函数的最值知识点总结与 题型归纳
- 格式:docx
- 大小:267.01 KB
- 文档页数:3
函数的单调性与最值考纲解读 1.以基本初等函数为背景,判断函数的单调性,求单调区间;2.根据函数的单调性求函数最值,求参数范围,解不等式.[基础梳理]1.增函数、减函数一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2.(1)增函数:当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数; (2)减函数:当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数.(增函数) (减函数)2.单调性、单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫作函数y =f (x )的单调区间.3.函数的最值[三基自测]1.函数y =(2m -1)x +b 在R 上是减函数,则( ) A .m >12B .m <12C .m >-12D .m <-12答案:B2.函数y =1x -1的单调区间为( )A .(-∞,1)∪(1,+∞)B .(-∞,1)C .(1,+∞)D .(-∞,1)和(1,+∞) 答案:D3.函数f (x )=x 2-x 在x ∈[1,2]上的最小值为________,最大值为________. 答案:0 24.函数f (x )=2xx -1在[2,6]上的最大值和最小值分别是________.答案:4,1255.(2017·高考全国卷Ⅱ改编)函数f (x )=ln(2x -8)的递增区间为__________. 答案:(4,+∞)[考点例题]考点一 判断函数的单调性|方法突破[例1] (1)函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B.⎣⎡⎦⎤0,12 C .[0,+∞)D.⎝⎛⎭⎫12,+∞ (2)函数f (x )=ln x -x 的递增区间为________. (3)函数f (x )=lg x 2的单调递减区间是__________. (4)求函数y =x -1-2x 的单调区间. (5)讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性.[解析] (1)y =|x |(1-x )=⎩⎪⎨⎪⎧ x (1-x )(x ≥0),-x (1-x )(x <0)=⎩⎪⎨⎪⎧-x 2+x (x ≥0),x 2-x (x <0) =⎩⎨⎧-⎝⎛⎭⎫x -122+14(x ≥0),⎝⎛⎭⎫x -122-14(x <0).画出函数的草图,如图.由图易知原函数在⎣⎡⎦⎤0,12上单调递增. (2)f (x )的定义域为(0,+∞),又f ′(x )=1x -1=1-x x >0,∴0<x <1.(3)设t =x 2,∴y =lg t .当x ≥0时,t =x 2在[0,+∞)上为增,y =lg t 为增, ∴g (x )=lg x 2在(0,+∞)上为增;当x <0时,t =x 2在(-∞,0)上为减,y =lg t 为增. ∴f (x )=lg x 2在(-∞,0)上为减.(4)∵函数的定义域为⎝⎛⎦⎤-∞,12,且y =x ,y =-1-2x 在⎝⎛⎦⎤-∞,12均为增函数,故函数y =x -1-2x 在⎝⎛⎦⎤-∞,12上为单调函数. 单调增区间为⎝⎛⎦⎤-∞,12,无单调减区间. (5)设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1) =a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数f (x )在(-1,1)上为减函数. [答案] (1)B (2)(0,1) (3)(-∞,0) [方法提升]函数单调性的判断方法[母题变式]1.将本例(2)改为函数f (x )=ln x +x ,其递增区间为__________. 解析:法一:定义域为(0,+∞),由f (x )=ln x +x ,得f ′(x )=1x +1>0恒成立,∴f (x )在(0,+∞)上为增函数,增区间为(0,+∞).法二:设y 1=ln x ,y 2=x ,在定义域(0,+∞)上都为增函数,∴f (x )=y 1+y 2在(0,+∞)上为增函数.答案:(0,+∞)2.本例(1)变为函数y =|x |(1-|x |),其增区间为__________. 解析:作函数y =|x |(1-|x |)的图象,如图,其增区间为⎝⎛⎭⎫-∞,-12,⎝⎛⎭⎫0,12. 答案:⎝⎛⎭⎫-∞,-12,⎝⎛⎭⎫0,12 3.本例(5)改为判断函数g (x )=-2xx -1在(1,+∞)上的单调性. 解析:∵g ′(x )=-2(x -1)+2x (x -1)2=2(x -1)2>0,∴g (x )在(1,+∞)上是增函数.考点二 函数单调性应用|模型突破角度1 由函数单调性定义求参数范围[例2] 已知函数f (x )=x 2+ax (x ≠0,a ∈R ),若f (x )在区间[2,+∞)上是增函数,则实数a 的取值范围为( )A .(-∞,16]B .(-∞,4]C .[4,+∞)D .[16,+∞)[解析] 对函数求导可得f ′(x )=2x -ax -2, 因为函数f (x )在区间[2,+∞)上是增函数,所以f ′(x )=2x -ax -2≥0在[2,+∞)上恒成立,即a ≤2x 3在[2,+∞)上恒成立.令g (x )=2x 3,则函数g (x )在[2,+∞)上是增函数,所以函数g (x )在[2,+∞)上的最小值为g (2)=16,所以a ≤16. 故选A.[答案] A[模型解法]角度2 利用单调性解不等式或比较大小[例3] 已知f (x )=⎩⎪⎨⎪⎧a x, (x >1),⎝⎛⎭⎫4-a 2x +2,(x ≤1),是R 上的单调递增函数,解不等式f (a+7)≥f (3a -1).[解析] 因为f (x )是R 上的单调递增函数,所以可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥4-a 2+2.解得4≤a <8,根据增函数定义知a +7≥3a -1, ∴a ≤4,∴只有a =4.f (a +7)≥f (3a -1)的解集为{4}. [模型解法][高考类题](2017·高考全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:∵函数f (x )在(-∞,+∞)单调递减,且f (1)=-1, ∴f (-1)=-f (1)=1,由-1≤f (x -2)≤1, 得-1≤x -2≤1, ∴1≤x ≤3,故选D. 答案:D考点三 函数的值域与最值|模型突破角度1 知函数解析式求函数值域(或最值)[例4] (1)函数f (x )=2a x -2 016a x +1的值域为__________.(2)y =2x +1-2x 的值域为__________.[解析] (1)f (x )=2a x -2 016a x +1=2(a x +1)-2 018a x +1=2-2 018a x +1,因为a x >0,所以a x +1>1, 所以0<2 018a x +1<2 018,所以-2 016<2-2 018a x +1<2,故函数f (x )的值域为(-2 016,2). (2)(代数换元法)令t =1-2x (t ≥0),则x =1-t 22.∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54. ∴当t =12,即x =38时,y 取最大值,y max =54,且y 无最小值,∴函数的值域为⎝⎛⎦⎤-∞,54. [答案] (1)(-2016,2) (2)⎝⎛⎦⎤-∞,54 [模型解法]角度2 知函数最值求参数范围[例5] 已知函数f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,2+log a x ,x >2(a >0且a ≠1)的最大值为1,则a 的取值范围是( )A.⎣⎡⎭⎫12,1 B .(0,1) C.⎝⎛⎦⎤0,12 D .(1,+∞)[解析] 当x ≤2时,f (x )=x -1,所以f (x )max =f (2)=1.因为函数f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,2+log a x ,x >2(a >0且a ≠1)的最大值为1,所以当x >2时,2+log a x ≤1,所以⎩⎪⎨⎪⎧0<a <1,log a x ≤-1,解得a ∈⎣⎡⎭⎫12,1,故选A. [答案] A [模型解法][高考类题]1.(2016·高考全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:易知函数y =10lg x 中x >0,排除选项A 、C ;又10lg x 必为正值,排除选项B.故选D.答案:D2.(2017·高考浙江卷)已知a ∈R ,函数f (x )=⎪⎪⎪⎪x +4x -a +a 在区间[1,4]上的最大值是5,则a 的取值范围是__________.解析:∵x ∈[1,4],∴x +4x ∈[4,5],①当a ≤92时,f (x )max =|5-a |+a =5-a +a =5,符合题意;②当a >92时,f (x )max =|4-a |+a =2a -4=5,∴a =92(矛盾),故a 的取值范围是⎝⎛⎦⎤-∞,92. 答案:⎝⎛⎦⎤-∞,92 [真题感悟]1.[考点一](2016·高考北京卷)下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x解析:函数y =11-x,y =ln(x +1)在(-1,1)上都是增函数,函数y =cos x 在(-1,0)上是增函数,在(0,1)上是减函数,而函数y =2-x =⎝⎛⎭⎫12x 在(-1,1)上是减函数,故选D.答案:D2.[考点二](2015·高考湖北卷)已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( )A .sgn[g (x )]=sgn xB .sgn[g (x )]=-sgn xC .sgn[g (x )]=sgn[f (x )]D .sgn[g (x )]=-sgn[f (x )]解析:因为f (x )是R 上的增函数,又a >1,所以当x >0时,f (x )<f (ax ),即g (x )<0;当x =0时,f (x )=f (ax ),即g (x )=0;当x <0时,f (x )>f (ax ),即g (x )>0.由符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0知,sgn[g (x )]=⎩⎪⎨⎪⎧-1,x >0,0,x =0,1,x <0=-sgn x .答案:B3.[考点二](2014·高考新课标全国卷Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是__________.解析:由题可知,当-2<x <2时,f (x )>0.f (x -1)的图象是由f (x )的图象向右平移1个单位长度得到的,若f (x -1)>0,则-1<x <3.答案:(-1,3)4.[考点三](2016·高考北京卷)函数f (x )=xx -1(x ≥2)的最大值为__________.解析:(分离常数法) f (x )=x x -1=x -1+1x -1=1+1x -1, ∵x ≥2,∴x -1≥1,0<1x -1≤1,∴1+1x -1∈(1,2],故当x =2时,函数f (x )=xx -1取得最大值2.(反解法) 令y =x x -1,∴xy -y =x ,∴x =yy -1.∵x ≥2,∴y y -1≥2,∴yy -1-2=2-y y -1≥0,解得1<y ≤2,故函数f (x )的最大值为2.(导数法) ∵f (x )=xx -1,∴f ′(x )=x -1-x (x -1)2=-1(x -1)2<0,∴函数f (x )在[2,+∞)上单调递减,故当x =2时,函数f (x )=xx -1取得最大值2. 答案:2。
专题六《导数》讲义6.3导数与函数的极值、最值知识梳理.极值与最值1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.题型一. 极值、最值的概念1.函数y=x sin x+cos x的一个极小值点为()A.x=−π2B.x=π2C.x=πD.x=3π22.(2017·全国2)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1 3.(2013·全国2)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(﹣∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0 )=04.已知函数f (x )=x 3+ax 2﹣4x +5在x =﹣2处取极值(a ∈R ). (1)求f (x )的解析式;(2)求函数f (x )在[﹣3,3]上的最大值.题型二.已知极值、最值求参 考点1.利用二次函数根的分布1.若函数f (x )=x 3﹣3bx +b 在区间(0,1)内有极小值,则b 的取值范围是( ) A .(﹣∞,1)B .(0,1)C .(1,+∞)D .(﹣1,0)2.已知函数f (x )=13x 3−12ax 2+x 在区间(12,3)上既有极大值又有极小值,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞)C .(2,52)D .(2,103)考点2.参变分离3.若函数f (x )=x 33−a 2x 2+x +1在区间(12,3)上有极值点,则实数a 的取值范围是( ) A .(2,52)B .[2,52)C .(2,103) D .[2,103)4.已知函数f(x)=e xx 2+2klnx −kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( ) A .(−∞,e 24] B .(−∞,e 2]C .(0,2]D .[2,+∞)考点3.分类讨论5.已知函数f (x )=ax −1x −(a +1)lnx +1在(0,1]上的最大值为3,则实数a = . 6.已知函数f(x)=(12x 2−ax)lnx −12x 2+32ax .(1)讨论函数f (x )的极值点;(2)若f (x )极大值大于1,求a 的取值范围.7.已知函数f (x )=lnx −a x(a ∈R ) (1)求函数f (x )的单调增区间;(2)若函数f (x )在[1,e ]上的最小值为32,求a 的值.考点4.初探隐零点——设而不求,虚设零点8.(2013·湖北)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A.f(x1)>0,f(x2)>−12B.f(x1)<0,f(x2)<−12C.f(x1)>0,f(x2)<−12D.f(x1)<0,f(x2)>−129.已知f(x)=(x﹣1)2+alnx在(14,+∞)上恰有两个极值点x1,x2,且x1<x2,则f(x1)x2的取值范围为()A.(−3,12−ln2)B.(12−ln2,1)C.(−∞,12−ln2)D.(12−ln2,34−ln2)10.(2017·全国2)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.课后作业.极值、最值1.若函数f (x )=(x 2+ax +3)e x 在(0,+∞)内有且仅有一个极值点,则实数a 的取值范围是( ) A .(﹣∞,﹣2)B .(﹣∞,﹣2]C .(﹣∞,﹣3)D .(﹣∞,﹣3]2.已知函数f(x)=xe x −13ax 3−12ax 2有三个极值点,则a 的取值范围是( ) A .(0,e )B .(0,1e)C .(e ,+∞)D .(1e,+∞)3.已知f (x )=e x ,g (x )=lnx ,若f (t )=g (s ),则当s ﹣t 取得最小值时,f (t )所在区间是( ) A .(ln 2,1)B .(12,ln 2)C .(13,1e)D .(1e,12)4.已知函数f (x )=lnx +x 2﹣ax +a (a >0)有两个极值点x 1、x 2(x 1<x 2),则f (x 1)+f (x 2)的最大值为( ) A .﹣1﹣ln 2B .1﹣ln 2C .2﹣ln 2D .3﹣ln 25.已知函数f(x)=lnx +12ax 2+x ,a ∈R . (1)求函数f (x )的单调区间;(2)是否存在实数a ,使得函数f (x )的极值大于0?若存在,求a 的取值范围;若不存在,请说明理由.。
冲刺高考文科数学必看题型归纳随着高中阶段的学习即将结束,文科同学们的高考备战也进入冲刺阶段。
作为高考的一大考试科目,数学在文科生的备考中显得尤其重要。
为此,本篇文章将对文科数学的必看题型进行归纳,帮助同学们在时间紧迫、压力巨大的备考过程中更好地掌握知识点,备战高考。
一、函数1. 函数的奇偶性:(1)$f(-x)=-f(x)$,则函数为奇函数;(2)$f(-x)=f(x)$,则函数为偶函数;(3)$f(x)\ne f(-x)$,则函数既不是奇函数也不是偶函数。
2. 函数的周期性:(1)对于任意一个实数$x$,都有$f(x+T)=f(x)$,则函数是以$T$($T>0$)为周期的周期函数,$T$ 称为函数的周期;(2)当$T$ 为最小正周期时,函数是最简周期函数。
3. 函数的单调性:(1)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)<f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递增的;(2)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)>f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递减的。
4. 函数极值问题:(1)极大值:若存在$x_0\in D_f$,使得$f(x)\le f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极大值;(2)极小值:若存在$x_0\in D_f$,使得$f(x)\ge f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极小值;(3)极值:极大值和极小值统称为极值。
二、解析几何1. 点、向量的基本概念:(1)点:在xoy 坐标系中,设坐标轴OX、OY 的交点为坐标原点O,则任意一点$P(x,y)$ 都可表示为向量$\overrightarrow{OP}(x,y)$。
(2)向量:向量是具有大小和方向的几何量,用向量符号$\overrightarrow{a}$ 表示。
