用.【类型二】 利用三角形中位线定理求角如图,C 、D 分别为EA 、EB 的中点,∠E =30°,∠1=110°,则∠2的度数为( )A .80°B .90°C .100°D .110°解析:∵C 、D 分别为EA 、EB 的中点,∴CD 是三角形EAB 的中位线,∴CD ∥AB ,∴∠2=∠ECD .∵∠1=110°,∠E =30°,∴∠ECD =80°,故选A.方法总结:中位线定理牵扯到平行线,所以利用中位线定理中的平行关系可以解决一些角度的计算问题.【类型三】 运用三角形的中位线性质进行证明如图,在△ABC 中,AB =5,AC =3,点N 为BC 的中点,AM 平分∠BAC ,CM⊥AM ,垂足为点M ,延长CM 交AB 于点D ,求MN 的长.解析:为证MN 为△BCD 的中位线,应根据三线合一,得到DM =MC ,即可解决问题. 解:∵AM 平分∠BAC ,CM ⊥AM ,∴AD =AC =3,DM =CM .∵BN =CN ,∴MN 为△BCD的中位线,∴MN =12(5-3)=1. 方法总结:当已知三角形的一边的中点时,要注意分析问题中是否有隐含的中点.如已知一个三角形一边上的高又是这边所对的角平分线时,根据“三线合一”可知,这实际上是又告诉了我们一个中点.【类型四】 中位线定理的综合应用如图,E 为平行四边形ABCD 中DC 边的延长线上一点,且CE =DC ,连接AE ,分别交BC 、BD 于点F 、G ,连接AC 交BD 于O ,连接OF ,判断AB 与OF 的位置关系和大小关系,并证明你的结论.解析:本题可先证明△ABF ≌△ECF ,从而得出BF =CF ,这样就得出了OF 是△ABC 的中位线,从而利用中位线定理即可得出线段OF 与线段AB 的关系.解:AB =2OF .证明如下:∵四边形ABCD 是平行四边形,∴AB =CD ,OA =OC .∴∠BAF =∠CEF ,∠ABF =∠ECF .∵CE =DC ,在平行四边形ABCD 中,CD =AB ,∴AB =CE .∴在△ABF 和△ECF 中,⎩⎪⎨⎪⎧∠BAF =∠CEF ,AB =CE ,∠ABF =∠BCE ,∴△ABF ≌△ECF (ASA),∴BF =CF .∵OA =OC ,∴OF 是△ABC 的中位线,∴AB =2OF ,AB ∥OF .方法总结:本题综合的知识点比较多,解答本题的关键是判断出OF 是△ABC 的中位线.三、板书设计1.三角形的中位线连接三角形的两边中点的线段叫做三角形的中位线.2.三角形中位线定理三角形的中位线平行于第三边,且等于第三边的一半.本节课,通过实际生活中的例子引出三角形的中位线,又从理论上进行了验证.在学习的过程中,体会到了三角形中位线定理的应用时机.对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.。
《中位线》的教学设计互相平分.活动三:开放训练体现应用【拓展提升】例2如图23-4-12,△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G.求证:GECE=GDAD=13.[答案] 连结ED,∵D,E分别是边BC,AB的中点,∴DE∥AC,DEAC=12,∴△DEG∽△ACG,∴GEGC=GDAG=DEAC=12,∴GECE=GDAD=13.图23-4-12 图23-4-13教师做简单的讲解:如图23-4-13,分别取BC,AC的中点D,F,假设BF与AD交于点G′,同理有G′DAD=G′FBF=13,所以有GDAD=G′DAD=13,即两图中的点G与G′是重合的.于是,我们有以下结论:三角形三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的连线的长是对应中线长的13.例3已知:如图23-4-14,AD,CE分别是△ABC的中线,则S△AEG=__2__S△DEG.图23-4-14学以致用,当堂检测,及时获知学生对所学知识的掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.活动四:课堂总结反思【当堂训练】课本P79中的习题23.4.当堂检测,及时反馈学习效果. 【知识网络】提纲挈领,重点突出.。
24.3 中位线教案 2022-2023学年华东师大版数学九年级上册一、教学目标1.理解中位线的概念和特点;2.掌握求解平面图形中位线的方法;3.能够应用中位线解决实际问题。