专题 导数与函数的极值、最值一、题型全归纳题型一 利用导数解决函数的极值问题【题型要点】利用导数研究函数极值问题的一般流程命题角度一 由图象判断函数的极值【题型要点】由图象判断函数y =f (x )的极值,要抓住两点: (1) 由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性,两者结合可得极值点【例1】设函数()x f 在R 上可导,其导函数为()x f ',且函数()()x f x y '-=1的图象如图所示,则下列结论中一定成立的是( )A.函数f (x )有极大值f (2)和极小值f (1)B.函数f (x )有极大值f (-2)和极小值f (1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)【解析】由题图可知,当x <-2时,()x f '>0;当-2<x <1时,()x f '<0;当1<x <2时,()x f '<0;当x >2时,()x f '>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【例2】已知函数f (x )的导函数f ′(x )的图象如图,则下列叙述正确的是( )A .函数f (x )在(-∞,-4)上单调递减B .函数f (x )在x =2处取得极大值C .函数f (x )在x =-4处取得极值D .函数f (x )有两个极值点【解析】由导函数的图象可得,当x ≤2时,f ′(x )≥0,函数f (x )单调递增;当x >2时,f ′(x )<0,函数f (x )单调递减,所以函数f (x )的单调递减区间为(2,+∞),故A 错误.当x =2时函数取得极大值,故B 正确.当x =-4时函数无极值,故C 错误.只有当x =2时函数取得极大值,故D 错误.故选B.命题角度二 求已知函数的极值【题型要点】求函数极值的一般步骤(1)先求函数f (x )的定义域,再求函数f (x )的导函数. (2)求()x f '=0的根.(3)判断在()x f '=0的根的左、右两侧()x f '的符号,确定极值点. (4)求出具体极值.【例3】已知函数f (x )=(x -2)(e x -ax ),当a >0时,讨论f (x )的极值情况. 【解析】 ∵()x f '=(e x -ax )+(x -2)(e x -a )=(x -1)(e x -2a ),∵a >0, 由()x f '=0得x =1或x =ln 2a .∵当a =e2时,f ′(x )=(x -1)(e x -e )≥0,∵f (x )在R 上单调递增,故f (x )无极值.∵当0<a <e2时,ln 2a <1,当x 变化时,()x f ',f (x )的变化情况如下表:∵当a >e2时,ln 2a >1,当x 变化时,()x f ',f (x )的变化情况如下表:综上,当0<a <e2时,f (x )有极大值-a (ln 2a -2)2,极小值a -e ;当a =e2时,f (x )无极值;当a >e2时,f (x )有极大值a -e ,极小值-a (ln 2a -2)2.【例4】已知函数f (x )=ln x +a -1x ,求函数f (x )的极小值.【解析】 f ′(x )=1x -a -1x 2=x -(a -1)x 2(x >0),当a -1≤0,即a ≤1时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增,无极小值. 当a -1>0,即a >1时,由f ′(x )<0,得0<x <a -1,函数f (x )在(0,a -1)上单调递减; 由f ′(x )>0,得x >a -1,函数f (x )在(a -1,+∞)上单调递增.f (x )极小值=f (a -1)=1+ln(a -1). 综上所述,当a ≤1时,f (x )无极小值; 当a >1时,f (x )极小值=1+ln(a -1).命题角度三 已知函数的极值求参数值(范围)【题型要点】已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.【易错提醒】若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.【例5】设函数f (x )=[ax 2-(3a +1)x +3a +2]e x .(1)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求实数a 的值; (2)若f (x )在x =1处取得极小值,求实数a 的取值范围.【解析】 (1)因为f (x )=[ax 2-(3a +1)x +3a +2]e x ,所以f ′(x )=[ax 2-(a +1)x +1]e x . f ′(2)=(2a -1)e 2.由题设知f ′(2)=0,即(2a -1)e 2=0,解得a =12.(2)由(1)得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x .若a >1,则当x ∵⎪⎭⎫⎝⎛1,1a 时,f ′(x )<0; 当x ∵(1,+∞)时,f ′(x )>0.所以f (x )在x =1处取得极小值.若a ≤1,则当x ∵(0,1)时,ax -1≤x -1<0,所以f ′(x )>0.所以1不是f (x )的极小值点. 综上可知,a 的取值范围是(1,+∞).题型二 函数的最值问题【题型要点】求函数f (x )在[a ,b ]上最值的方法(1)若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.【例1】(2019·全国卷Ⅲ)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.【解析】(1)f ′(x )=6x 2-2ax =2x (3x -a ).令f ′(x )=0,得x =0或x =a 3.若a >0,则当x ∵(-∞,0)∵⎪⎭⎫⎝⎛+∞,3a 时,f ′(x )>0;当x ∵⎪⎭⎫⎝⎛3,0a 时,f ′(x )<0.故f (x )在 (-∞,0),⎪⎭⎫⎝⎛+∞,3a 单调递增,在⎪⎭⎫⎝⎛3,0a 单调递减. 若a =0,f (x )在(-∞,+∞)单调递增.若a <0,则当x ∵⎪⎭⎫ ⎝⎛∞-3,a ∵(0,+∞)时,f ′(x )>0;当x ∵⎪⎭⎫ ⎝⎛0,3a 时,f ′(x )<0.故f (x )在⎪⎭⎫ ⎝⎛∞-3,a ,(0,+∞)单调递增,在⎪⎭⎫⎝⎛0,3a 单调递减. (2)满足题设条件的a ,b 存在.(∵)当a ≤0时,由(1)知,f (x )在[0,1]单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1. (∵)当a ≥3时,由(1)知,f (x )在[0,1]单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1. (∵)当0<a <3时,由(1)知,f (x )在[0,1]的最小值为⎪⎭⎫⎝⎛3a f =-a 327+b ,最大值为b 或2-a +b .若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当且仅当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1.【例2】(2020·贵阳市检测)已知函数f (x )=x -1x -ln x .(1)求f (x )的单调区间;(2)求函数f (x )在⎥⎦⎤⎢⎣⎡e e,1上的最大值和最小值(其中e 是自然对数的底数).【解析】 (1)f (x )=x -1x -ln x =1-1x-ln x ,f (x )的定义域为(0,+∞). 因为f ′(x )=1x 2-1x =1-xx 2,所以f ′(x )>0∵0<x <1,f ′(x )<0∵x >1,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由(1)得f (x )在⎥⎦⎤⎢⎣⎡1,1e 上单调递增,在(1,e]上单调递减,所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上的极大值为f (1)=1-11-ln 1=0.又⎪⎭⎫ ⎝⎛e f 1=1-e -ln 1e =2-e ,f (e)=1-1e -ln e =-1e,且⎪⎭⎫⎝⎛e f 1<f (e).所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上的最大值为0,最小值为2-e.题型三 函数极值与最值的综合应用【题型要点】解决函数极值、最值问题的策略(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论. (3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例1】设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .若f (x )在x =2处取得极小值,则a 的取值范围为_______. 【解析】 f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x ,若a >12,则当x ∵⎪⎭⎫⎝⎛2,1a 时,f ′(x )<0;当x ∵(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∵(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎪⎭⎫⎝⎛+∞,21. 【例2】已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在区间[-1,e](e 为自然对数的底数)上的最大值.【解析】:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23,当x 变化时,f ′(x ),f (x )的变化情况如下表所以当x =0时,函数f (x )取得极小值f (0)=0,函数f (x )的极大值点为x =23.(2)∵由(1)知,当-1≤x <1时,函数f (x )在[-1,0)和⎪⎭⎫⎢⎣⎡1,32上单调递减,在⎪⎭⎫⎢⎣⎡32,0上单调递增.因为f (-1)=2,⎪⎭⎫ ⎝⎛32f =427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.∵当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增. 所以f (x )在[1,e]上的最大值为f (e)=a .所以当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2.题型四 利用导数研究生活中的优化问题【题型要点】利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x ).(2)求函数的导数()x f ',解方程()x f '=0.(3)比较函数在区间端点和()x f '=0的点的函数值的大小,最大(小)者为最大(小)值. (4)回归实际问题,结合实际问题作答.【例1】某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大. 【解析】(1)因为当x =5时,y =11,所以a2+10=11,解得a =2.(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎡⎦⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.则()x f '=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6). 于是,当x 变化时,()x f ',f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【例2】已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品x 千件,并且全部销售完,每千件的销售收入为f (x )万元,且f (x )=⎩⎨⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)写出年利润W (万元)关于年产品x (千件)的函数解析式;(2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入-年总成本) 【解析】(1)由题意得W =⎩⎨⎧⎝⎛⎭⎫10.8-130x 2x -2.7x -10,0<x ≤10,⎝⎛⎭⎫108x -1 0003x 2x -2.7x -10,x >10,即W =⎩⎨⎧8.1x -130x 3-10,0<x ≤10,98-⎝⎛⎭⎫1 0003x +2.7x ,x >10.(2)∵当0<x ≤10时,W =8.1x -130x 3-10,则W ′=8.1-110x 2=81-x 210=(9+x )(9-x )10,因为0<x ≤10,所以当0<x <9时,W ′>0,则W 递增;当9<x ≤10时,W ′<0,则W 递减.所以当x =9时,W 取最大值1935=38.6万元.∵当x >10时,W =98-⎪⎭⎫⎝⎛+x x 7.231000≤98-21 0003x×2.7x =38. 当且仅当1 0003x =2.7x ,即x =1009时等号成立.综上,当年产量为9千件时,该企业生产此产品所获年利润最大.二、高效训练突破 一、选择题1.函数f (x )=2x 3+9x 2-2在[-4,2]上的最大值和最小值分别是( ) A .25,-2 B .50,14 C .50,-2D .50,-14【解析】:因为f (x )=2x 3+9x 2-2,所以f ′(x )=6x 2+18x ,当x ∵[-4,-3)或x ∵(0,2]时,f ′(x )>0,f (x )为增函数,当x ∵(-3,0)时,f ′(x )<0,f (x )为减函数,由f (-4)=14,f (-3)=25,f (0)=-2,f (2)=50,故函数f (x )=2x 3+9x 2-2在[-4,2]上的最大值和最小值分别是50,-2. 2.已知函数y =f (x )的导函数f ′(x )的图象如图所示,给出下列判断:∵函数y =f (x )在区间⎪⎭⎫⎝⎛--21,3内单调递增;∵当x =-2时,函数y =f (x )取得极小值; ∵函数y =f (x )在区间(-2,2)内单调递增;∵当x =3时,函数y =f (x )有极小值. 则上述判断正确的是( ) A .∵∵ B .∵∵ C .∵∵∵D .∵∵【解析】:对于∵,函数y =f (x )在区间⎪⎭⎫⎝⎛--21,3内有增有减,故∵不正确; 对于∵,当x =-2时,函数y =f (x )取得极小值,故∵正确;对于∵,当x ∵(-2,2)时,恒有f ′(x )>0,则函数y =f (x )在区间(-2,2)上单调递增,故∵正确; 对于∵,当x =3时,f ′(x )≠0,故∵不正确.3.(2020·东莞模拟)若x =1是函数f (x )=ax +ln x 的极值点,则( ) A.f (x )有极大值-1 B.f (x )有极小值-1 C.f (x )有极大值0D.f (x )有极小值0【解析】∵f (x )=ax +ln x ,x >0,∵f ′(x )=a +1x ,由f ′(1)=0得a =-1,∵f ′(x )=-1+1x =1-xx .由f ′(x )>0得0<x <1,由f ′(x )<0得x >1, ∵f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.∵f (x )极大值=f (1)=-1,无极小值,故选A.4.函数f (x )=x 3+bx 2+cx +d 的大致图象如图所示,则x 21+x 22等于( )A.89B.109C.169D.289【解析】函数f (x )的图象过原点,所以d =0.又f (-1)=0且f (2)=0,即-1+b -c =0且8+4b +2c =0,解得b =-1,c =-2,所以函数f (x )=x 3-x 2-2x ,所以f ′(x )=3x 2-2x -2,由题意知x 1,x 2是函数的极值点,所以x 1,x 2是f ′(x )=0的两个根,所以x 1+x 2=23,x 1x 2=-23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=49+43=169. 5.已知函数f (x )=2f ′(1)ln x -x ,则f (x )的极大值为( ) A .2 B .2ln 2-2 C .eD .2-e【解析】:函数f (x )定义域(0,+∞),f ′(x )=2f ′(1)x -1,所以f ′(1)=1,f (x )=2ln x -x ,令f ′(x )=2x-1=0,解得x =2.当0<x <2时,f ′(x )>0,当x >2时,f ′(x )<0,所以当x =2时函数取得极大值,极大值为2ln 2-2. 6.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A.[-3,+∞) B.(-3,+∞) C.(-∞,-3)D.(-∞,-3]【解析】由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:7.用边长为120 cm 的正方形铁皮做一个无盖水箱,先在四周分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱的最大容积为( ) A .120 000 cm 3 B .128 000 cm 3 C .150 000 cm 3D .158 000 cm 3【解析】:设水箱底长为x cm ,则高为120-x2cm.由⎩⎪⎨⎪⎧120-x 2>0,x >0,得0<x <120.设容器的容积为y cm 3,则有y =-12x 3+60x 2.求导数,有y ′=-32x 2+120x .令y ′=0,解得x =80(x =0舍去).当x ∵(0,80)时,y ′>0;当x ∵(80,120)时,y ′<0. 因此,x =80是函数y =-12x 3+60x 2的极大值点,也是最大值点,此时y =128 000.故选B.8.(2020·郑州质检)若函数y =f (x )存在n -1(n ∵N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A .2折函数 B .3折函数 C .4折函数D .5折函数【解析】:.f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)·(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3×(-2)+2=-4. 所以函数y =f (x )有3个极值点,则f (x )为4折函数.9.(2020·昆明市诊断测试)已知函数f (x )=(x 2-m )e x ,若函数f (x )的图象在x =1处切线的斜率为3e ,则f (x )的极大值是( )A .4e -2 B .4e 2 C .e -2D .e 2【解析】:f ′(x )=(x 2+2x -m )e x .由题意知,f ′(1)=(3-m )e =3e ,所以m =0,f ′(x )=(x 2+2x )e x .当x >0或x <-2时,f ′(x )>0,f (x )是增函数;当-2<x <0时,f ′(x )<0,f (x )是减函数.所以当x =-2时,f (x )取得极大值,f (-2)=4e -2.故选A.10.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( ) A.20 B.18 C.3D.0【解析】原命题等价于对于区间[-3,2]上的任意x ,都有f (x )max -f (x )min ≤t , ∵f ′(x )=3x 2-3,∵当x ∵[-3,-1]时,f ′(x )>0, 当x ∵[-1,1]时,f ′(x )<0,当x ∵[1,2]时,f ′(x )>0. ∵f (x )max =f (2)=f (-1)=1,f (x )min =f (-3)=-19. ∵f (x )max -f (x )min =20,∵t ≥20.即t 的最小值为20.故选A.二、填空题1.已知f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a -b = .【解析】:由题意得f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9, 经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7. 2.已知函数f (x )=x 3+ax 2+(a +6)x +1.若函数f (x )的图象在点(1,f (1))处的切线斜率为6,则实数a = ;若函数在(-1,3)内既有极大值又有极小值,则实数a 的取值范围是 .【解析】:f ′(x )=3x 2+2ax +a +6,结合题意f ′(1)=3a +9=6,解得a =-1;若函数在(-1,3)内既有极大值又有极小值,则f ′(x )=0在(-1,3)内有2个不相等的实数根,则⎩⎪⎨⎪⎧Δ=4a 2-12(a +6)>0,f ′(-1)>0,f ′(3)>0,解得-337<a <-3.3.(2020·甘肃兰州一中期末改编)若x =-2是函数f (x )=(x 2+ax -1)e x 的极值点,则f ′(-2)= ,f (x )的极小值为 .【解析】:由函数f (x )=(x 2+ax -1)e x 可得f ′(x )=(2x +a )e x +(x 2+ax -1)e x ,因为x =-2是函数f (x )的极值点,所以f ′(-2)=(-4+a )e -2+(4-2a -1)e -2=0,即-4+a +3-2a =0,解得a =-1.所以f ′(x )=(x 2+x -2)e x .令f ′(x )=0可得x =-2或x =1.当x <-2或x >1时,f ′(x )>0,此时函数f (x )为增函数,当-2<x <1时,f ′(x )<0,此时函数f (x )为减函数,所以当x =1时函数f (x )取得极小值,极小值为f (1)=(12-1-1)×e 1=-e.4.(2019·武汉模拟)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是 .【解析】:因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.5.若函数f (x )=x 3-3ax 在区间(-1,2)上仅有一个极值点,则实数a 的取值范围为 .【解析】因为f ′(x )=3(x 2-a ),所以当a ≤0时,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增,f (x )没有极值点,不符合题意; 当a >0时,令f ′(x )=0得x =±a , 当x 变化时,f ′(x )与f (x )的变化情况如下表所示:因为函数f (x )在区间(-1,2)上仅有一个极值点,所以⎩⎨⎧a <2,-a ≤-1或⎩⎨⎧-a >-1,2≤a ,解得1≤a <4.三 解答题1.(2020·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 【解析】:(1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx,令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.所以f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. 所以f (x )max =f (1)=-1.所以当a =-1时,函数f (x )在(0,+∞)上的最大值为-1.(2)f ′(x )=a +1x ,x ∵(0,e],1x ∵⎪⎭⎫⎢⎣⎡+∞,1e .∵若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数,所以f (x )max =f (e)=a e +1≥0,不符合题意;∵若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∵(0,e],解得0<x <-1a,令f ′(x )<0得a +1x <0,结合x ∵(0,e],解得-1a <x ≤e.从而f (x )在⎪⎭⎫ ⎝⎛-a 1,0上为增函数,在⎥⎦⎤⎝⎛-e a ,1上为减函数,所以f (x )max =⎪⎭⎫ ⎝⎛-a f 1=-1+⎪⎭⎫ ⎝⎛-a 1ln .令-1+⎪⎭⎫ ⎝⎛-a 1ln =-3,得⎪⎭⎫⎝⎛-a 1ln =-2,即a =-e 2.因为-e 2<-1e ,所以a =-e 2为所求.故实数a 的值为-e 2.2.(2020·洛阳尖子生第二次联考)已知函数f (x )=mx -nx-ln x ,m ∵R .(1)若函数f (x )的图象在(2,f (2))处的切线与直线x -y =0平行,求实数n 的值; (2)试讨论函数f (x )在区间[1,+∞)上的最大值.【解析】:(1)由题意得f ′(x )=n -x x 2,所以f ′(2)=n -24.由于函数f (x )的图象在(2,f (2))处的切线与直线x -y =0平行,所以n -24=1,解得n =6.(2)f ′(x )=n -xx2,令f ′(x )<0,得x >n ;令f ′(x )>0,得x <n .∵当n ≤1时,函数f (x )在[1,+∞)上单调递减,所以f (x )max =f (1)=m -n ;∵当n >1时,函数f (x )在[1,n )上单调递增,在(n ,+∞)上单调递减,所以f (x )max =f (n )=m -1-ln 3.(2019·郑州模拟)已知函数f (x )=1-x x +k ln x ,k <1e ,求函数f (x )在⎥⎦⎤⎢⎣⎡e e ,1上的最大值和最小值.【解析】 f ′(x )=-x -(1-x )x 2+k x =kx -1x2.∵若k =0,则f ′(x )=-1x 2在⎥⎦⎤⎢⎣⎡e e ,1上恒有f ′(x )<0,所以f (x )在⎥⎦⎤⎢⎣⎡e e ,1上单调递减.∵若k ≠0,则f ′(x )=kx -1x 2=k ⎝⎛⎭⎫x -1k x 2.(∵)若k <0,则在⎥⎦⎤⎢⎣⎡e e,1上恒有k ⎝⎛⎭⎫x -1k x 2<0.所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上单调递减,(∵)若k >0,由k <1e ,得1k >e ,则x -1k <0在⎥⎦⎤⎢⎣⎡e e ,1上恒成立,所以k ⎝⎛⎭⎫x -1k x 2<0, 所以f (x )在1e ,e 上单调递减.综上,当k <1e 时,f (x )在⎥⎦⎤⎢⎣⎡e e ,1上单调递减,所以f (x )min =f (e )=1e +k -1,f (x )max =⎪⎭⎫⎝⎛e f 1=e -k -1.4.已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e ]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.【解析】由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x 2(a >0).(1)由f ′(x )>0解得x >1a ,所以函数f (x )的单调递增区间是⎪⎭⎫⎝⎛+∞,1a ;由f ′(x )<0解得x <1a ,所以函数f (x )的单调递减区间是⎪⎭⎫⎝⎛a 1,0.所以当x =1a 时,函数f (x )有极小值⎪⎭⎫⎝⎛a f 1=a ln 1a +a =a -a ln a ,无极大值. (2)不存在.理由如下:由(1)可知,当x ∵⎪⎭⎫ ⎝⎛a 1,0时,函数f (x )单调递减;当x ∵⎪⎭⎫⎝⎛+∞,1a 时,函数f (x )单调递增.∵若0<1a≤1,即a ≥1时,函数f (x )在[1,e ]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件.∵若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎪⎭⎫⎢⎣⎡a 1,1上为减函数,在⎥⎦⎤⎢⎣⎡e a ,1上为增函数,故函数f (x )的最小值为f (x )的极小值⎪⎭⎫⎝⎛a f 1=a ln 1a +a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,而1e≤a <1,故不满足条件.∵若1a >e ,即0<a <1e时,函数f (x )在[1,e ]上为减函数,故函数f (x )的最小值为f (e )=a +1e =0,解得a =-1e ,而0<a <1e ,故不满足条件.综上所述,这样的a 不存在.。
第6讲 导数的应用之单调性、极值和最值1.函数单调性与导函数符号的关系一般地,函数的单调性与其导数正负有以下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在该区间内单调递增;如果()0f x '<,那么函数()y f x =在该区间内单调递减.2.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数; (3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性.注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论: ()0f x '>⇒()f x 单调递增; ()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减; ()f x 单调递减()0f x '⇒≤.3.函数极值的概念设函数()y f x =在点0x 处连续且0()0y f x '==,若在点0x 附近的左侧()0f x '>,右侧()0f x '<,则0x 为函数的极大值点;若在0x 附近的左侧()0f x '<,右侧()0f x '>,则0x 为函数的极小值点.函数的极值是相对函数在某一点附近的小区间而言,在函数的整个定义区间内可能有多个极大值或极小值,且极大值不一定比极小值大.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 4.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x ';(3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点. 5.函数的最大值、最小值若函数()y f x =在闭区间[],a b 上的图像是一条连续不间断的曲线,则该函数在[],a b 上一定能够取得最大值与最小值,函数的最值必在极值点或区间端点处取得.6.求函数的最大值、最小值的一般步骤设()y f x =是定义在区间[],a b 上的函数,()y f x =在(,)a b 可导,求函数()y f x =在[],a b 上的最大值与最小值,可分两步进行:(1)求函数()y f x =在(,)a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值.注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点; ③函数的最值必在极值点或区间端点处取得.1.已知0x 是函数()e ln x f x x =-的极值点,若()00,a x ∈, ()0,b x ∈+∞,则 A. ()0f a '>, ()0f b '< B. ()0f a '<, ()0f b '< C. ()0f a '>, ()0f b '> D. ()0f a '<, ()0f b '> 【答案】D【解析】因为()1(0)x f x e x x '=->,令()1=0x f x e x '=-,即1=x e x ,在平面直角坐标系画出1,x y e y x==的图象,如图:根据图象可知, ()()()()000,,0,,,0x x f x x x f x '∞'∈∈+,所以 ()0f a '<, ()0f b '>,故选D.2.已知20a b =≠,且关于x 的函数()321132f x x a x a bx =++⋅在R 上有极值,则a 与b 的夹角范围为( )A. 0,6π⎛⎫⎪⎝⎭B. ,6ππ⎛⎤ ⎥⎝⎦C. ,3ππ⎛⎤ ⎥⎝⎦D. 2,33ππ⎛⎤ ⎥⎝⎦【答案】C【解析】()321132f x x a x a bx =++⋅在R 有极值, ()2'0f x x a x a b ∴=++⋅=有不等式的根, 0∴∆>,即2240,4cos 0a a b a a b θ-⋅>∴->,120,cos 2a b θ=≠∴<, 0,3πθπθπ≤≤∴<≤,即向量,a b 夹角范围是,3ππ⎛⎤⎥⎝⎦,故选C. 【方法点睛】本题主要考查向量的模及平面向量数量积公式、利用导数研究函数的极值,属于难题.平面向量数量积公式有两种形式,一是cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角, ·cos ·a ba bθ=(此时·a b 往往用坐标形式求解);(2)求投影, a 在b 上的投影是a b b⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb + 的模(平方后需求a b ⋅).3.在ABC ∆中, ,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则sin 23B π⎛⎫- ⎪⎝⎭的最小值是( ) A. 0 B. 32- C. 32D. -1 【答案】D【解析】()()3222113f x x bx a c ac x =+++-+,∴f′(x )=x 2+2bx+(a 2+c 2-ac ),又∵函数()()3222113f x x bx a c ac x =+++-+有极值点,∴x 2+2bx+(a 2+c 2-ac )=0有两个不同的根,∴△=(2b )2-4(a 2+c 2-ac )>0,即ac >a 2+c 2-b 2,即ac >2accosB ;即cosB <12,故∠B 的范围是(π3π,),所以23B π- 5,33ππ⎛⎫∈ ⎪⎝⎭,当3112B 326B πππ-==,即 时sin 23B π⎛⎫- ⎪⎝⎭的最小值是-1 故选D4.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx , 11f e e⎛⎫= ⎪⎝⎭,则f(x)( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值,又有极小值D. 既无极大值,又无极小值 【答案】D【解析】因为xf ′(x )-f (x )=x ln x ,所以()()2ln xf x f x x x x -=',所以()'ln ()f x xx x=,所以f (x )=12x ln 2x +cx .因为f (1e )=12e ln 21e +c ×1e =1e ,所以c =12,所以f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,所以f (x )在(0,+∞)上单调递增,所以f (x )在(0,+∞)上既无极大值,也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如()()f x f x '-构造()()x f x g x e =, ()()f x f x '+构造()()x g x e f x =,()()xf x f x '-构造()()f xg x x=, ()()xf x f x '+构造()()g x xf x =等 5.设a R ∈,若函数,x y e ax x R =+∈有大于零的极值点,则( )A. 1a e<- B. 1a e >- C. 1a >- D. 1a <-【答案】D【解析】()x f x e a '=+(x>0),显然当0a ≥时, ()0f x '>,f(x)在R 上单调递增,无极值点,不符。
2016年高考数学 热点题型和提分秘籍 专题05 函数的单调性与最值理(含解析)新人教A 版【高频考点解读】1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用函数的图象理解和研究函数的性质. 【热点题型】题型一 函数单调性的判断例1、(1)下列函数f (x )中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-x D .f (x )=ln(x +1)(2)函数y =x +2x +1在(-1,+∞)上是________(填“增函数”或“减函数”). 【答案】 (1)C(2)减函数 【解析】【提分秘籍】(1)图象法作图象→看升降→归纳单调性区间(2)转化法(3)导数法求导→判断f′x正、负→单调性区间(4)定义法取值→作差→变形→定号→单调性区间求函数的单调区间,一定要注意定义域优先原则.【举一反三】下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=x+1B.y=(x-1)2C.y=2-x D.y=log0.5(x+1)【答案】A【解析】题型二求函数的单调区间例2、求下列函数的单调区间:(1)y=-x2+2|x|+1;(2)y=log1(x2-3x+2).2解析(1)由于y=⎩⎪⎨⎪⎧-x 2+2x +1x ≥0,-x 2-2x +1x <0,即y =⎩⎪⎨⎪⎧-x -12+2x ≥0,-x +12+2x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).【提分秘籍】(1)求函数的单调区间与确定单调性的方法一致.常用的方法有:①利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. ②定义法:先求定义域,再利用单调性定义确定单调区间.③图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间.(2)若函数f (x )的定义域上(或某一区间上)是增函数,则f (x 1)<f (x 2)⇔x 1<x 2.利用上式,可以去掉抽象函数的符号,将函数不等式(或方程)的求解化为一般不等式(或方程)的求解,但无论如何都必须在定义域内或给定的X 围内进行.【举一反三】求下列函数的单调区间,并指出其增减性. (1)y =(a >0且a ≠1);(2)y =log 12(4x -x 2).题型三函数单调性的应用例3、已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f (x )=e x+sin x ,则( )A .f (1)<f (2)<f (3)B .f (2)<f (3)<f (1)C .f (3)<f (2)<f (1)D .f (3)<f (1)<f (2) 【答案】D【解析】由f (x )=f (π-x ),得函数f (x )的图象关于直线x =π2对称,又当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f ′(x )=e x +cos x >0恒成立,所以f (x )在⎝ ⎛⎭⎪⎫-π2,π2上为增函数,f (2)=f (π-2),f (3)=f (π-3),且0<π-3<1<π-2<π2,所以f (π-3)<f (1)<f (π-2),即f (3)<f (1)<f (2).【提分秘籍】1.高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.2.高考对函数单调性的考查主要有以下几个命题角度: (1)利用函数的单调性比较大小.(2)利用函数的单调性解决与抽象函数有关的不等式问题. (3)利用函数的单调性求参数.(4)利用函数的单调性求解最值(或恒成立)问题.【方法规律】(1)含“f ”号不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.(2)分段函数单调性解法为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性一致外,还要注意两段连接点的衔接.【举一反三】已知函数f (x )的定义域是(0,+∞),且满足f (xy )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫12=1,如果对于0<x <y ,都有f (x )>f (y ).(1)求f (1)的值;(2)解不等式f (-x )+f (3-x )≥-2.则⎩⎪⎨⎪⎧x <0,-x 2·3-x 2≤1,解得-1≤x <0.∴不等式的解集为{x |-1≤x <0}. 【变式探究】已知f (x )=⎩⎪⎨⎪⎧3-a x -a x <1log a x x ≥1是(-∞,+∞)上的增函数,则a 的取值X 围是( ) A .(1,+∞) B .(1,3) C.⎣⎢⎡⎭⎪⎫32,3D.⎝ ⎛⎭⎪⎫1,32【答案】⎣⎢⎡⎭⎪⎫32,3 【解析】【高考风向标】【2015高考某某,理6】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =- 【答案】B【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.【2015高考某某,理15】设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】①③④⑤ 【解析】(2014·卷)下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.(2014·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D【解析】由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1; 当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).(2014·某某卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.【答案】1【解析】由题意可知,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12=f ⎝ ⎛⎭⎪⎫-12=-4⎝ ⎛⎭⎪⎫-122+2=1. (2014·某某卷)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R,∃a ∈D ,f (a )=b ”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=a ln(x+2)+xx2+1(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有________.(写出所有真命题的序号)【答案】①③④【解析】(2014·某某卷)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值X围.【解析】(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2, 则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值X 围是(e -2,1).(2013·某某卷)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值X 围. 【解析】所以,函数f(x)的图像在点A,B处的切线互相垂直时,x2-x1的最小值为1.(2013·某某卷)设函数f(x)=e x+x-a(a∈R,e为自然对数的底数).若曲线y=sinx上存在(x0,y0)使得f(f(y0))=y0,则a的取值X围是( )A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]【答案】A【解析】因为y0=sin x0∈[-1,1],且f(x)在[-1,1]上(有意义时)是增函数,对于y 0∈[-1,1],如果f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不可能有f(f(y 0))=y 0.同理,当f(y 0)=d <y 0时,则f(f(y 0))=f(d)<f(y 0)=d <y 0,也不可能有f(f(y 0))=y 0,因此必有f(y 0)=y 0,即方程f(x)=x 在[-1,1]上有解,即e x+x -a =x 在[-1,1]上有解.显然,当x <0时,方程无解,即需要e x+x -a =x 在[0,1]上有解.当x≥0时,两边平方得e x+x -a =x 2,故a =e x-x 2+x.记g(x)=e x-x 2+x ,则g′(x)=e x-2x +1.当x∈⎣⎢⎡⎦⎥⎤0,12时,e x>0,-2x +1≥0,故g′(x)>0,当x∈⎝ ⎛⎦⎥⎤12,1时,e x>e >1,0>-2x +1≥-1,故g′(x)>0.综上,g′(x)在x∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值X 围是[1,e].(2013·某某卷)函数y =x33x -1的图像大致是( )【答案】C【解析】函数的定义域是{x∈R|x≠0},排除选项A ;当x<0时,x 3<0,3x-1<0,故y>0,排除选项B ;当x→+∞时,y>0且y→0,故为选项C 中的图像.(2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .x 0∈R,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=0 【答案】C【解析】【高考押题】1.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A. k >12 B. k <12C. k >-12D. k <-12【答案】D【解析】使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0,即k <-12.2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A. y =x 3B. y =|x |+1C. y =-x 2+1 D. y =2-|x |【答案】B 【解析】3.已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A. f (4)>f (-6)B. f (-4)<f (-6)C. f (-4)>f (-6)D. f (4)<f (-6) 【答案】C【解析】由(x 1-x 2)(f (x 1)-f (x 2))>0知f (x )在(0,+∞)上递增,∴f (4)<f (6)⇔f (-4)>f (-6).4. 