二、教学准备1.教材:《数学九年级上册》华东师大版;2.教具:纸张、铅笔、直尺、量角器。
三、教学过程1. 导入Step 1:教师出示一个平面图形,引导学生思考,提问:“你知道如何找到这个图形的中位线吗?”请学生发表自己的看法。
Step 2:学生回答后,教师解释中位线的概念:“在一个平面图形中,从一个顶点到对边上的中点的线段称为中位线。
”2. 学习中位线的求解方法Step 1:教师给出一个具体的平面图形例子,例如一个三角形ABC,然后与学生一同寻找这个图形的中位线。
Step 2:引导学生思考,并提醒他们对称性的重要性。
教师指导学生使用直尺找到三角形的边上的中点,并用直线连接这些中点,形成中位线。
Step 3:学生试着自己找出其他图形的中位线,并与同桌进行讨论和分享。
3. 实际问题解决Step 1:教师设计一些实际问题,要求学生利用中位线进行求解。
Step 2:组织学生分组讨论问题,并呈现自己的解决思路和方法。
Step 3:学生进行小组展示,并进行讨论和交流。
四、课堂小结1. 知识点回顾•中位线的概念和特点;•求解平面图形中位线的方法。
2. 能力培养•掌握寻找和绘制中位线的技巧;•能够应用中位线解决实际问题。
3. 反思与展望本节课主要学习了中位线的概念、特点,以及求解平面图形中位线的方法。
学生通过实际问题的解决,巩固和应用了所学知识。
今后,在复习和实际问题解决中,学生能够更加灵活地运用中位线的概念和方法。
五、课后作业1.完成课本上关于中位线的练习题;2.选择一个平面图形,找出它的中位线并进行绘制;3.思考并解决一个实际问题,利用中位线进行求解。
华东师大版九年级数学上册《中位线》教案及教学反思一、教学背景本节课是九年级数学上册的第六章《统计与概率》中的第二节《中位线》。
该课时的主要内容为中位线的概念、求法及其作用。
本节课所涉及的主要知识点包括数列、中位数和中位线等。
二、教学目标1.了解中位线的定义并掌握相关计算方法。
2.能够熟练应用中位线解决实际问题。
3.培养学生观察、总结、归纳、推理和解决问题的能力。
三、教学流程1. 导入课题(5分钟)教师可以通过讲解概率论中的介绍,引出中位线的概念。
随后,教师可用图片、数据等形式展示实际问题,引起学生的兴趣和好奇心,提高学生学习中位线的积极性。
2. 课堂讲解(20分钟)(1)中位线的定义:中位线是一条把一个数据分布分成两部分的线。
它是按照一定的顺序排列的所有数据中位数所在的位置划出来的。
中位线一般用一条竖线来表示。
(2)如何求中位线:以有序数列的中间数为分隔符。
对于“奇数个数”序列来说,中位线就是序列的中间数。
对于“偶数个数”序列,中位线就是中间两个数的平均数。
(3)中位线的作用:中位线用来表示数据分布的集中趋势。
当数据分布集中时,中位线和平均数会接近;当出现异常值的时候,中位线比平均数更能体现数据分布的趋势。
3. 课堂练习(25分钟)(1)练习1:把下面的数据排序后求中位线:9,13,7,3,21,8,22,6。
(2)练习2:一个班级有12名女生,身高分别是:155cm, 165cm, 161cm, 153cm, 170cm, 168cm, 164cm, 151cm, 157cm, 172cm, 169cm, 175cm。
请根据这些数据,求出中位线并表示出来。
4. 综合应用(20分钟)(1)案例1:一家用餐的餐馆想了解顾客的消费水平,店主需要用到这些数据:15,25,30,65,85,90,95,100。
请你在这些消费数据间划分中位线。
(2)案例2:小明家有10个木盒,每个盒子中有一些石子。
这些盒子中石子的数目依次为:5,9,11,15,19,23,23,30,31,50。
《九年级上第二十四章第四节 中位线》教案【教学课型】:新课◆课程目标导航:【教学目标】:1.理解三角形中位线定义与性质,会应用三角形中位线解决实际问题.2. 理解梯形的中位线概念及其性质,会应用梯形中位线定理来解决实际问题.【教学重点】:三角形及梯形的中位线定理.【教学难点】:三角形及梯形中位线定理的形成和应用. 【教学工具】:投影仪◆ 教学情景导入师:1.如何判定两三角形相似?你有几种方法?2.相似三角形有哪些性质? 生:1.三种判定方法:两角对应相等,两三角形相似;两边对应成比例且夹角相等,两三角形相似; 三边成比例两三角形相似。