函数y =(12)2x 2-3x +1的递减区间为( )A. (1,+∞)B. (-∞,34)C. (12,+∞)D. [34,+∞)【答案】D【解析】设t =2x 2-3x +1,其递增区间为[34,+∞),∴复合函数递减区间为[34,+∞),选D 项.5. 函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A. (-∞,0)∪(12,2] B. (-∞,2]C. (-∞,12)∪[2,+∞) D. (0,+∞)【答案】A【解析】∵x ∈(-∞,1)∪[2,5),y =2x -1在(-∞,1)上为减函数,在[2,5)上也为减函数,则x -1∈(-∞,0)∪[1,4). ∴2x -1∈(-∞,0)∪(12,2]. 6. 设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧gx +x +4,x <g x ,g x -x ,x ≥g x .则f (x )的值域是( )A. [-94,0]∪(1,+∞)B. [0,+∞)C. [-94,+∞)D. [-94,0]∪(2,+∞)【答案】D 【解析】7. 函数f (x )=x 2-2x -3的单调增区间为________. 【答案】[3,+∞)【解析】定义域x 2-2x -3≥0,∴x ≤-1或x ≥3,函数的递增区间为[3,+∞). 8. 函数y =xx +a在(-2,+∞)上为增函数,则a 的取值X 围是________.【答案】a ≥2 【解析】y =xx +a=1-ax +a,依题意,得函数的单调增区间为(-∞,-a )、(-a ,+∞),要使函数在(-2,+∞)上为增函数,只要-2≥-a ,即a ≥2.9.设函数f (x )的图象关于y 轴对称,又已知f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f -x +f xx<0的解集为________.【答案】(-1,0)∪(1,+∞) 【解析】10.已知函数f (x )是定义在(0,+∞)上的减函数,且满足f (xy )=f (x )+f (y ),f (13)=1.(1)求f (1);(2)若f (x )+f (2-x )<2,求x 的取值X 围.解:(1)令x =y =1,则f (1)=f (1)+f (1),∴f (1)=0. (2)∵2=1+1=f (13)+f (13)=f (19),∴原不等式等价于f [x (2-x )]<f (19),由f (x )为(0,+∞)上的减函数,得⎩⎪⎨⎪⎧x >0,2-x >0,x 2-x >19,⇒⎩⎪⎨⎪⎧x >0,2-x >0,1-223<x <1+223,⇒1-223<x <1+223,即x 的取值X 围为(1-223,1+223).11. 已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值X 围.12.已知函数g (x )=x +1,h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.解:(1)f (x )=x +1x +3,x ∈[0,a ],(a >0). (2)函数f (x )的定义域为[0,14],令x +1=t ,则x =(t -1)2,t ∈[1,32],f (x )=F (t )=tt 2-2t +4=1t +4t-2, ∵t =4t 时,t =±2∉[1,32],又t ∈[1,32]时,t +4t 单调递减,F (t )单调递增,F (t )∈[13,613]. 即函数f (x )的值域为[13,613].。
高一数学函数重点知识点归纳总结三篇高一新生对数学的函数知识是相当头疼的,函数知识面广,思维灵活,题型更是千奇百怪,要想学好函数,就需要一份准确的函数知识点归纳。
高一函数知识点归纳总结1函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。
f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。
高一函数归纳总结2一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:\2. 求函数定义域常见的用解析式表示的函数f(x)的定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R.②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。
③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。
④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。
⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。
⑥复合函数的定义域是复合的各基本的函数定义域的交集。
高中数学题型归纳大全函数与导数6题型归纳六、极值点偏移考点1.对称构造1.已知函数f(x)=xe﹣x(x∈R)(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.2.已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.考点2.比值(作差)换元3.已知函数f(x)=e x﹣ax(a∈R)有两个零点.(1)求实数a的取值范围;(2)若函数f(x)的两个零点分别为x1,x2,求证:x1+x2>2.4.设函数f(x)=ax−lnx+1x+b(a、b∈R),(1)讨论f(x)的单调性;(2)若函数f(x)有两个零点x1、x2,求证:x1+x2+2>2ax1x2.考点3.消参减元5.已知函数f(x)=x2+ax﹣alnx.(1)若函数f(x)在[2,5]上单调递增,求实数a的取值范围;(2)当a=2时,若方程f(x)=x2+2m有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.6.已知函数f(x)=e x﹣ax+a(a∈R),其中e为自然对数的底数.(1)讨论函数y=f(x)的单调性;(2)若函数f(x)有两个零点x1,x2,证明:x1+x2<2lna.考点4.拐点偏移7.已知函数f(x)=xlnx−a2x2+(a﹣1)x,其导函数f′(x)的最大值为0.(1)求实数a的值;(2)若f(x1)+f(x2)=﹣1(x1≠x2),证明:x1+x2>2.8.已知函数f(x)=2lnx﹣3x2﹣11x.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若关于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x﹣2恒成,求整数a的最小值;(3)若正实数x1,x2满足f(x1)+f(x2)+4(x12+x22)+12(x1+x2)=4,证明:x1+x2≥2.题型归纳六、极值点偏移考点1.对称构造1.已知函数f(x)=xe﹣x(x∈R)(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.【分析】(1)先求导求出导数为零的值,通过列表判定导数符号,确定出单调性和极值.(2)先利用对称性求出g(x)的解析式,比较两个函数的大小可将它们作差,研究新函数的最小值,使最小值大于零,不等式即可证得.(3)通过题意分析先讨论,可设x1<1,x2>1,利用第二问的结论可得f(x2)>g(x2),根据对称性将g(x2)换成f(2﹣x2),再利用单调性根据函数值的大小得到自变量的大小关系.【解答】解:(Ⅰ)解:f′(x)=(1﹣x)e﹣x令f′(x)=0,解得x=1当x变化时,f′(x),f(x)的变化情况如下表x(﹣∞,1) 1 (1,+∞)f′(x)+ 0 ﹣f(x)增极大值减所以f(x)在(﹣∞,1)内是增函数,在(1,+∞)内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)=1 e.(Ⅱ)证明:由题意可知g(x)=f(2﹣x),得g(x)=(2﹣x)e x﹣2令F(x)=f(x)﹣g(x),即F(x)=xe﹣x+(x﹣2)e x﹣2于是F'(x)=(x﹣1)(e2x﹣2﹣1)e﹣x当x>1时,2x﹣2>0,从而e2x﹣2﹣1>0,又e﹣x>0,所以F′(x)>0,从而函数F(x)在[1,+∞)是增函数.又F(1)=e﹣1﹣e﹣1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(Ⅲ)证明:(1)若(x1﹣1)(x2﹣1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾.(2)若(x1﹣1)(x2﹣1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾.根据(1)(2)得(x1﹣1)(x2﹣1)<0,不妨设x1<1,x2>1.由(Ⅱ)可知,f(x2)>g(x2),则g(x2)=f(2﹣x2),所以f(x2)>f(2﹣x2),从而f(x1)>f(2﹣x2).因为x2>1,所以2﹣x2<1,又由(Ⅰ)可知函数f(x)在区间(﹣∞,1)内是增函数,所以x1>2﹣x2,即x1+x2>2.2.已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a=(x1−2)e x1(x1−1)2=(x2−2)ex2(x2−1)2,令g(x)=(x−2)e x(x−1)2,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=m+1m2e1−m(m−1m+1e2m+1),设h(m)=m−1m+1e2m+1,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<x﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若−e2<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=−e2,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<−e2,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a=(x1−2)e x1(x1−1)2=(x2−2)ex2(x2−1)2,令g(x)=(x−2)e x(x−1)2,则g(x1)=g(x2)=﹣a,∵g′(x)=[(x−2)2+1]e x(x−1)3,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=m−12e1+m−−m−12e1−m=m+12e1−m(m−1m+1e2m+1),设h(m)=m−1m+1e2m+1,m>0,则h′(m)=2m2(m+1)2e2m>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.考点2.比值(作差)换元3.已知函数f(x)=e x﹣ax(a∈R)有两个零点.(1)求实数a的取值范围;(2)若函数f(x)的两个零点分别为x1,x2,求证:x1+x2>2.【分析】(1)利用导数判断函数的单调性,以及结合零点定理即可求出a的范围;(2)由e x1=ax1,e x2=ax2得x1=lna+lnx1,x2=lna+lnx2;得到所以x1+x2=(t+1)lnt t−1;构造函数h(t)=lnt−2(t−1)t+1,求证即可.【解答】解:(1)由f(x)=e x﹣ax,得f'(x)=e x﹣a,当a<0时,f(x)在R上为增函数,函数f(x)最多有一个零点,不符合题意,所以a>0.当a>0时,f'(x)=e x﹣a=e x﹣e lnaf'(x)<0⇔x<lna;f'(x)>0⇔x>lna;所以f(x)在(﹣∞,lna)上为减函数,在(lna,+∞)上为增函数;所以f(x)min=f(lna)=a﹣alna;若函数f(x)有两个零点,则f(lna)<0⇒a>e;当a>e时,f(0)=1>0,f(1)=e﹣a<0;f(3a)=(e a)3﹣3a2>0;由零点存在定理,函数f(x)在(0,1)和(1,3a)上各有一个零点.结合函数f(x)的单调性,当a>e时,函数f(x)有且仅有两个零点,所以,a的取值范围为(e,+∞).(2)证明:由(1)得a>e,0<x1<x2;由ex1=ax1,ex2=ax2得x1=lna+lnx1,x2=lna+lnx2;所以x 2﹣x 1=lnx 2﹣lnx 1=ln x 2x 1;设x 2x 1=t (t >1),则{x 2=tx 1x 2−x 1=lnt ,解得x 1=lnt t−1,x 2=tlntt−1; 所以x 1+x 2=(t+1)lntt−1, 当t >1时,x 1+x 2>2⇔(t+1)lnt t−1>2⇔lnt −2(t−1)t+1>0; 设h (t )=lnt −2(t−1)t+1,则h '(t )=(t−1)2t(t+1)2,当t >1时,h '(t )>0;于是h (t )在(1,+∞)上为增函数;所以,当t >1时,h (t )>h (1)=0,即lnt −2(t−1)t+1>0; 所以x 1+x 2>2.4.设函数f(x)=ax −lnx +1x+b (a 、b ∈R ), (1)讨论f (x )的单调性;(2)若函数f (x )有两个零点x 1、x 2,求证:x 1+x 2+2>2ax 1x 2.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可; (2)求出a =lnx 2−lnx 1x 2−x 1+1x 2x 1,问题转化为证x 2x 1−x 1x 2>2ln x 2x 1,设x 2x 1=t ,则t >1,只需证t −1t >2lnt ,设ℎ(t)=t −1t −2lnt(t >1),根据函数的单调性证明即可.【解答】解:(1)f ′(x)=a −1x −1x 2=ax 2−x−1x 2(x >0),﹣﹣﹣﹣(1分)设g (x )=ax 2﹣x ﹣1(x >0),①当a ≤0时,g (x )<0,f '(x )<0;﹣﹣﹣﹣﹣﹣(2分) ②当a >0时,由g (x )=0得x =1+√1+4a 2a 或x =1−√1+4a 2a<0, 记x =1+√1+4a2a=x 0 则g(x)=ax 2−x −1=a(x −x 0)(x −1−√1+4a 2a ),(x >0),∵x −1−√1+4a2a >0 ∴当x ∈(0,x 0)时,g (x )<0,f '(x )<0,当x ∈(x 0,+∞)时,g (x )>0,f '(x )>0,﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) ∴当a ≤0时,f (x )在(0,+∞)上单调递减;当a >0时,f (x )在(0,1+√1+4a 2a )上单调递减,在(1+√1+4a2a,+∞)上单调递增.﹣﹣﹣(5分)(2)不妨设x 1<x 2,由已知得f (x 1)=0,f (x 2)=0,即ax 1=lnx 1−1x 1−b ,ax 2=lnx 2−1x 2−b ,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)两式相减得a(x 2−x 1)=lnx 2−lnx 1−(1x 2−1x 1),∴a =lnx 2−lnx 1x 2−x 1+1x 2x 1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分) 要证x 1+x 2+2>2ax 1x 2, 即要证x 1+x 2+2>2(lnx 2−lnx 1x 2−x 1+1x 2x 1)x 1x 2,只需证x 1+x 2>2⋅lnx 2−lnx 1x 2−x 1⋅x 1x 2, 只需证x 22−x 12x 1x 2>2ln x 2x 1,即要证x 2x 1−x 1x 2>2lnx 2x 1,﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)设x 2x 1=t ,则t >1,只需证t −1t>2lnt ,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)设ℎ(t)=t −1t−2lnt(t >1),只需证h (t )>0,∵ℎ′(t)=1+1t 2−2t =t 2−2t+1t 2=(t−1)2t 2>0,∴h (t )在(1,+∞)上单调递增,∴h (t )>h (1)=0,得证.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)考点3.消参减元5.已知函数f (x )=x 2+ax ﹣alnx .(1)若函数f (x )在[2,5]上单调递增,求实数a 的取值范围;(2)当a =2时,若方程f (x )=x 2+2m 有两个不等实数根x 1,x 2,求实数m 的取值范围,并证明x 1x 2<1.【分析】(1)由已知可知f ′(x )=2x +a −ax≥0在[2,5]上恒成立,结合函数的性质可求(2)由已知m =x ﹣lnx 有两个不等实数根x 1,x 2,结合函数单调性可证明 【解答】解:(1)∵f (x )=x 2+ax ﹣alnx 在[2,5]上单调递增 ∴f ′(x )=2x +a −ax ≥0在[2,5]上恒成立∴a≥−2x2x−1在[2,5]上恒成立令g(x)=−2x2x−1=−2[(x﹣1)+1x−1+2]在[2,5]上单调递减∴g(5)≤g(x)≤g(2),即−252≤g(x)≤﹣8∴a≥﹣8(2)当a=2时,f(x)=x2+2x﹣2lnx=x2+2m有两个不等实数根x1,x2,∴m=x﹣lnx有两个不等实数根x1,x2,令h(x)=x﹣lnx,x>0则h′(x)=1−1x=x−1x,令h′(x)>0可得x>1,h(x)单调递增;令h′(x)<0可得0<x<1,h(x)单调递减当x=1时,函数取得极小值,也即是最小值h(1)=1∴m>1且0<x1<1<x2∵x2﹣lnx2=m>1∴x2>1+lnx2>1,∴0<1x2<1,∴x1﹣x2=lnx1﹣lnx2,∵ℎ(x1)−ℎ(1x2)=x1−lnx1−1x2−lnx2=x2−1x2−2lnx2令F(x)=x−1x−2lnx,x∈(1,+∞),则F′(x)=1+1x2−2x=(x−1)2x2≥0,∴F(x)在(0,1)上单调递增,F(x)<F(1)=0即h(x1)<h(1x2)∴x1<1 x2∴x1x2<1.6.已知函数f(x)=e x﹣ax+a(a∈R),其中e为自然对数的底数.(1)讨论函数y=f(x)的单调性;(2)若函数f(x)有两个零点x1,x2,证明:x1+x2<2lna.【解答】解:(1)函数f (x )=e x ﹣ax +a ,求导,f '(x )=e x ﹣a .①当a ≤0时,f '(x )>0,则函数f (x )为R 上的单调递增函数.②当a >0时,令f '(x )=0,则x =lna .若x <lna ,则f '(x )<0,f (x )在(﹣∞,lna )上是单调减函数;若x >lna ,则f '(x )>0,f (x )在(lna ,+∞)上是单调增函数.(2)证明:由(Ⅰ)可知,不妨设1<x 1<x 2,由{e x 1−ax 1+a =0e x 2−ax 2+a =0两式相减得a =e x 2−e x 1x 2−x 1. 要证x 1+x 2<2lna ,即证e x 1+x 22<a ,也就是证e x 1+x 22<e x 2−e x 1x 2−x 1, 即e x 1+x 22−e x 2−e x 1x 2−x 1=e x 1+x 22(1−e x 2−x 12−e −x 2−x 12x 2−x 1)<0,即证e x 2−x 12−e −x 2−x 12x 2−x 1>1,又x 2﹣x 1>0,只要证e x 2−x 12−e −x 2−x 12>x 2−x 1(*). 令x 2−x 12=t >0,则(*)式化为 e t ﹣e ﹣t >2t ,设g (t )=(e t ﹣e ﹣t )﹣2t (t >0),g '(t )=(e t +e ﹣t )﹣2>0,所以g (t )在(0,+∞)上单调递增,所以g (t )>g (0)=0.∴x 1+x 2<2lna . 考点4.拐点偏移7.已知函数f (x )=xlnx −a 2x 2+(a ﹣1)x ,其导函数f ′(x )的最大值为0.(1)求实数a 的值;(2)若f (x 1)+f (x 2)=﹣1(x 1≠x 2),证明:x 1+x 2>2.【分析】(1)f ′(x )=lnx ﹣ax +a =h (x ),x ∈(0,+∞).h ′(x )=1x −a =1−ax x .对a 分类讨论,利用导数研究函数的单调性即可得出.(2)当a =1时,f (x )=xlnx −12x 2,f ′(x )=lnx ﹣x +1.由(1)可知:f ′(x )≤0恒成立.f (x )在(0,+∞)上单调递减,且f (1)=−12.f (x 1)+f (x 2)=﹣1=2f (1)(x 1≠x 2).不妨设0<x 1<x 2,即0<x 1<1<x 2,要证:x 1+x 2>2.即证明:x 2>2﹣x 1.由f (x )在(0,+∞)上单调递减,因此即证明:f(x2)<f(2﹣x1).又f(x1)+f(x2)=﹣1,即证明:﹣f(x1)﹣1<f(2﹣x1).即﹣1<f(x1)+f(2﹣x1).令F(x)=f(x)+f(2﹣x).x∈(0,1),F(1)=2f(1)=﹣1.利用导数研究函数的单调性即可得出.【解答】(1)解:f′(x)=lnx﹣ax+a=h(x),x∈(0,+∞).h′(x)=1x−a=1−axx.当a≤0时,h′(x)>0,此时函数h(x)在x∈(0,+∞)单调递增,且h(1)=0,x>1时,h(x)>0,不成立,舍去.当a>0时,此时函数h(x)在x∈(0,1a )单调递增,在(1a,+∞)上单调递减.∴h(x)max=ℎ(1a)=−lna+a﹣1.令g(a)=﹣lna+a﹣1.g′(a)=−1a+1=a−1a,可得:当a=1时,函数g(a)取得极小值即最小值,g(1)=0,故a=1.(2)当a=1时,f(x)=xlnx−12x2,f′(x)=lnx﹣x+1.由(1)可知:f′(x)≤0恒成立.∴f(x)在(0,+∞)上单调递减,且f(1)=−12.f(x1)+f(x2)=﹣1=2f(1)(x1≠x2).不妨设0<x1<x2,即0<x1<1<x2,要证:x1+x2>2.即证明:x2>2﹣x1.由f(x)在(0,+∞)上单调递减,因此即证明:f(x2)<f(2﹣x1).又f(x1)+f(x2)=﹣1,即证明:﹣f(x1)﹣1<f(2﹣x1).即﹣1<f(x1)+f(2﹣x1).令F(x)=f(x)+f(2﹣x).x∈(0,1),F(1)=2f(1)=﹣1.F′(x)=f′(x)﹣f′(2﹣x)=1+lnx﹣x﹣[1+ln(2﹣x)﹣2+x]=lnx﹣ln(2﹣x)+2(1﹣x),F″(x)=2(1−x)2x(2−x)>0,∴F′(x)在x∈(0,1)上单调递增,∴F′(x)<F′(1)=0,∴F(x)在x∈(0,1)上单调递减,F(x)>F(1).因此x1+x2>2.8.已知函数f(x)=2lnx﹣3x2﹣11x.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若关于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x﹣2恒成,求整数a的最小值;(3)若正实数x1,x2满足f(x1)+f(x2)+4(x12+x22)+12(x1+x2)=4,证明:x1+x2≥2.【分析】(1)求出函数f(x)的导数,计算f′(1),f(1)的值,求出切线方程即可;(2)令g(x)=f(x)﹣(a﹣3)x2﹣(2a﹣13)x+2,求出函数的导数,通过讨论a 的范围,根据函数的单调性求出a的最小值即可;(3)得到(x1+x2)2+(x1+x2)=2x1x2﹣2ln(x1x2)+4,令t=x1•x2,令φ(t)=2t﹣2lnt+4,根据函数的单调性证明即可.【解答】解:(1)∵f′(x)=2x−6x﹣11,f′(1)=﹣15,f(1)=﹣14,∴切线方程是:y+14=﹣15(x﹣1),即y=﹣15x+1;(2)令g(x)=f(x)﹣(a﹣3)x2﹣(2a﹣13)x+2=2lnx﹣ax2+(2﹣2a)x+2,∴g′(x)=2x−2ax+(2﹣2a)=−2ax2+(2−2a)x+2x,a≤0时,∵x>0,∴g′(x)>0,g(x)在(0,+∞)递增,∵g(1)=﹣a+2﹣2a+2=﹣3a+4>0,∴关于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x﹣2不能恒成立,a>0时,g′(x)=−2a(x−1a)(x+1)x,令g′(x)=0,得x=1 a,∴x∈(0,1a )时,g′(x)>0,x∈(1a,+∞)时,g′(x)<0,故函数g(x)在(0,1a )递增,在(1a,+∞)递减,故函数g(x)的最大值是g(1a )=2ln1a+1a=1a−2lna≤0,令h(a)=1a−2lna,则h(a)在(0,+∞)递减,∵h(1)=1>0,h(2)=12−2ln2<12−2ln√e<0,∴a≥2时,h(a)<0,故整数a的最小值是2;(3)证明:由f(x1)+f(x2)+4(x12+x22)+12(x1+x2)=4,得2ln(x1x2)+(x12+x22)+(x1+x2)=4,从而(x1+x2)2+(x1+x2)=2x1x2﹣2ln(x1x2)+4,令t=x1•x2,则由φ(t)=2t﹣2lnt+4,得φ′(t)=2(t−1)t,可知φ(t)在区间(0,1)递减,在(1,+∞)递增,故φ(t)≥φ(1)=6,∴(x1+x2)2+(x1+x2)≥6,又x1+x2>0,故x1+x2≥2成立.。
求函数值域(最值)的方法大全函数是中学数学的一个重点,而函数值域(最值)的求解方法更是一个常考点, 对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,因此能熟练掌握其值域(最值)求法就显得十分的重要,求解过程中若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文旨在通过对典型例题的讲解来归纳函数值域(最值)的求法,希望对大家有所帮助。
一、值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 常见函数的值域:一次函数()0y kx b k =+≠的值域为R.二次函数()20y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝⎦.,反比例函数()0ky k x=≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 二、求函数值域(最值)的常用方法 1. 直接观察法适用类型:根据函数图象.性质能较容易得出值域(最值)的简单函数例1、求函数y =211x +的值域 解: 22111,011x x +≥∴<≤+ 显然函数的值域是:(]0,1例2、求函数y =2-x 的值域。
解: x ≥0 ∴-x ≤0 2-x ≤2故函数的值域是:[-∞,2 ] 2 、配方法适用类型:二次函数或可化为二次函数的复合函数的题型。
配方法是求二次函数值域最基本的方法之一。
对于形如()20y ax bx c a =++≠或()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦类的函数的值域问题,均可用配方法求解.例3、求函数y=2x -2*+5,*∈[-1,2]的值域。
专题五导数与函数的最值基本知识点1.函数f(x)在闭区间[a,b]上的最值:假设函数y=f(x)在闭区间[a,b]上的图象是一条连续不间断的曲线,则该函数在[a,b]一定能够取得最大值与最小值,若函数在[a,b]内是可导的,则该函数的最值必在极值点或区间端点取得.2.求可导函数y=f(x)在[a,b]上的最大(小)值的步骤(1)求f(x)在开区间(a,b)内所有极值点.(2)计算函数f(x)在极值点和端点的函数值,其中最大的一个为最大值,最小的一个为最小值.例题分析一、求函数的最值例1(1)函数y=x4-4x+3在区间[-2,3]上的最小值为()A.72B.36 C.12 D.0(2)函数f(x)=ln x-x在区间(0,e]上的最大值为()A.1-e B.-1 C.-e D.0(3)求函数f(x)=-x4+2x2+3,x∈[-3,2]的最值.解析(1)因为y=x4-4x+3,所以y′=4x3-4,令y′=0,解得x=1.当x<1时,y′<0,函数单调递减;当x>1时,y′>0,函数单调递增,所以函数y=x4-4x+3在x=1处取得极小值0.而当x=-2时,y=27,当x=3时,y=72,所以当x=1时,函数y=x4-4x+3取得最小值0,故选D.(2)f′(x)=1x-1,令f′(x)=0,得x=1.当x∈(0,1)时,f′(x)>0,当x∈(1,e)时,f′(x)<0,∴当x=1时,f(x)有极大值,也是最大值,最大值为f(1)=-1,故选B.(3)f′(x)=-4x3+4x=-4x(x+1)(x-1),令f′(x)=0,得x=-1,x=0,x=1.当x变化时,f′(x)及f(x)的变化情况如下表:x -3(-3,-1)-1(-1,0)0(0,1)1(1,2) 2∴当x =-3时,f (x )取最小值-60; 当x =-1或x =1时,f (x )取最大值4.答案 (1)D (2)B (3) 最小值-60;最大值4. 归纳总结:求函数最值的四个步骤: 第一步,求函数的定义域; 第二步,求f ′(x ),解方程f ′(x )=0; 第三步,列出关于x ,f (x ),f ′(x )的变化表;第四步,求极值、端点值,其中最大者便是最大值,最小者便是最小值. (对应训练一)求下列函数的最值.(1)f (x )=2x 3-12x ,x ∈[-1,3];(2)f (x )=12x +sin x ,x ∈[0,2π].解析 (1)f (x )=2x 3-12x ,∴f ′(x )=6x 2-12=6(x +2)(x -2), 令f ′(x )=0解得x =-2或x = 2.当x 变化时,f ′(x )与f (x )的变化情况如下表:因为f (-1)=10,f (3)=18,f (2)=-82,所以当x =2时,f (x )取得最小值-82; 当x =3时,f (x )取得最大值18.(2)f ′(x )=12+cos x ,令f ′(x )=0,又x ∈[0,2π],解得x =23π或x =43π.当x 变化时,f ′(x ),f (x )的变化情况如下表所示:∴当x =0时,f (x )有最小值f (0)=0;当x =2π时,f (x )有最大值f (2π)=π.(对应训练二)已知函数f (x )=-x 3+3x 2+m (x ∈[-2,2]),f (x )的最小值为1,则m =__________.解析 f ′(x )=-3x 2+6x ,x ∈[-2,2]. 令f ′(x )=0,得x =0或x =2, 当x ∈(-2,0)时,f ′(x )<0, 当x ∈(0,2)时,f ′(x )>0,∴当x =0时,f (x )有极小值,也是最小值.∴f (0)=m =1. 答案 1二、已知函数的最值求参数例2 已知函数f (x )=ln x +a x ,若函数f (x )在[1,e]上的最小值是32,求a 的值.解析 函数的定义域为[1,e],f ′(x )=1x -a x 2=x -ax 2,令f ′(x )=0,得x =a ,①当a ≤1时,f ′(x )≥0,函数f (x )在[1,e]上是增函数, f (x )min =f (1)=ln 1+a =32,∴a =32∉(-∞,1],故舍去.②当1<a <e 时,令f ′(x )=0得x =a ,函数f (x )在[1,a ]上是减函数,在[a ,e]上是增函数, ∴f (x )min =f (a )=ln a +a a =32.∴a =e ∈(1,e),故符合题意.③当a ≥e 时,f ′(x )≤0,函数f (x )在[1,e]上是减函数,f (x )min =f (e)=ln e +a e =32,∴a =12e ∉[e ,+∞),故舍去,综上所述a = e.归纳总结:解决由函数的最值来确定参数问题的关键是利用函数的单调性确定某些极值就是函数的最值,同时由于系数a 的符号对函数的单调性有直接的影响,其最值也受a 的符号的影响,因此,需要进行分类讨论.本题是运用最值的定义,从逆向出发,由已知向未知转化,通过待定系数法,布列相应的方程,从而得出参数的值.(对应训练一)若f (x )=ax 3-6ax 2+b (a >0),x ∈[-1,2]的最大值为3,最小值为-29,求a 、b 的值.解析 f ′(x )=3ax 2-12ax =3a (x 2-4x ).令f ′(x )=0,得x =0或x =4,因为x ∈[-1,2],所以x =0. 因为a >0,所以f (x ),f ′(x )随x 变化情况如下表:x(-(所以当x=0时,f(x)取最大值,所以b=3.又f(2)=8a-24a+3=-16a+3,f(-1)=-7a+3>f(2),所以当x=2时,f(x)取最小值,则-16a+3=-29,所以a=2,所以a=2,b=3.(对应训练二)已知h(x)=x3+3x2-9x+1在区间[k,2]上的最大值是28,求k的取值范围.解析h(x)=x3+3x2-9x+1,h′(x)=3x2+6x-9.令h′(x)=0,得x1=-3,x2=1,当x变化时h′(x)及h(x)的变化情况如下表.当x=-3时,取极大值28;当x=1时,取极小值-4.而h(2)=3<h(-3)=28,如果h(x)在区间[k,2]上的最大值为28,则k≤-3.(对应训练三)已知函数f(x)=ax3-6ax2+b在[-1,2]上有最大值3,最小值-29,求a,b的值.解析依题意,显然a≠0.因为f′(x)=3ax2-12ax=3ax(x-4),x∈[-1,2],所以令f′(x)=0,解得x1=0,x2=4(舍去).(1)若a>0,当x变化时,f′(x),f(x)的变化情况如下表:f′(x )+-f(x ) -7a +b↗极大值↘-16a +b由上表知,当x =0时,f (x )取得最大值,所以f (0)=b =3. 又f (2)=-16a +3,f (-1)=-7a +3,故f (-1)>f (2), 所以当x =2时,f (x )取得最小值,即-16a +3=-29,a =2. (2)若a <0,当x 变化时,f ′(x ),f (x )的变化情况如下表:x -1(-1,0)(0,2)2f′(x )-+f (x )-7a +b↘极小值↗-16a +b所以当x =0时,f (x )取得最小值,所以f (0)=b =-29. 又f (2)=-16a -29,f (-1)=-7a -29,故f (2)>f (-1). 所以当x =2时,f (x )取得最大值, 即-16a -29=3,a =-2.综上所述,所求a ,b 的值为⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧a =-2,b =-29.三、含参数的最值问题例3 设函数f (x )=(x +1)2+2k ln x . (1)若k =-2,求函数的递减区间;(2)当k >0时,记函数g (x )=f ′(x ),求函数g (x )在区间(0,2]上的最小值. 解析 (1)当k =-2时,f (x )=(x +1)2-4ln x ,f ′(x )=2x +2-4x (x >0).由f ′(x )<0,得0<x <1.故函数的递减区间为(0,1). (2)∵g (x )=f ′(x )=2x +2k x +2∴g ′(x )=2-2kx2.∵k >0,x ∈(0,2),∴当k ≥4时,g ′(x )<0, g (x )在(0,2]上为减函数. 因此,g (x )有最小值g (2)=k +6;当0<k <4时,在(0,k ]上g ′(x )<0,在[k ,2]上g ′(x )>0, ∴g (x )在(0,k ]上为减函数,在[k ,2]上为增函数. 故g (x )有最小值g (k )=4k +2.综上,当0<k <4时,g (x )在区间(0,2]上的最小值为4k +2;当k ≥4时,g (x )在(0,2]上的最小值为k +6.归纳总结:含参数的最值问题,由于参数的取值范围不同会导致函数在所给区间上的单调性不同,从而导致最值的变化.因此,需要分类讨论.(对应训练)已知函数f (x )=ln x x .(1)求f (x )在点(1,0)处的切线方程; (2)求函数f (x )在[1,t ]上的最大值.解析 f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1-ln xx 2. (1)f ′(1)=1,所以切线方程为y =x -1. (2)令f ′(x )=1-ln xx 2=0,解得x =e. 当x ∈(0,e)时,f ′(x )>0,f (x )单调递增, 当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减,当1<t <e 时,f (x )在[1,t ]上单调递增,f (x )max =f (t )=ln tt,当t ≥e 时,f (x )在[1,e]上单调递增,在[e ,t ]上单调递减,f (x )max =f (e)=1e ,综上,f (x )max =⎩⎨⎧ln tt,1<t <e ,1e,t ≥e.四、导数的综合应用例4 设函数f (x )=ax 3+bx +c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x -6y -7=0垂直,导函数f ′(x )的最小值为-12.(1)求a ,b ,c 的值;(2)求函数f (x )的单调递增区间,并求函数f (x )在[-1,3]上的最大值和最小值. 解析 (1)∵f (x )为奇函数,∴f (-x )=-f (x ). 即-ax 3-bx +c =-ax 3-bx -c ,∴c =0. ∵f ′(x )=3ax 2+b 的最小值为-12,∴b =-12.又直线x -6y -7=0的斜率为16,∴f ′(1)=3a +b =-6,解得a =2,故a =2,b =-12,c =0. (2)f (x )=2x 3-12x ,f ′(x )=6x 2-12=6(x +2)(x -2), 当x 变化时,f ′(x ),f (x )的变化情况如下表,∴函数f (x )的单调递增区间为(-∞,-2),(2,+∞). ∵f (-1)=10,f (3)=18,f (2)=-82,∴当x =2时,f (x )取得最小值,为-8 2.当x =3时,f (x )取得最大值,为18. (对应训练)已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R),g (x )=f (x )+f ′(x )是奇函数. (1)求f (x )的表达式;(2)求g (x )在区间[1,2]上的最大值与最小值.解析 (1)因为f ′(x )=3ax 2+2x +b ,所以g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . 因为g (x )是奇函数,所以g (-x )=-g (x ),从而3a +1=0,b =0, 解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2.(2)由第一问知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2,令g ′(x )=0.解得x 1=-2(舍去),x 2=2,而g (1)=53,g (2)=423,g (2)=43,因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.专题训练1.函数f (x )=x 3-3x (-1<x <1)( )A .有最大值,但无最小值B .有最大值,也有最小值C .无最大值,也无最小值D .无最大值,但有最小值 解析 f ′(x )=3x 2-3=3(x 2-1).因为-1<x <1,所以x 2<1.所以3(x 2-1)<0,即f ′(x )<0. 所以f (x )是(-1,1)上的减函数,f (1)<f (x )<f (-1), 故f (x )在-1<x <1时既无最大值,也无最小值,故选C.2.函数y =xex 在[0,2]上的最大值是( )A .当x =1时,y =1eB .当x =2时,y =2e 2C .当x =0时,y =0D .当x =12时,y =12e解析 因为y ′=1-xe x,所以当y ′=0时,x =1.又因为当0<x <1时,y ′>0, 当1<x <2时,y ′<0,所以x =1是y =x e x 的极大值点,所以在[0,2]上y max =1e .答案 A3.当函数y =x +2cos x 在⎣⎡⎦⎤0,π2上取得最大值时,x 的值为( ) A .0 B .π6 C .π3 D .π2解析 y ′=(x +2cos x )′=1-2sin x . 令x ∈⎣⎡⎭⎫0,π6时,f ′(x )>0,f (x )单调递增,当x ∈⎣⎡⎦⎤π6,π2时,f ′(x )≤0,f (x )单调递减,所以f (x )max =f ⎝⎛⎭⎫π6. 答案 B4.若函数f (x )=a sin x +13sin 3x 在x =π3处有最值,则a 等于( )A .2B .1C .233 D .0解析 因为f (x )在x =π3处有最值,所以x =π3是函数f (x )的极值点.又因为f ′(x )=a cos x +cos 3x (x ∈R),所以f ′⎝⎛⎭⎫π3=a cos π3+cos π=0,解得a =2. 答案 A5.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小值时t 的值为( )A .1 B.12 C.52 D.22解析 因为f (x )的图象始终在g (x )的上方,所以|MN |=f (x )-g (x )=x 2-ln x ,设h (x )=x 2-ln x ,则h ′(x )=2x -1x =2x 2-1x ,令h ′(x )=2x 2-1x =0,得x =22,所以h (x )在⎝⎛⎭⎫0,22上单调递减,在⎝⎛⎭⎫22,+∞上单调递增,所以当x =22时有最小值,故t =22.6.函数f (x )=x ·2x ,则下列结论正确的是( )A .当x =1ln 2时,f (x )取最大值B .当x =1ln 2时,f (x )取最小值C .当x =-1ln 2时,f (x )取最大值D .当x =-1ln 2时,f (x )取最小值解析 f ′(x )=2x +x ·(2x )′=2x +x ·2x ·ln 2.令f ′(x )=0,得x =-1ln 2.当x ∈⎝⎛⎭⎫-∞,-1ln 2时,f ′(x )<0;当x ∈⎝⎛⎭⎫-1ln 2,+∞时,f ′(x )>0, 故函数在x =-1ln 2处取极小值,也是最小值. 答案 D7.函数y =x +2cos x 在⎣⎡⎦⎤0, π2上取最大值时,x 的值为( ) A .0 B.π6 C.π3 D.π2解析 y ′=1-2sin x ,令y ′=0,得sin x =12,∵x ∈⎣⎡⎦⎤0,π2,∴x =π6. 由y ′>0得sin x <12, ∴0≤x <π6;由y ′<0得sin x >12,∴π6<x ≤π2,∴原函数在⎣⎡⎭⎫0,π6上单调递增,在⎝⎛⎦⎤π6,π2上单调递减.当x =0时,y =2,当x =π2时,y =π2,当x =π6时,y =π6+3,∵π6+3>2>π2,∴当x =π6时取最大值,故应选B. 答案 B8.若函数f (x )在区间[a ,b ]上满足f ′(x )>0,则f (a )是函数的最________值,f (b )是函数的最________值.解析 由f ′(x )>0知,函数f (x )在区间[a ,b ]上为增函数,所以f (a )为最小值,f (b )为最大值.答案 小 大9.函数f (x )=sin x +cos x 在x ∈⎣⎡⎦⎤-π2,π2时的最大值,最小值分别是________. 解析 f ′(x )=cos x -sin x ,令f ′(x )=0,即tan x =1,而x ∈⎣⎡⎦⎤-π2,π2,所以x =π4.又f ⎝⎛⎭⎫π4=2,f ⎝⎛⎭⎫-π2=-1,f ⎝⎛⎭⎫π2=1, 所以x ∈⎣⎡⎦⎤-π2,π2时,函数的最大值为f ⎝⎛⎭⎫π4=2,最小值为f ⎝⎛⎭⎫-π2=-1. 答案 2,-110.若函数f (x )=x 3-3x -a 在区间[0,3]上的最大值、最小值分别为m ,n ,则m -n =________.解析 ∵f ′(x )=3x 2-3,∴当x >1或x <-1时,f ′(x )>0;当-1<x <1时,f ′(x )<0.∴f (x )在[0,1]上单调递减,在[1,3]上单调递增. ∴f (x )min =f (1)=1-3-a =-2-a =n . 又∵f (0)=-a ,f (3)=18-a ,∴f (0)<f (3).∴f (x )max =f (3)=18-a =m ,∴m -n =18-a -(-2-a )=20. 答案 2011.已知函数f (x )=x 3+ax 2+bx +5,曲线y =f (x )在点P (1,f (1))处的切线方程为y =3x +1.(1)求a ,b 的值;(2)求y =f (x )在[-3,1]上的最大值. 解析 (1)依题意可知点P (1,f (1))为切点, 代入切线方程y =3x +1可得,f (1)=3×1+1=4, ∴f (1)=1+a +b +5=4,即a +b =-2,又由f (x )=x 3+ax 2+bx +5得,又f ′(x )=3x 2+2ax +b , 而由切线y =3x +1的斜率可知f ′(1)=3, ∴3+2a +b =3,即2a +b =0,由⎩⎪⎨⎪⎧ a +b =-2,2a +b =0.解得⎩⎪⎨⎪⎧a =2,b =-4,∴a =2,b =-4. (2)由(1)知f (x )=x 3+2x 2-4x +5, f ′(x )=3x 2+4x -4=(3x -2)(x +2), 令f ′(x )=0,得x =23或x =-2.当x 变化时,f (x ),f ′(x )的变化情况如下表:11∴f (x )的极大值为f (-2)=13,极小值为f ⎝⎛⎭⎫23=9527,又f (-3)=8,f (1)=4, ∴f (x )在[-3,1]上的最大值为13.答案 (1) a =2,b =-4 (2) 1312.已知函数f (x )=a ln x -bx 2,a ,b ∈R ,且曲线y =f (x )在x =1处与直线y =-12相切. (1)求a ,b 的值;(2)求f (x )在[1e,e]上的最大值. 解析 (1)f ′(x )=a x -2bx .由曲线y =f (x )在x =1处与直线y =-12相切, 得⎩⎪⎨⎪⎧f ′(1)=0f (1)=-12,即⎩⎪⎨⎪⎧a -2b =0-b =-12,解得⎩⎪⎨⎪⎧a =1b =12. (2)由第一问,得f (x )=ln x -12x 2,定义域为(0,+∞).f ′(x )=1x -x =1-x 2x. 令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,所以f (x )在(1e,1)上单调递增,在(1,e)上单调递减, 所以f (x )在[1e ,e]上的最大值为f (1)=-12. 答案 (1) ⎩⎪⎨⎪⎧a =1b =12(2) -12。