2.相似三角形对应高、对应中线、对应角平分线的比等于相似比;相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方◆教学过程一、新授:已知:如图1,在△ABC 中,DE ∥BC ,求证:AD AE AB AC ==DEBC. E D CA EDC AED CA(1) (2) (3) 教师活动:操作投影仪,提出问题,引导学生解决课堂练题.学生活动:应用相似三角形判定方法,解决课堂练习,因为∠A=∠A ,∵DE ∥BC ,∴∠ADE=∠B ,∴△ADE ∽△ABC ,∴AD AE AB AC ==DEBC. 猜想:教师提问:如果D 是AB 中点,点E 也是AC 的中点,其它条件不变,求DEBC的值.学生回答:DEBC=12,即DE=12BC.(如图2)教师提问:如果点D、E原来就是AB与AC的中点,那么能否得出DE∥BC?DE与BC•之间有怎样的数量关系呢?请同学们通过画图来猜想.学生活动:动手画图,并与同伴交流,猜想出:DE∥BC,DE=12BC.(如图24.4-3)教师提问:你能证明出你所猜想的结论呢?学生活动:动手证明,并与同伴交流.思路点拨:首先应弄清楚已知条件是什么?从图3可以看出,在△ABC中,•点D、E分别是AB与AC的中点,这就是条件,结论是求证DE∥BC,DE=12BC.•由中点定义可以推得AD AEAB AC==12,又因为∠A=∠A,应用“角等,夹边对应成比例”证出△ADE∽△ABC,•这样可得到∠ADE=∠ABC,DEBC=12,因此有DE∥BC且DE=12 BC.师生共识概括:(1)三角形中位线定义.(见课本P68)(2)三角形中位线定理.(见课本P68)例1:见课本P68例1.思路分析:对于文字题,首先应依题意,画出图形,写出已知、求证(见课本P68).本题要证明AE、DF互相平分,可以从全等三角形或平行四边形的知识入手,•进行证明.以平行四边形为例,需构建一个与AE、DF有关的四边形,•然后再证明它是一个平行四边形,本题构建出四边形ADEF,利用三角形中位线定理,很容易证出DE∥AC,EF∥AB,这样就得到ADEF,从而有AE、DE互相平分.师生分析例题1,引导学生解题.例2:见课本P68例2.思路分析:上面我们得到一种经验的思想,那就是凡是中点问题都可以考虑用中位线定理,不妨我们试一试,本题D、E分别是BC、AB的中点,要应用中位线,首先要构建中位线,这种辅助线就自己引出,连结ED,利用中位线定理,DE∥AC,DEAC=12,由此可推得△ACG∽△DEG,GE GDGC AG==DEAC=12,因此有13GE GDCE AD==.证明见课本P68.师引导学生应用经验分析思想,来寻找思路.拓展延伸:教师通过例2,引入三角形重心定义.(见课本P69)注意:数学上的“重心”与物理上的“重心”是一致的,学习中应加以对照.师要求生观察下图:师:如果M、N是梯形两腰的中点,那么,连结MN的线段,我们称它为梯形的中位线.师提问:梯形的中位线具有哪些性质呢?请同学们想一想?生:画图猜测得到MN∥BC,MN=12(BC+AD).师:刚才有些同学猜测到梯形中位线平行于两底,并且等于两底和的一半.现在请同学们来证明这个定理.生:联想到三角形中位线定理,而且回忆到“凡是梯形问题都可以通过三角形、平行四边形来解决”的这种化归思想.生:可以转化成三角形,用三角形中位线定理来解决!师:大家想得很好,现在的问题在于怎样转化?也就是如何做辅助线来达到转化的目的.师引导学生用如下做法:连接AN并延长交BC延长线于E,•这种写法的优点是避免了证明A、N、E三点一线的问题,如图.师:引导学生分析,并写出证明过程.学生活动:在正确作出辅助线之后,完成全部的证明.(板书)证明:连结AN并延长,交BC的延长线于点E.∵DN=NC,∠AND=∠CNE,∠NDA=∠NCE∴△ADN≌△ECN∴AN=EN,AD=EC.又∵AM=MB∴MN是△ABE的中位线∴MN∥BC,MN=12BC∵BE=BC+CE=BC+CD∴MN=12(BC+AD)思考:课本P70提出的问题学生活动,解决问题如下:图中L1,L2表示梯形的上、下底,h表示高,由小学学过的知识得到梯形面积公式为:S=12(L1+L2)h.根据梯形中位线定理可知:中位线L=12(L1+L2),因此,梯形面积公式也可以写成下面的形式:S=Lh.二、巩固练习P70练习三、小结1.三角形中位线定理,是三角形的一个重要性质定理,这个定理有一个特点:在同一个题设下,有两个结论,一个结论是表明位置关系的,另一个结论是表明数量关系的,在应用这个定理时,不一定同时需要两个结论,有时需要平行关系,有时要求倍分关系,可以根据具体情况,按需选用.2.梯形中位线定理是梯形的一个重要性质,它也像三角形中位线定理那样,在同一题设下有两个结论,应用时视其具体要求选用结论.