●高考明方向了解构成函数的要素,会求一些简单函数的定义域和值域.★备考知考情定义域是函数的灵魂,高考中考查的定义域多以选择、填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,三种题型都有,难度中等.一、知识梳理《名师一号》P13知识点一常见基本初等函数的定义域注意:1、研究函数问题必须遵循“定义域优先”的原则!!!2、定义域必须写成集合或区间的形式!!!(1)分式函数中分母不等于零(2)偶次根式函数被开方式大于或等于0(3)一次函数、二次函数的定义域均为R(4)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R(5)y =log a x (a >0且a ≠1)的定义域为(0,+∞)(6)函数f (x )=x 0的定义域为{x |x ≠0}(7)实际问题中的函数定义域,除了使函数的解析式有意 义外,还要考虑实际问题对函数自变量的制约. (补充)三角函数中的正切函数y =tan x 定义域为{|,,}2∈≠+∈x x R x k k Z ππ如果函数是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数集合.知识点二 基本初等函数的值域注意:(1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为{y |y ≥4ac -b 24a}; 当a <0时,值域为{y |y ≤4ac -b 24a} (3)y =kx(k ≠0)的值域是{y |y ≠0} (4)y =a x (a >0且a ≠1)的值域是{y |y >0}(5)y =log a x (a >0且a ≠1)的值域是R .(补充)三角函数中正弦函数y =sin x ,余弦函数y =cos x 的值域均为[]1,1- 正切函数y =tan x 值域为R《名师一号》P15知识点二 函数的最值注意:《名师一号》P16 问题探究 问题3函数最值与函数值域有何关系?函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,但其最值不一定存在.1、温故知新P11 知识辨析1(2) 函数21=+x y x 的值域为11,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭( )答案:正确2、温故知新P11 第4题函数(]()1122,,222,,2--⎧-∈-∞⎪=⎨-∈-∞⎪⎩x x x y x 的值域为( ) 3.,2⎛⎫-+∞ ⎪⎝⎭A ().,0-∞B 3.,2⎛⎫-∞- ⎪⎝⎭C (].2,0-D答案:D注意:牢记基本函数的值域3、温故知新P11 第6题函数()=y f x 的值域是[]1,3,则函数()()123=-+F x f x 的值域是( )[].5,1--A [].2,0-B [].6,2--C [].1,3D答案:A注意:图像左右平移没有改变函数的值域二、例题分析:(一)函数的定义域1.据解析式求定义域例1. (1)《名师一号》P13 对点自测1(2014·山东) 函数()=f x 为( )A.⎝⎛⎭⎪⎪⎫0,12 B .(2,+∞) C.⎝ ⎛⎭⎪⎪⎫0,12∪(2,+∞) D.⎝⎛⎦⎥⎥⎤0,12∪[2,+∞)解析 要使函数有意义,应有(log 2x )2>1,且x >0, 即log 2x >1或log 2x <-1,解得x >2或0<x <12. 所以函数f (x )的定义域为⎝⎛⎭⎪⎪⎫0,12∪(2,+∞). 例1. (2)《名师一号》P14 高频考点 例1(1) 函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]解析:由题意得⎩⎪⎨⎪⎧ 1-2x ≥0,x +3>0,解得-3<x ≤0.注意:《名师一号》P14 高频考点 例1 规律方法(1) 求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.函数的定义域一定要用集合或区间表示例2. (补充)若函数2()lg(21)f x ax x =++的定义域为R则实数a 的取值范围是 ;答案:()1,+∞变式:2()lg(21)=++f x ax ax ?练习:(补充)若函数27()43kx f x kx kx +=++的定义域为R 则实数k 的取值范围是 ;答案:30,4⎡⎫⎪⎢⎣⎭2.求复合函数的定义域例3.(1)《名师一号》P14 高频考点 例1(2)(2015·北京模拟)已知函数y =f (x )的定义域为[0,4],则函数y =f (2x )-ln(x -1)的定义域为( )A .[1,2]B .(1,2]C .[1,8]D .(1,8]解析:由已知函数y =f (x )的定义域为[0,4]. 则使函数y =f (2x )-ln(x -1)有意义,需⎩⎪⎨⎪⎧ 0≤2x ≤4,x -1>0,解得1<x ≤2,所以定义域为(1,2].例3. (2)《名师一号》P13 对点自测2已知函数f (x )=1x +1,则函数f (f (x ))的定义域是( )A .{x |x ≠-1}B .{x |x ≠-2}C .{x |x ≠-1且x ≠-2}D .{x |x ≠-1或x ≠-2}解析 ⎩⎪⎨⎪⎧ x ≠-1,1x +1+1≠0,解得x ≠-1且x ≠-2.注意:《名师一号》P14 高频考点 例1 规律方法(2) (P13 问题探究 问题1 类型二)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域, 是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].例4.(补充)已知2(1)f x +的定义域是[]0,1,求()f x 的定义域。
微专题31 三角函数的最值问题求解策略【方法技巧与总结】三角函数的最值问题主要涉及三角恒等变形,其主要思想是通过适当的三角变形或换元,将复杂的三角问题转化为基本三角函数或基本初等函数问题,再通过三角函数的有界性或求函数最值的方法进行处理.【题型归纳目录】题型一:恒等变形的应用,形如sin cos y a x b x =+ 题型二:二次函数型,形如2sin sin y a x b x c =++题型三:形如2(sin cos )(sin cos )(sin cos )y a x x b x x c x x =++++⋅ 题型四:分式结构,形如sin cos a x by c x d+=+【典型例题】题型一:恒等变形的应用,形如sin cos y a x b x =+例1.(2022秋•景洪市校级期中)求函数sin 3y x x =+的周期,最大值和最小值. 【解析】解:化简可得sin 3y x x =+ 132(sin )2x x =+2(cos sin sin cos )33x x ππ=+ 2sin()3x π=+ ∴原函数的周期为2T π=,最大值为2,最小值为2-例2.(2022秋•镇江期末)已知函数()2sin (sin 3)1f x x x x =+-. (1)求函数()f x 的最小正周期和增区间;(2)当[0x ∈,]2π时,求函数()f x 的最大值和最小值.【解析】解:(1)()2sin (sin 3)1f x x x x =-22sin 23sin cos 1x x x =+- 3sin 2cos2x x =-2sin(2)6x π=-,22T ππ∴==, 令2[262x k πππ-∈-,2][26k x k ππππ+⇒∈-,]3k ππ+,k Z ∈. ∴函数的增区间为:[6k ππ-,]3k ππ+,k Z ∈(2)[0x ∈,]2π时2[66x ππ⇒-∈-,5]6π;∴当266x ππ-=-即0x =时,()1min f x =-,当262x ππ-=即3x π=时,()2max f x =.例3.(2022•浙江模拟)已知函数()(3cos )cos f x x x x m =++的最大值为2. (Ⅰ)求()12f π的值;(Ⅱ)当[0x ∈,]2π时,求[()1][()1]12y f x f x π=-+-的最值以及取得最值时x 的集合.【解析】解:(Ⅰ)2()(3cos )cos 3cos cos f x x x x m x x x m =++=++31cos212sin(2)262x x m x m π+=++=+++的最大值为2, 1122m ∴++=,可得12m =, ()sin(2)16f x x π∴=++,3()sin(2)1sin 11121263f ππππ∴=⨯++=+=+.(Ⅱ)当[0x ∈,]2π时,3113[()1][()1]sin(2)sin(2)(2cos2)(sin 22)126322y f x f x x x x x x x πππ=-+-=++=+ 22333122sin 2cos2sin 42x x x x x =+=, 当8x π=时,即{|}8x x x π∈=时,32max y += 当38x π=时,即3{|}8x x x π∈=时,32min y -=.变式1.(2022秋•六枝特区校级月考)已知函数11()sin 322f x x x =.(1)求()f x 的最小正周期和对称轴; (2)当[6x π∈,9)4π时,求()f x 的最大值和最小值. 【解析】解:(1)函数111()sin 3cos 2sin()2223f x x x x π==-;故函数的最小正周期为2412ππ=, 令1232x k πππ-=+,()k Z ∈,整理得523x k ππ=+,()k Z ∈. 故函数的对称轴方程为523x k ππ=+,()k Z ∈. (2)由于[6x π∈,9)4π时, 所以119[,)23424x πππ-∈-,故12sin()[23x π-∈.当6x π=时,函数取得最小值为2,当56x π=时,函数取得最大值为1. 变式2.已知函数cos 4()22)4x f x x π=++,求: (1)函数的周期;(2)当x 为何值时函数()f x 取得最大值?最大值为多少? 【解析】解:(1)cos 4()22)4x f x x π=++2222(cos2sin 2)22x x =-sin2cos22x x =++2)24x π=++,故22T ππ==;(2)令22()42x k k z πππ+=+∈,解得:8x k ππ=+,故()8x k k z ππ=+∈时,()f x 取得最大值22题型二:二次函数型,形如2sin sin y a x b x c =++例4.(2022秋•梅州期末)函数2cos sin y x x =-+的值域为( ) A .[1-,1]B .5[4-,1]-C .5[4-,1]D .[1-,5]4【解析】解:2cos sin y x x =-+, 2sin sin 1x x =+-, 215(sin )24x =+-,当12sinx =-时,54min y =-.当sin 1x =时95.144max y =-=, 故函数的值域为:5[,1]4-.故选:C .例5.(2022春•衡水期中)函数2sin sin 1y x x =+-的值域为( ) A .[1-,1]B .5[4-,1]-C .5[4-,1]D .[1-,54【解析】解:2sin sin 1y x x =+-,令sin x t =,则有21y t t =+-,[1t ∈-,1], 函数的对称轴:12t =-,开口向上,当12t =-及1t =时,函数取最值,代入21y t t =+-可得5[4y ∈-,1].故选:C .例6.(2022•湖南一模)函数11cos2sin 22y x x =-+-的值域为( )A .[1-,1]B .5[4-,1]C .5[4-,1]-D .[1-,5]4【解析】解:函数222111115cos2sin (12sin )sin sin sin 1(sin )222224y x x x x x x x =-+-=--+-=+-=+-1sin 1x -,∴当1sin 2x =-时,函数y 有最小值为54-.sin 1x =时,函数y 有最大值为1,故函数y 的值域为5[4-,1],故选:B .变式3.(2022秋•天河区校级月考)函数()cos26cos()2f x x x π=+-的最大值为( )A .4B .5C .6D .7【解析】解:2()cos26cos()2sin 6sin 12f x x x x x π=+-=-++,令sin t x =,[1t ∈-,1],则函数()f x 可转化为关于t 的二次函数2261y t t =-++,[1t ∈-,1], 图象开口向下,对称轴为32t =, 所以函数2261y t t =-++在[1-,1]上单调递增, 所以当1t =时,函数取得最大值为5, 故选:B .变式4.(2022•浙江)已知4k <-,则函数cos2(cos 1)y x k x =+-的最小值是( ) A .1 B .1-C .21k +D .21k -+【解析】解:2cos2(cos 1)2cos cos 1y x k x x k x k =+-=+--令cos t x =,则221(11)y t kt k t =+---是开口向上的二次函数,对称轴为14kx =-> 当1t =是原函数取到最小值1 故选:A .变式5.(2022秋•崇川区校级期中)已知函数41()(sin cos )cos42f x m x x x =++在[0,]2x π∈时有最大值为72,则实数m 的值为 1 .【解析】解:函数41()(sin cos )cos42f x m x x x =++21(12sin cos )cos42m x x x =++221(12sin 2sin 2)(12sin 2)2m x x x =+++-21(1)sin 22sin 22m x m x m =-+++. ①当1m =时,函数化为:12sin 212x ++.当sin21x =时,函数取得最大值,172122++=.满足题意. ②当1m >时,函数化为:21(1)(sin 2)121m mm x m m -++---,当sin21x =时,函数取得最大值,可得171222m m m -+++=,解得1m =,不满足题意. ③当12m时,[1,1]1m m ∈--,当sin 21m x m =--时,函数取得最大值,此时17212m m -=-,解得34m =,不满足题意. ④当112m <<时,sin21x =时函数取得最大值,此时有171222m m m -+++=,解得1m =不满足题意.综上,1m =. 故答案为:1.变式6.已知函数444()2(sin cos )(sin cos )f x x x m x x =+++在[0x ∈,)2π上的最大值为5,求实数m 的值.【解析】解:设sin a x =,cos b x =,且[0x ∈,)2π,则2222sin cos 1a b x x +=+=,1sin cos sin 22ab x x x ==,102ab∴; 444()2()()f x a b m a b ∴=+++222222222[()2](2)a b a b m a b ab =+-+++2224()(12)ab m ab =-++ 2224()[144()]ab m ab ab =-+++ 24(1)()42m ab mab m =-+++,当1m =时,()432sin 23f x ab x =+=+,在4x π=时取到最大值5,符合题意;当1m ≠时,21()4(1)[]12(1)1m f x m ab m m =-++---, 由抛物线性质,知:当1m >时,111()()4(1)42415242max f x f m m m m ==-⨯+⨯++=+=,解得1m =,不符条件,舍去; 当1m <时,若102(1)2mm -,则102m , 1()[]152(1)1max m f x f m m ==-=--,解得34m =,不符条件,舍去;若112m <<,则1()()4152max f x f m ==+=,解得1m =,不符条件,舍去;若0m <,则()(0)25max f x f m ==+=,解得3m =,不符条件,舍去;综上,只有一个解1m =;即()f x 在[0x ∈,)2π上的最大值为5时,1m =.题型三:形如2(sin cos )(sin cos )(sin cos )y a x x b x x c x x =++++⋅例7.(2022春•习水县校级期末)函数sin cos sin cos y x x x x =++,[0x ∈,]3π的最大值是 122.【解析】解:令sin cos 2)4t x x x π=+=+,[0x ∈,]3π,可得[44x ππ+∈,7]12π,1sin()[42x π∴+∈,1],2[2t ∴∈2],21sin cos 2t x x -=. ∴函数2211sin cos sin cos (1)122t y x x x x t t -=++=+=+-,故当2t =y 取得最大值为122,故答案为:122.例8.求函数sin cos sin cos y x x x x =++的最大值.【解析】解:令sin cos 2)4t x x x π=+=+,则22t-,则21sin cos 2t x x -=,故22111(1)1(22)222y t t t t=+-=+--,对称轴是1t =-,故当2t =y 有最大值122.例9.(2022春•香洲区校级期中)已知sin cos x x t -= (Ⅰ)用t 表示33sin cos x x -的值;(Ⅱ)求函数sin cos sin cos y x x x x =-+,[0x ∈,]π的最大值和最小值.(参考公式:3322()())a b a b a ab b -=-++【解析】解:由sin cos x x t -=,得212sin cos x x t -=,即21sin cos 2t x x -=,(Ⅰ)233313sin cos (sin cos )(1sin cos )(1)22t t t x x x x x x t ---=-+=+=; (Ⅱ)由题设知:2)4t x π=-,3444x πππ--,2sin()14x π-, 2221111(1)12222t y t t t t -∴=+=-++=--+,且[1t ∈-,2],∴当1t =时,1max y =;当1t =-时,1min y =-.变式7.已知[6x π∈-,]2π,求函数(sin 1)(cos 1)y x x =++的最大值和最小值.【解析】解:函数(sin 1)(cos 1)y x x =++ sin cos sin cos 1x x x x =+++,令sin cos 2)4t x x x π=++,[6x π∈-,]2π,[412x ππ∴+∈,3]4π,62sin()[4x π-∴+∈1], 31[t -∴∈2], 又212sin cos t x x =+,21sin cos 2t x x -∴=, 22111(1)22t y t t -∴=++=+,对称轴:1t =-, 区间31[-,2]在对称轴的右边,为递增区间. 213123(2min y ++∴==, 21322(21)22max y +==. 变式8.设sin cos a x x =,sin cos b x x =+.(1)求a ,b 的关系式;(2)若(0,)2x π∈,求sin cos sin cos y x x x x =++的最大值.【解析】解:(1)sin cos b x x =+,22(sin cos )12sin cos 12b x x x x a ∴=+=+=+;(2)由(1)21(1)2a b =-,2)(14b x π=+∈2].2211(1)(1)122y a b b b b =+=-+=+-,2b ∴=sin cos sin cos y x x x x =++的最大值为122. 题型四:分式结构,形如sin cos a x by c x d+=+例10.求函数3(sin 2)5sin 2x y x +-=+的值域.【解析】解:由3(sin 2)553sin 2sin 2x y x x +-==-++. 当sin 1x =时,43max y =, 当sin 1x =-时,2min y =-.∴函数的值域为4[2,]3-.例11.已知[0x ∈,2)π,求函数1cos sin 2xy x -=+的值域.【解析】解:1cos sin 2xy x -=+sin 21cos y x y x ∴+=-, sin cos 12y x x y ∴+=-,∴21)12y x y θ++=-,其中2tan 1yθ=+2sin()1x yθ∴++,[0x ∈,2)π, (,2)x θθπθ∴+∈+ 1sin()1x θ∴-+, 212111y y-∴-+,解得403y即函数的值域为[0,4]3.例12.求函数sin 2sin 1x y x =+,[6x π∈,]2π的值域.【解析】解:函数11sin sin 11222sin 12sin 124sin 2x x y x x x +-===-+++,[6x π∈,]2π 可得4sin 2[4x +∈,6],111[,]4sin 264x ∈+,sin 11[,]2sin 143x y x =∈+.变式9.用至少2种方法求函数sin cos 2xy x =-的值域.【解析】解:方法1: cos 20x -≠,(cos 2)sin y x x ∴-= sin cos 2x y x y ⇔-=- ⇔21)2y x y θ++=-⇔2sin()1x y θ+=+,sin()[1x θ+∈-,1],∴22111y y --+,解得333y , ∴函数的值域为:33[. 方法22222tan212tan222:11322212x x x tan y x x tan tan xtan +==--+-+,令tan ()2x t t R =∈,则2213ty t =-+, 当0t =时,0y =, 当0t ≠时,213y t t=-+,13(,23][23,)t t+∈-∞-+∞,33[y ∈⋃. ∴函数的值域为:33[. 故答案为:33[.变式10.(1)求cos 2cos 1xy x =+值域(2)求1sin 3cos xy x+=+的值域.【解析】解:(1)由cos 2cos 1xy x =+可得,cos 12y x y =-,由于1cos 1x -,即为||112yy-, 即2(1)(31)0(12)y y y ---,解得1y 或13y, 则值域为(-∞,1][13,)+∞;(2)1sin 3cos xy x+=+,3cos 1sin y y x x ∴+=+,即sin cos 31x y x y -=-,∴21)31y x y θ++=-,2sin()1x yθ∴++,又1sin()1x θ-+, 231111y y-∴-+,解得304y , 即函数1sin 3cos x y x +=+的值域是[0,3]4.【过关测试】 一.选择题1.(2022秋•湖州期末)函数sin (cos sin )y x x x =-,x R ∈的值域是( ) A .1[2-,3]2B .1212[22C .31[,]22-D .1212[22-- 【解析】解:函数211121sin (cos sin )sin cos sin sin 2cos2)22242y x x x x x x x x x π=-=-=-+=+-.1sin(2)14x π-+∴2121222y --. 故选:D .2.函数sin(2)()3y x x R π=-∈的值域为( )A .[1-,1]B .[2-,2]C .1[2-,1]2D .(1,1)-【解析】解:函数sin(2)()3y x x R π=-∈的值域为[1-,1],故选:A .3.(2022春•渝中区校级期中)函数2sin sin 1()y x x x R =-+∈的值域是( ) A .3[4,3]B .[1,2]C .[1,3]D .1[2,3]【解析】解:令sin x t =,则22131()24y t t t =-+=-+,[1t ∈-,1],由二次函数性质,当12t =时,y 取得最小值34.当1t =-时,y 取得最大值3,3[4y ∴∈,3]故选:A .4.(2022秋•武冈市校级期中)函数23()sin 3cos ,([0,])42f x x x x π=-∈的最大值是( )A .1B 334C .334- D .14【解析】解:2231()3cos 3cos 44f x sin x x cos x x =-=-+, 令cos t x =,[0x ∈,]2π,cos [0t x ∴=∈,1],则原函数化为2134y t t =-+,其对称轴方程为3t =, ∴当3t =时,y 有最大值为1. 故选:A .5.(2022秋•鄂尔多斯期中)设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos (θ= )A 25B 5C .25D .5 【解析】解:由题意可得()sin 2cos 5()555f θθθθθ=-=∴155θθ=.再结合22sin cos 1θθ+=, 求得sin 5θ=25cos 5θ== 故选:C .6.(2022秋•贵阳期末)当02x π<<时,函数2228()sin 2cos x sin xf x x +=的最小值为( )A .2B .23C .4D .43【解析】解:当02x π<<时,tan 0x >,∴函数2222282cos 8sin 11()4tan 24tan 4sin 22sin cos tan tan cos x sin x x x f x x x x x x x x++===+⨯,当且仅当1tan 2x =时,取等号, 故()f x 的最小值为4, 故选:C .7.(2022秋•镜湖区校级期末)已知函数2()sin 2sin xf x x =+,则()f x 的最大值为( )A .2-B .1-C .0D .1【解析】解:24()sin 24sin 2sin 2sin x f x x x x ==++-++,令sin 2t x =+,[1t ∈,3],则44y t t=+-, 由对勾函数的性质可知44y t t =+-在[1,2]上单调递减,在(2,3]上单调递增, 当1t =时,1y =,3t =时,13y =, 所以函数()f x 的最大值为1. 故选:D .8.(2022秋•诸暨市校级月考)已知当4x π=-时,函数()sin cos f x a x x =+取到最大值,则3()4f x π+是()A .奇函数,在0x =时取到最小值B .偶函数,在0x =时取到最小值C .奇函数,在x π=时取到最小值D .偶函数,在x π=时取到最小值【解析】解:由于当4x π=-时,函数()sin cos f x a x x =+取到最大值,故2221a +=+1a =-, 故()cos sin 2)4f x x x x π=-+,所以3()cos()cos 4f x x x ππ+=+=-,故函数3()4f x π+为偶函数,在0x =时,函数取得最小值1-. 故选:B . 二.填空题9.(2022春•南关区校级期中)函数21sin 2sin 2y x x =+,x R ∈的值域是 .【解析】解:函数2111cos2122212sin 2sin sin 2(2))222224x y x x x x x x π-=+=+==-,1sin(2)14x π--,222sin(2)242x π-, ∴12122222y -+, 故函数的值域为2121[]22+, 故答案为2121[]22+. 10.(2022•江西)设()33cos3f x x x =+,若对任意实数x 都有|()|f x a ,则实数a 的取值范围是 . 【解析】解:不等式|()|f x a 对任意实数x 恒成立, 令()|()|33cos3|F x f x x x ==+, 则()max a F x .()3sin3cos32sin(3)6f x x x x π=+=+2()2f x ∴- 0()2F x ∴ ()2max F x =2a ∴.即实数a 的取值范围是2a 故答案为:2a .11.(2022秋•南昌期末)若6x π=是函数()3sin 2cos2f x x a x =+的一条对称轴,则函数()f x 的最大值是 .【解析】解:2()3sin 2cos 29)f x x a x a x θ=+=++(其中tan )3aθ=,又6x π=是函数的一条对称轴,262k ππθπ∴⨯+=+,即6k πθπ=+,k Z ∈.由3tan 3tan()3tan 366a k ππθπ==+==299323a ++=∴函数()f x 的最大值是3故答案为:2312.(2022秋•阆中市校级月考)函数3()sin(2)3cos 2f x x x π=+-的值域为 . 【解析】解:22317()cos23cos 2cos 3cos 12(cos )48f x x x x x x =--=--+=-++,1cos 1x -,∴当cos 1x =时,()4min f x =-,故函数()f x 的最小值为4-,∴当3cos 4x =-时,()f x 最大为178,故函数()f x 的最小值为178, ()f x ∴的值域为[4-,17]8. 故答案为:[4-,17]8. 13.函数(2sin )(2cos )y x x =+-的最大值是 . 【解析】解:函数(2sin )(2cos )y x x =+- 42(sin cos )sin cos x x x x =+--,设sin cos t x x =-,则2)[24t x π-∈-2];212sin cos t x x =-,21sin cos 2t x x -∴=, 2211342(2)222t y t t -∴=+-=++,当[2t ∈-2]时,函数y 单调递增; 2t ∴=y 取得最大值是9222. 故答案为:9222. 14.函数3sin xy 的值域是 .【解析】解:由3sin xy =3cos 2x y x y +=,∴23)2y x y α++=,2sin()3x yα∴+=+2|13y+,解得11y -故答案为:[1-,1].15.(2022•湖南)若(0,)2x π∈则2tan tan()2x x π+-的最小值为 .【解析】解:12tan tan()2tan 2tan x x x xπ+-=+(0,)2x π∈,tan 0x ∴>,112tan 22tan 22tan tan x x x x ∴+⋅2tan x =时,等号成立) 故答案为:2216.(2022春•蚌埠期末)当02x π<<时,函数21cos28sin ()sin 2x xf x x ++=的最小值为 .【解析】解:2221cos28sin 8sin 2cos 4sin cos ()4sin 22sin cos cos sin x x x x x x f x x x x x x+++===+当且仅当224sin cos x x =时等号成立. 故答案为:417.(2022秋•东城区期末)已知函数()sin 3f x x x =+,则()f x 的最大值为 .【解析】解:函数()sin 3cos 2sin()3f x x x x π==+,()f x ∴的最大值为2,故答案为:2.18.(2022秋•台江区校级期末)当04x π<<时,函数221sin ()cos sin sin xf x x x x -=⋅-的最小值是 . 【解析】解:222cos 1()sin cos sin tan tan x f x x x x x x==--. 当04x π<<时,tan (0,1)x ∈,2111tan tan 244x x⇒--=, ()4f x ∴.19.(2022秋•杭州期末)函数()2sin(2)6f x x π=-在[4x π∈-,]4π上的最大值为 .【解析】解:[4x π∈-,]4π, 2(2)[63x ππ∴-∈-,]3π, 2sin(2)[26x π∴-∈-3],∴函数()2sin(2)6f x x π=-在[4x π∈-,]4π3 3 三.解答题20.(2022春•石门县校级期末)已知函数()2)4f x x π=+,x R ∈.(1)求()f x 的最小正周期;(2)求()f x 的单调递增区间和单调递减区间;(3)当[0x ∈,]2π,求()f x 值域.【解析】解:(1)由解析式得3ω=, 则函数的最小正周期223T ππω==. (2)由232242k x k πππππ-++,k Z ∈,得323244k x k ππππ-+,k Z ∈,即2234312k k x ππππ-+,k Z ∈, 即函数的单调递增区间为2[34k ππ-,2]312k ππ+,k Z ∈, 由3232242k x k πππππ+++,k Z ∈, 得225312312k k x ππππ++,k Z ∈, 即函数的单调递减区间为2[312k ππ+,25]312k ππ+,k Z ∈. (3)当[0x ∈,]2π时,3[0x ∈,3]2π,3[44x ππ+∈,7]4π, 则当342x ππ+=时,函数()f x 取得最大值,此时()222f x π=,当3342x ππ+=时,函数()f x 取得最小值,此时3()222f x π==- 即()f x 值域为[2-2].21.(1)求函数34cos(2)3y x π=-+,[3x π∈-,]6π的最大值和最小值及相应的x 值.(2)求函数2cos 2sin 2y x x =+-,x R ∈的值域.(3)若函数2()sin cos 2f x x a x =-++,[0x ∈,]2π的最小值为12,求a 的值.【解析】解:(1)34cos(2)3y x π=-+,[3x π∈-,]6π, 2[33x ππ+∈-,2]3π, ∴当203x π+=时取最小值,最小值为1-,即6x π=-,2233x ππ+=时取最大值,最大值为5,即6x π=,6x π∴=-时,y 取最小值为1-,6x π=时,y 取最大值为5;(2)2cos 2sin 2y x x =+-, 2sin 2sin 1x x =-+-,令sin x t =,[1t ∈-,1],221y t t ∴=-+-,[1t ∈-,1], 由二次函数图象可知,对称轴为1, y ∴在定义域[1-,1]上单调递增,y 的值域为[4-,0],∴函数2cos 2sin 2y x x =+-,x R ∈的值域[4-,0];(3)2()sin cos 2f x x a x =-++,[0x ∈,]2π,2()cos cos 1f x x a x ∴=++,[0x ∈,]2π,令cos x t =,[0t ∈,1],2()1f t t at ∴=++,[0t ∈,1], 由二次函数性质可知:0a <, 当对称轴12at =->,即2a <-时, ∴最小值为f (1)12=, 322a ∴=->-,不成立,当012a-,20a -, 当2at =-取最小值,2a ∴=-.22.(2022秋•南阳期中)已知函数22()2cos ()sin 3f x x x π=-+-.(1)求函数()y f x =的单调递增区间;(2)若函数()()(0)2g x f x πϕϕ=+<<的图像关于点(,1)2π中心对称,求()y g x =在[,]63ππ上的值域.【解析】解:(1)22222131cos(2)cos 2cos sin 2sin 1cos 2211cos 21cos 21cos 233322()2cos ()sin 2223222222x x x x x x x x f x x x ππππ++-+-+---=-+-=--=--=--13cos 2211cos 2333313222cos 221(2sin 2)1)122423x x x x x x x x π-+-=--=+=++=++,即3())13f x x π++, 令222,232k x k k Z πππππ-++∈,解得5,1212k x k k Z ππππ-+∈,所以函数的单调递增区间为5[,],1212k k k Z ππππ-+∈. (2)因为33()())]12)133g x f x x x ππϕϕϕ=+=+++=+++, 又()g x 的图像关于点(,1)2π中心对称, 所以2,3k k Z ππϕπ++=∈,解得21,32k k Z πϕπ=-+∈, 因为02πϕ<<,所以3πϕ=,所以33())121g x x x π=++=+, 当[,]63x ππ∈时,22[,]33x ππ∈,所以3sin 2[x ∈,所以31()[1,]4g x ∈, 即()y g x =在[,]63ππ上的值域为31[1]4.23.(2022春•浦东新区校级期中)已知函数2()2sin cos 2cos f x x x x =-. (1)求函数()y f x =的最小正周期和严格递减区间;(2)若()()1g x f x =+,[0,]2x π∈,求函数2()()2g x y g x =+的值域.【解析】解:(1)2()2sin cos 2cos sin 2(1cos2)2)14f x x x x x x x π=-=-+=--,所以最小正周期22T ππ==, 令2(242x k πππ-∈+,32)2k ππ+,k Z ∈,则3(8x k ππ∈+,7)8k ππ+,k Z ∈, 故最小正周期为π,严格递减区间为3(8k ππ+,7)8k ππ+,k Z ∈. (2)()()12)4g x f x x π=+-,因为[0,]2x π∈,所以2[44x ππ-∈-,3]4π,所以()[1g x ∈-2],故2()2(()2)442[2()2()2()2g x g x y g x g x g x +-===-∈-+++,222]-+.24.(2022秋•硚口区期末)已知函数22()(sin cos )233f x x x x =+- (1)求()f x 的单调递增区间;(2)求函数()12y f x π=+,[0,]2x π∈的值域.【解析】解:(1)由三角函数公式化简可得: 1cos2()1sin 22332xf x x +=+-sin 23cos212sin(2)13x x x π=+=-+, 由222232k x k πππππ--+可得5,1212k x k k Z ππππ-+∈,()f x ∴的单调递增区间为:5[,],1212k k k Z ππππ-+∈;(2)由(1)可得()2sin(2)1126y f x x ππ=+=-+,2x π,∴52666x πππ--,∴1sin(2)126x π--,03y ∴∴函数的值域为:[0,3]25.(2022春•柳州期末)已知函数2()(sin cos )cos(2)16f x x x x π=+++-.求:(1)函数()f x 的最小正周期;(2)方程()0f x =的解集;(3)当[,]44x ππ∈-时,函数()y f x =的值域.【解析】解:(1)函数231()(sin cos )cos(2)11sin 2sin 2162f x x x x x x x π=+++-=+--sin 23sin(2)23x x x π==+,故它的最小正周期为22ππ=.(2)由()0f x =,可得sin(2)03x π+=,23x k ππ∴+=,k Z ∈, 求得26k x ππ=-,k Z ∈,故方程()0f x =的解集为{|26k x x ππ=-,k Z ∈}. (3)当[,]44x ππ∈-时,2[36x ππ+∈-,5]6π,1sin(2)[32x π∴+∈-,1], 故函数()y f x =的值域为1[2-,1]. 26.(2022秋•汶上县校级月考)已知函数()2sin(2)6f x x aa R π=++∈,a 是常数 (1)求5()3f π的值 (2)若函数()f x 在[,]44ππ-3a 的值. 【解析】解:(1)()2sin(2)6f x x a π=++,a R ∈, 510()2sin()2336f a a πππ∴=++=-+⋯(3分) (2)因为[4x π∈-,]4π, 2[63x ππ∴+∈-,2]3π, 3sin(2)[6x π∴+∈,1]⋯(6分) 3()2a f x a ∴-+⋯(9分)即2max y a =+,3min y a =,由已知得323a a -++=31a ∴⋯(12分)27.(2022春•兴庆区校级期末)已知函数2()2cos 2222x x x f x =. (1)求()f x 的最小正周期;(2)求()f x 在区间[π-,0]上的值域.【解析】解:(1)211cos 2()2cos 22sin 2sin()222224x x x x f x x x π-=-=+, ()f x ∴的最小正周期为221ππ=. (2)[x π∈-,0],3[44x ππ∴+∈-,]4π,sin()[14x π∴+∈-2,22sin()[14x π∴+-,0],故()f x 的值域为2[1--. 28.求函数cos 21y x +- 【解析】解:函数cos 21y x =+-,sin 1cos 20x y x y y ∴-=+-=,即sin cos (21)1x y x y -=+, 21)(21)1y x y θ++=+,即2(21)1sin()1y x y θ-++=+. 根据|sin()|1x θ+,求得2(21)111y y -++,平方化简可得2(222)2(21)y y -, 即(1)0y y -,解得1y ,或0y ,即函数的值域为{|1x y ,或0}y .。
高二数学常考题型归纳总结在高二数学学科中,有一些常见的考试题型,它们是学生们经常遇到的,也是老师们着重讲解和强调的部分。
本文将对这些常考题型进行归纳总结,以便帮助学生们更好地理解和应对考试。