◆课堂板书设计标题三角形中位线的定义三角形中位线定理例1例2梯形中位线定理课堂练习课堂总结◆练习作业设计(课堂作业设计、课下作业设计)课堂作业:1.如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,取AB中点E,连结CD和CE,求证:CD=2CE.2.梯形的上底8cm,下底长10cm,则中位线长为________.3.梯形的上底是8cm,中位线长10cm,则下底长为________.答案:1.提示:过B作BF∥AC,用三角形中位线;2. 9cm3.12cm课下作业:1.如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20m,那么A、B两点间的距离是多少?为什么?2.如图,在梯形ABCD中,AD∥BC,∠ABC和∠BAD的平分线相交于点P,•且P在CD上,求证:AB=AD+BC.DCBAP答案:1.40m,利用三角形中位线定理2.提示:取AB中点E,连接EP,用梯形中位线。
23.4中位线教学目标:1、经历三角形中位线的性质定理形成过程,掌握定理,并能利用它解决简单的问题。
2、通过命题的教学了解常用的辅助线的作法,并能灵活运用它解题。
3、进一步训练说理的能力。
4、通过学习,进一步培养自主探究和合作交流的学习习惯;进一步了解特殊与一般的辩证唯物主义观点;转化的思想。
教学重点:经历三角形中位线的性质定理形成过程,掌握定理,并能利用它解决简单的问题。
教学难点:进一步训练说理的能力。
教学过程:一、三角形的中位线(一)问题导入在23.3中,我们曾解决过如下的问题:如图24.4.1,△ABC 中,DE ∥BC ,则△ADE ∽△ABC 。
由此可以进一步推知,当点D 是AB 的中点时,点E 也是AC 的中点。
现在换一个角度考虑,图24.4.1如果点D 、E 原来就是AB 与AC 的中点,那么是否可以推出DE ∥BC 呢?DE 与BC 之间存在什么样的数量关系呢?(二)探究过程1、猜想从画出的图形看,可以猜想: DE ∥BC ,且DE =21BC .图24.4.22、证明:如图24.4.2,△ABC 中,点D 、E 分别是AB 与AC 的中点,∴ 21==AC AE AB AD . ∵ ∠A =∠A ,∴ △ADE ∽△ABC (如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似),∴ ∠ADE =∠ABC ,21=BC DE (相似三角形的对应角相等,对应边成比例), ∴ DE ∥BC 且BC DE 21=. 思考:本题还有其他的解法吗?已知: 如图所示,在△ABC 中,AD =DB ,AE =EC 。
求证: DE ∥BC ,DE =21BC 。
分析: 要证DE ∥BC ,DE =21BC ,可延长DE 到F ,使EF =DE ,于是本题就转化为证明DF =BC ,DE ∥BC ,故只要证明四边形BCFD 为平行四边形。
还可以作如下的辅助线作法。
华师大版数学九年级上册《23.4 中位线》教学设计3一. 教材分析华师大版数学九年级上册《23.4 中位线》是学生在学习了平面几何基本概念、三角形、四边形等知识后,进一步探究中位线的性质和应用。
本节内容通过介绍中位线的定义、性质和作法,使学生理解中位线在解决三角形和四边形问题中的应用,培养学生的几何思维能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何基本概念、三角形、四边形等知识,具备了一定的几何思维能力。
但部分学生对于中位线的性质和应用可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.了解中位线的定义、性质和作法。
2.学会运用中位线解决三角形和四边形问题。
3.培养学生的几何思维能力和解决问题的能力。
四. 教学重难点1.中位线的定义和性质。
2.中位线在解决三角形和四边形问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和合作学习法。
通过设置问题情境,引导学生探究中位线的性质和应用;通过分析典型案例,使学生理解中位线在解决三角形和四边形问题中的应用;通过小组合作学习,培养学生解决问题的能力和团队协作精神。
六. 教学准备1.教学PPT。
2.相关案例和练习题。
3.黑板、粉笔。
七. 教学过程1.导入(5分钟)利用PPT展示一个三角形和一个四边形,引导学生观察并思考:如何找到这两个图形的中心点?引入中位线的概念。
2.呈现(15分钟)通过PPT呈现中位线的定义、性质和作法,引导学生理解并掌握中位线的相关知识。
3.操练(15分钟)让学生独立完成PPT上的练习题,检验学生对中位线知识的掌握程度。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)以小组为单位,让学生运用中位线解决三角形和四边形问题。
教师参与小组讨论,指导学生解决问题。
5.拓展(10分钟)引导学生思考:中位线在实际应用中还有哪些作用?如何利用中位线解决更复杂的问题?6.小结(5分钟)教师总结本节课的主要内容,强调中位线的性质和应用。
华师大版数学九年级上册《23.4 中位线》教学设计2一. 教材分析华师大版数学九年级上册《23.4 中位线》是学生在学习了平面几何基本概念和性质的基础上进一步学习的知识。
本节内容主要介绍了中位线的定义、性质和应用。
通过学习本节内容,学生能够进一步理解平面几何中线段的关系,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的平面几何基础,能够理解和运用基本概念和性质。
但学生在学习过程中,可能对中位线的性质和应用理解不够深入,需要通过实例和练习来进一步巩固。
三. 教学目标1.理解中位线的定义和性质;2.学会运用中位线解决相关问题;3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.中位线的定义和性质;2.中位线在解决问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过引导学生自主探究、合作交流,提高学生对中位线知识的理解和应用能力。
六. 教学准备1.准备相关的中位线案例和练习题;2.准备课件和教学素材;3.安排课堂讨论和小组合作学习的时间和任务。
七. 教学过程1.导入(5分钟)通过提问方式复习平面几何中线段的概念和性质,引导学生思考线段之间的关系。
例如:在平面几何中,有哪些线段之间存在特殊的关系?2.呈现(10分钟)利用课件呈现中位线的定义和性质,通过几何图形和实例来帮助学生理解。
同时,给出中位线的符号表示,让学生学会识别和运用。
3.操练(10分钟)让学生通过观察和分析几何图形,找出其中的中位线,并运用中位线的性质来解决问题。
例如:在给定的三角形中,找出所有可能的中位线,并判断它们的性质。
4.巩固(10分钟)学生分组讨论,分享各自找到的中位线性质和应用实例。
教师引导学生进行总结和归纳,加深对中位线知识的理解。
5.拓展(10分钟)让学生尝试解决一些与中位线相关的问题,如:在三角形中,如何通过中位线来求边长、角度等?教师给予指导和点拨,帮助学生提高解决问题的能力。
23.4 中位线-华东师大版九年级数学上册教案一、学习目标1.了解中位数的概念和计算方法;2.掌握中位数的性质,能够运用中位数解决实际问题;3.能够分析中位线对数据的影响。
二、教学重难点1.中位数的性质及其运用;2.中位线的概念、意义与计算方法。
三、教学过程1.导入新知通过举例说明“计算一个班上数学成绩的中位数”,引导学生了解中位数及其概念,并引出教学重点——中位数的性质及运用。
2.学习新知(1) 中位数的定义通过举例,引导学生理解中位数的定义:当一组数据从小到大排列后,处于中间位置的那个数就是这组数据的中位数。
(2) 中位数的计算方法通过多组例题,引导学生掌握中位数的计算方法:当数据个数为奇数时,中位数就是这组数据从小到大排序后在中间的那个数;当数据个数为偶数时,中位数是这组数据排在最中间的两个数的平均数。
(3) 中位数的性质通过多组例题,引导学生掌握中位数的性质:(1)在等差数列中,中位数等于首项和末项的平均数;(2)在有序数列中,将最小值和最大值同时增、减相同值,中位数不变。
3. 拓展练习通过多组例题,让学生掌握中位数的运用,包括但不限于:求中位数,判断中位数在数据中的位置,运用中位数解决实际问题等。
4. 中位线(1) 中位线的定义通过举例,引导学生理解中位线的定义:将数据分别从小到大和从大到小排序,在两个排序后的数据中,对应位置数据的连线称为中位线。
(2) 中位线的计算方法通过多组例题,引导学生掌握中位线的计算方法:将数据从小到大排序,找到中间位置的数;将数据从大到小排序,找到中间位置的数;对应位置的两个数连成一条直线,就是中位线。
5. 拓展练习通过多组例题,让学生掌握分析中位线对数据的影响,包括但不限于:解释中位线对数据的平均值的影响,运用中位线判断数据分布情况等。
6. 总结归纳让学生对中位数、中位线的概念、计算方法及其应用进行总结归纳,并带领学生思考中位线与中位数的联系和区别。
四、作业布置1.完成课堂拓展练习;2.完成课后练习题。
E D CBA 中位线定理三角形中位线:定义:连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半三条中位线把三角形分为四个全等的三角形,由这三条中位线组成的三角形的周长是原三角形周长的一半中线:连接一个顶点和它的对边中点的线段中线的性质:中线把三角形分成面积相等的两个三角形 三条中线的交点叫重心,重心把中线分为1:2的两段1、如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,若DE =5,则BC =( )A .6B .8C .10D .122、如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,CD =3,BD =4,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( ) A.7 B .9 C .10 D .113、(倍长中线)已知:如图,△ABC 中,C 是DB 上一点,∠BAC =90°,∠CAD =45°,且BC =CD ,求证:AB =2AC梯形中位线连接梯形两腰中点的线段叫做梯形的中位线梯形中位线定理:梯形中位线平行于两底并且等于上下底之和的一半1、 如图,梯形ABCD 中,AD ∥BC ,EF 是中位线,AD =a ,EF =b ,则BC 的长是________.2、直角梯形的一条对角线将它分成两个三角形,其中一个是等边三角形,如果它的中位线长为a ,那么它的下底长是______.3、如图,四边形ABCD 中,对角线AC ,BD 交于O ,已知AC =BD ,M ,N 分别是AD ,BC 中点,MN 与AC ,BD 分别相交于E ,F .求证:OE =OF .4、如图,在梯形ABCD 中,AD ∥BC ,延长CB 到点E ,使BE =AD ,连接DE 交AB 于点M .(1)求证:△AMD ≌△BME ;(2)若N 是CD 的中点,且MN =5,BE =2,求BC 的长.DCABF E D CBA NMOFEDCB A5、如图,DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,MN =6,则BC =_______N M ED CBA6、如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB =10cm ,则MD的长为_______.7、如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB =10,BC =15,MN =3,则△ABC 的周长等于( )A .38B .39C .40D .418、如图,在四边形ABCD 中,R ,P 分别是BC ,CD 上的点,E ,F 分别是AP ,PR 的中点,当点P 在CD 上从点C 向点D 移动而点R 不动时,下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长保持不变D .线段EF 的长与点P 的位置有关NMCAAEPD9、如图,在四边形ABCD 中,AD =BC ,E ,F ,G 分别是AB ,CD ,AC 的中点.若∠ACB =66°,∠CAD =20°,则∠EFG =____.ACD FEG10、如图,在梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于点P ,且点P 恰好在梯形的中位线EF 上.若EF =3,则梯形ABCD 的周长为( )A .9B .10.5C .12D .1511、顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形. 如图,四边形EFGH 为中点四边形,当AC =BD 时,四边形EFGH 是_________形;当AC ⊥BD 时,四边形EFGH 是___________形;当四边形EFGH 是正方形时,AC 与BD 满足的关系是_____________________. 由此可见,中点四边形的形状与外围四边形的对角线有关.HD G F BE A12、如图,在四边形ABCD 中,AD=BC,E,F,G 分别是AB,CD,AC 的中点,H 是EF 的中点,求证:GH ⊥EF中位线中的相似1、如图,△ABC 中,D,E,F 分别是AB,AC,BC 的中点,(1)若EF=5厘米,则AB=( );若BC=9厘米,则DE=( )PF E D CBA(2)若G为AF的中点,连接BG并延长,交AC于点H,若AC=12,求CH的长EG2、如图,△ABC的中线AF,BD相较于点E,DG∥BC交AF于点E,求AF3、如图,△ABC的中线CF,BD相较于点E,且BD⊥CF,若BD=3,CE=2,则△ABC的面积为()3、如图,在Rt△ABC中,∠BAC=90°,点D为重心,连接AD,作DE∥BC,若AB=6,BC=9.则DE的长度为()4、如图,在Rt△ABC中,∠ACB=90°,点D为重心,AD⊥CE,AE=CE=BE(1)求证△CAD∽△BAC(2)△ADE和△ABC的面积比5、如图,F,G,H,I分别是EA,EB,EC,ED的中点,已知四边形FGHI的面积是5,则四边形ABCD 的面积为()。
2019华师大版数学上册中位线教学计划模
板
连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边并且等于第三边边长的一半。
查字典数学网小编为大家准备了这篇华师大版数学上册中位线
教学计划模板。
2019华师大版数学上册中位线教学计划模板
本节课设计了七个教学环节:第一环节:创设情景,导入课题;第二环节:教师讲授、传授新知;第三环节:师生共析、证明定理;第四环节:灵活运用、自我检测;第五环节:回顾小结、共同提升;第六环节:分层作业,拓展延伸;第七环节:课后反思。
第一环节:创设情景,导入课题
1.怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?
操作:(1)剪一个三角形,记为△ABC
(2)分别取AB,AC中点D,E,连接DE
(3) 沿DE将△ABC剪成两部分,并将△ABC绕点E旋转180°,得四边形BCFD.
2、思考:四边形ABCD是平行四边形吗?
3、探索新结论:若四边形ABCD是平行四边形,那么DE 与BC有什么位置和数量关系呢?
目的:通过一个有趣的动手操作问题入手入手,激发学生学习兴趣,然后设置一连串的递进问题,启发学生逆向类比猜想:DE∥BC,DE= BC.
由此引出课题.。
效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。
第二环节:教师讲授,传授新知
内容:引入三角形中位线的定义和性质
1.定义三角形的中位线,强调它与三角形的中线的区别.
2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半
目的:通过学生前期的猜测,测量,初步感知三角形中位线的定理和性质。
第三环节:师生共析,证明定理
内容:已知:如图6-20(1),DE是△ABC的中位线.
求证:DE∥BC,DE=1/2BC
证明:如图6-20(2),延长DE到F,使
DE=EF,连接CF.
在△ADE和△CFE中
∵AE=CE,∠1=∠2,DE=FE
∴△ADE≌△CFE
∴∠A=∠ECF,AD=CF
∴CF∥AB
∵BD=AD
∴BD=CF
∴四边形DBCF是平行四边形
∴DF∥BC,DF=BC
∴DE∥BC,DE=1/2BC
目的:通过严密的几何证明将三角形中位线定理进行证明,由感性到理性,使学生经历定理的探究过程,积累数学活动的经验.
第四环节:灵活运用,自我检测
内容:如图,顺次连结四边形四条边的中点,所得的四边形有什么特点?
学生容易发现:四边形ABCD是平行四边形
已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形.
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了
众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?
分析:
(1) 已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形.
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
小编为大家提供的华师大版数学上册中位线教学计划模板,大家仔细阅读了吗?最后祝同学们学习进步。