第一部分:函数与方程1. 一次函数一次函数是高中数学中最常见的函数类型之一。
其一般形式为y =kx + b,其中k和b为常数。
常见的一次函数问题包括求解方程、确定函数图像以及函数间的关系等。
2. 二次函数二次函数是另一种常见的函数类型,其一般形式为y = ax^2 + bx + c,其中a、b和c为常数。
常见的二次函数问题包括求解方程、确定函数的图像和性质,以及与其他函数的关系等。
3. 指数函数与对数函数指数函数和对数函数是常见的数学模型,在实际问题中应用广泛。
常见的问题包括指数方程、对数方程的求解,以及指数函数与对数函数的性质和图像等。
4. 绝对值函数与分段函数绝对值函数和分段函数常常涉及到函数的定义域、值域以及函数图像的画法等问题。
理解函数在不同区间上的性质和特点对于解决此类问题非常重要。
第二部分:几何与三角函数1. 直线与曲线的性质在几何学中,直线和曲线是最基本的图形,其性质的研究也是几何学的核心内容。
常考的问题包括直线与曲线的方程,以及与之相关的性质和定理等。
2. 三角函数的应用三角函数是高中数学中重要的内容之一,通过三角函数的应用可以解决许多几何问题。
常见的问题包括利用三角函数解决三角形相关的问题,以及三角函数图像的性质和变换等。
3. 平面几何与立体几何在平面几何中,对于平面图形的性质和计算是常见的考点。
在立体几何中,常考的问题涉及到计算体积、表面积,以及解决与立体图形相关的问题等。
第三部分:概率与统计1. 概率问题概率是数学中一个有趣且实用的分支,常考的问题包括概率的计算、概率的性质和应用等。
例如,计算事件发生的可能性、重复实验的次数以及组合概率等。
2. 统计问题统计学是一门关于数据收集、分析和解释的学科。
函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。
函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。
函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。
换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。
一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。
注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。
平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。
2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。
3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。
3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。
2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。
高一数学复习考点知识与题型专题讲解第三章函数的概念与性质3.2函数的基本性质3.2.1单调性与最大(小)值【考点梳理】重难点:单调性考点一:增函数与减函数的定义一般地,设函数f(x)的定义域为I,区间D⊆I:(1)如果∀x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上单调递增,特别地,当函数f(x)在它的定义域上单调递增时,我们称它是增函数.(2)如果∀x1,x2∈D,当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上单调递减,特别地,当函数f(x)在它的定义域上单调递减时,我们称它是减函数.考点二:二函数的单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.重难点:函数的最大(小)值考点一函数的最大(小)值及其几何意义最值条件几何意义最大值①对于∀x∈I,都有f(x)≤M,②∃x0∈I,使得f(x0)=M 函数y=f(x)图象上最高点的纵坐标最小值①对于∀x∈I,都有f(x)≥M,②函数y=f(x)图象上最低点的纵∃x 0∈I ,使得f (x 0)=M坐标考点二 求函数最值的常用方法1.图象法:作出y =f (x )的图象,观察最高点与最低点,最高(低)点的纵坐标即为函数的最大(小)值.2.运用已学函数的值域. 3.运用函数的单调性:(1)若y =f (x )在区间[a ,b ]上是增函数,则y max =f (b ),y min =f (a ). (2)若y =f (x )在区间[a ,b ]上是减函数,则y max =f (a ),y min =f (b ). 4.分段函数的最大(小)值是指各段上的最大(小)值中最大(小)的那个.【题型归纳】题型一:函数单调性的判定与证明1.(2021·高平市第一中学校高一开学考试)已知函数()2a f x x x =-,且1()2f =3. (1)求a 的值;(2)判断函数f (x )在[1,+∞)上的单调性,并证明.2.(2020·金华市云富高级中学高一月考)(1)求证:y =-x ²+1在区间[0,+∞)上为减函数. (2)画出函数y =-x ²+2|x |+3的图像,并指出函数的单调区间.3.(2021·上海高一专题练习)已知函数()()0x af x a ax-=>.证明:函数()y f x =在()0,∞+上严格增函数.题型二:根据函数的单调性求参数范围4.(2020·贵州遵义市·蟠龙高中高一月考)若函数2()2(1)2f x x a x =+-+,在(],5-∞上是减函数,则a 的取值范围是( )A .(],5-∞-B .[)5,+∞C .[)4,+∞D .(],4-∞-5.(2021·全国高一单元测试)已知函数25,1(),1x ax x f x ax x ⎧---≤⎪=⎨>⎪⎩,是R 上的增函数,则实数a 的取值范围是( ) A .[)3,0-B .(],2-∞- C .[]3,2--D .(),0-∞ 6.(2021·全国)函数1()2ax f x x +=+在区间(2,)+∞上单调递增,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(2,)+∞D .(,1)(1,)-∞-+∞题型三:复合函数的单调性7.(2021·全国)函数23s x x =+的单调递减区间为( ) A .3,2⎛⎤-∞ ⎥⎝⎦B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3-∞- 8.(2021·全国)以下函数在其定义域上为增函数的是( ) A .1(0)x y x x +=>B .2(0)y x x x =+> C .1y x =-D .2y x =-9.(2020·黑龙江鹤岗一中)函数()212x f x x=-的单调递增区间是( )A .(,1]-∞B .(,0)-∞,(0,1)C .(,0)(0,1)-∞D .(1,)+∞题型四:根据函数的单调性解不等式10.(2020·沧源佤族自治县民族中学高一月考)设a R ∈,已知函数()y f x =是定义在[]4,4-上的减函数,且()()12f a f a +>,则a 的取值范围是( ) A .[)4,1-B .(]1,4C .(1,2]D .[]5,2-11.(2020·淮北市树人高级中学高一期中)已知偶函数()f x 在区间[)0,+∞上单调递增,则满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 的取值范围是( )A .1233⎛⎫⎪⎝⎭,B .1233⎡⎫⎪⎢⎣⎭,C .1223⎛⎫⎪⎝⎭,D .1223⎡⎫⎪⎢⎣⎭,12.(2020·江苏省板浦高级中学高一月考)已知奇函数()f x 在(),0-∞上单调递增的,且()30f =,则不等式()()10x f x ->的解集为( )A .()3,1--B .()()3,12,--+∞C .()()3,03,-⋃+∞D .()(),33,(0,1)-∞-+∞.题型五:根据函数的单调性求值域13.(2021·江西宜春市·高安中学高一月考)函数()12f x x x=-在区间[]1,2上的最小值是( )A .72-B .72C .1D .-114.(2021·全国高一单元测试)若“[1x ∃∈,2],使2210x x λ--<成立”是假命题,则实数λ的取值范围是( )A .(-∞,7]2B .3[2,7]2C .(-∞,1]D .7[2,)+∞ 15.(2021·上海高一专题练习)已知函数()1[]226f x x x ∈-=(,),则f (x )的最大值为( ). A .13B .12C .1D .2题型六:根据函数的值域求参数范围 16.(2021·浙江)若函数()2=1x mf x x ++在区间[]0,1上的最大值为52,则实数m =( )A .3B .52C .2D .52或317.(2020·宜城市第三高级中学)函数2y ax =+在[1,2]上的最大值与最小值的差为3,则实数a 为( ) A .3B .-3C .0D .3或-3 18.(2020·湖北)已知函数()()212,02,0a x a x f x x x x ⎧-+<=⎨-≥⎩有最小值,则a 的取值范围是( )A .1,12⎡⎫-⎪⎢⎣⎭B .1,12⎛⎫- ⎪⎝⎭C .1,12⎡⎤-⎢⎥⎣⎦D .1,12⎛⎤- ⎥⎝⎦题型七:函数不等式恒成立问题19.(2021·江西省乐平中学高一开学考试)函数211()()1x ax f x a R x ++=∈+,若对于任意的*N x ∈,()3f x ≥恒成立,则a 的取值范围是( )A .8,3⎡⎫-+∞⎪⎢⎣⎭B .2,3⎡⎫-+∞⎪⎢⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .[)1,-+∞20.(2021·全国高一单元测试)设二次函数()2f x x ax b =++,若存在实数a ,对任意1,22x ⎡∈⎤⎢⎥⎣⎦,使得不等式()f x x <成立,则实数b 的取值范围是( ) A .1,23⎛⎫- ⎪⎝⎭B .11,34⎛⎫- ⎪⎝⎭C .19,44⎛⎫⎪⎝⎭D .19,34⎛⎫- ⎪⎝⎭21.(2021·江西宜春市·高安中学高一月考)若函数243y kx kx =++对任意x ∈R 有0y >恒成立,则实数k 的取值范围为( ) A .30,4⎡⎫⎪⎢⎣⎭B .3,4⎛⎫+∞ ⎪⎝⎭C .(),0-∞D .30,4⎡⎤⎢⎥⎣⎦【双基达标】一、单选题22.(2019·云南省楚雄天人中学高一月考)函数()21f x x =-,[)1,1x ∈-,则()f x 的值域为( )A .{}3,1-B .(]3,1-C .[]3,1-D .[)3,1-23.(2021·沧源佤族自治县民族中学高一期末)已知函数4,(,]1xy x a b x +=∈+的最小值为2,则a 的取值范围是( ) A .(1,2)B .(1,2)-C .[1,2)D .[1,2)-24.(2020·内蒙古杭锦后旗奋斗中学)若函数()()2211f x x a x =+-+在(],2-∞上是单调递减函数,则实数a 的取值范围是( )A .3,2⎡⎫-+∞⎪⎢⎣⎭B .3,2⎛⎤-∞- ⎥⎝⎦C .)5,2⎡-+∞⎢⎣D .5,2⎛⎤-∞- ⎥⎝⎦25.(2020·杭州之江高级中学高一期中)函数()11f x x =+中,有( ) A .()f x 在()1,-+∞上单调递增B .()f x 在()1,+?上单调递减 C .()f x 在()1,+?上单调递增D .()f x 在()1,-+∞上单调递减26.(2021·全国高一专题练习)已知f (x )=x ,g (x )=x 2-2x ,F (x )=(),()(),(),()(),g x f x g x f x f x g x ≥⎧⎨<⎩则F (x )的最值情况是( )A .最大值为3,最小值为-1B .最小值为-1,无最大值C .最大值为3,无最小值D .既无最大值,又无最小值27.(2021·全国高一专题练习)设偶函数f (x )在区间(-∞,-1]上单调递增,则( ) A .3()2f -<f (-1)<f (2)B .f (2)<3()2f -<f (-1) C .f (2)<f (-1)<3()2f -D .f (-1)<3()2f -<f (2)28.(2021·全国高一专题练习)甲:函数()f x 是R 上的单调递减函数;乙:()()1212x x f x f x ∃<>,,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件29.(2021·全国高一课前预习)当0x >时,()31x k k x +≥+,则k 的取值范围为( )A .{}2B .(]0,2C .(],2-∞D .[)2,+∞ 30.(2021·全国高一专题练习)已知(31)4,1()1,1a x a x f x x x -+<⎧=⎨-+≥⎩是定义在R 上的减函数,那么a 的取值范围是( )A .1,3⎛⎫-∞ ⎪⎝⎭B .1,7⎛⎫+∞ ⎪⎝⎭C .11,73⎡⎫⎪⎢⎣⎭D .11,,73⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭【高分突破】一:单选题31.(2021·全国)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( )A .(-∞,1)(1-⋃,)+∞B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)32.(2021·全国高一单元测试)函数()()2213f x x m x =-+-+在区间(]3,4-上单调递增,则m的取值范围是有( )A .[3,)-+∞B .[3,)+∞C .(,5]-∞D .(,3]-∞- 33.(2021·全国高一专题练习)已知函数()21xf x x=+的定义域为[)2,+∞,则不等式()()22228f x f x x +>-+的解集为 ( )A .5,42⎡⎫⎪⎢⎣⎭B .[)2,3C .(),3-∞D .()3,+∞34.(2021·全国高一专题练习)已知函数()f x 在R 上为增函数,若不等式()2()43f x a f x ≥-+--对(]0,3x ∀∈恒成立,则a 的取值范围为( )A .[)1,-+∞B .()3,+∞C .[)0,+∞D .[)1,+∞35.(2021·全国高一专题练习)已知函数()222,0,2,0,x x x f x x x x ⎧+≥=⎨-+<⎩则不等式()()324f x f x +<-的解集为( ) A .(),3-∞-B .3,2⎛⎫-∞- ⎪⎝⎭C .(),1-∞-D .(),1-∞36.(2021·全国高一专题练习)在R 上定义运算:a b ad bc c d ⎛⎫=- ⎪⎝⎭,若不等式1211x a a x --⎛⎫≥ ⎪+⎝⎭对任意实数x 恒成立,则实数a 的最大值为( ) A .12-B .32-C .12D .32二、多选题37.(2021·全国高一课时练习)下列函数中满足“对任意x 1,x 2∈(0,+∞),都有1212()()f x f x x x-->0”的是( )A .f (x )=-2xB .f (x )=-3x +1C .f (x )=x 2+4x +3D .f (x )=x -1x38.(2021·全国高一专题练习)已知函数()21f x x =-+([]2,2x ∈-),2()2gx x x =-,([]0,3x ∈),则下列结论正确的是( )A .[]2,2x ∀∈-,()f x a >恒成立,则实数a 的取值范围是(),3-∞-B .[]2,2x ∃∈-,()f x a >恒成立,则实数a 的取值范围是(),3-∞-C .[]0,3x ∃∈,()g x a =,则实数a 的取值范围是[]1,3-D .[]2,2x ∀∈-,[]0,3t ∃∈,()()f x g t =39.(2021·全国高一单元测试)给出下列命题,其中错误的命题是 ( ) A .若函数()f x 的定义域为[]0,2,则函数()2f x 的定义域为[]0,4; B .函数()1f x x=的单调递减区间是()(),00,-∞⋃+∞;C .已知函数()f x 是定义域上减函数,若()()f m f n >,则m n <;D .两个函数11y x x =+⋅-,21y x =-表示的是同一函数.40.(2021·全国高一课时练习)函数()f x 的定义域为R ,对任意的1x ,2x ∈R 都满足()()()()11221221x f x x f x x f x x f x +>+,下列结论正确的是( )A .函数()f x 在R 上是单调递减函数B .()()()212f f f -<<C .()()12f x f x +<-+的解为12x <D .()00=f三、填空题41.(2020·金华市云富高级中学高一月考)函数y =1x -+3x +的最大值为__________. 42.(2021·浙江杭州市·学军中学高一竞赛)若函数()|21|||2f x x x a =++--的定义域为R ,则a 的取值范围是_____________. 43.(2021·全国高一课时练习)函数232()(20)3x x f x x x ++=-<<+的值域为______ 44.(2021·广东潮州·高一期末)已知函数()223f x x ax =-+在区间[]28,是单调递增函数,则实数a 的取值范围是______.45.(2020·杭州之江高级中学高一期中)已知函数()()25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是___________.四、解答题46.(2020·贵州遵义市·蟠龙高中高一月考)已知函数2()4.f x x x =- (1)证明函数()f x 在区间[)2,+∞上的单调性;(2)若函数()f x 在区间[0,5]上的最大值为M ,最小值为m ,求mM的值.47.(2019·罗平县第二中学高一期中)设函数()21x f x x +=-. (1)用函数单调性定义证明:函数()f x 在区间()1,+?上是单调递减函数; (2)求函数()f x 在区间[]3,5上的最大值和最小值.48.(2019·长沙市南雅中学高一月考)设函数()22f x mx mx =--.(1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求实数m 的取值范围.49.(2021·全国高一专题练习)定义在(0,)+∞上的函数()f x 满足()()()f xy f x f y =+,且当1x >时,()0f x <. (1)求()1f ;(2)证明()f x 在(0,)+∞上单调递减;(3)若关于x 的不等式()(3)(931)1x x x f k f f --+≥恒成立,求实数k 的取值范围.【答案详解】1. 【详解】(1)函数()2a f x x x =-中,因1()2f =3,则12232a ⋅-=,解得1a =-, 所以a 的值是1-;(2)由(1)知:1()2f x x x=+,f (x )在[1,+∞)上的单调递增,12,[1,)x x ∀∈+∞,且12x x <,12112121221112(2)()(()(2))x x x x x x x x f x f x +-+=---=, 因211x x >≥,则120x x -<,且12120->x x ,即有12())0(f x f x -<,12()()f x f x <, 所以f (x )在[1,+∞)上的单调递增. 2. 【详解】(1)证明:设任意0≤x 1<x 2,则y 1−y 2=x 22−x 21=(x 2−x 1)(x 2+x 1)>0,21210,0x x x x ->+>∴y 1>y 2,∴函数y =−x ²+1在区间[0,+∞)上是减函数. (2)作出函数图象如图所示:增区间为:(−∞,−1),(0,1), 减区间为:(−1,0),(1,+∞). 3.任取120x x <<,所以()()1212121212x a x a x xf x f x ax ax x x ----=-=,因为120x x <<,所以12120,0x x x x <->,所以()()120f x f x -<,所以()()12f x f x <, 所以函数()y f x =在()0,∞+上严格增函数. 4.D 【详解】因为()f x 的对称轴为1x a =-且开口向上,且在(],5-∞上是减函数, 所以15a -≥,所以4a ≤-, 故选:D. 5.C 【详解】解:若25,1(),1x ax x f x ax x ⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则应满足21201151a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤,即[]3,2a ∈--. 故选:C 6.B 【详解】1(2)2112()222ax a x a af x a x x x ++-+-===++++,依题意有120a -<,即12a >,所以实数a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.故选:B. 7.D 【详解】由230x x +≥得3x ≤-或0x ≥,即函数23s x x =+的定义域为(][),30,-∞-⋃+∞, 又二次函数23t x x =+的图象的对称轴方程为32x =-,所以函数23t x x =+(x ∈(][),30,-∞-⋃+∞)在区间(],3-∞-上单调递减, 在区间[)0,+∞上单调递增,又函数(0)y t t =≥为增函数, 所以23s x x =+的单调递减区间为(],3-∞-. 故选:D 8.B 【详解】解:对于A 选项,111(0)x y x x x +==+>,由于反比例函数()10y x x=>为减函数,故1(0)x y x x+=>为减函数,A 选项错误; 对于B 选项,2(0)y x x x =+>的对称轴为102x =-<,开口向上,故2(0)y x x x =+>为增函数,B 选项正确;对于C 选项,由于()11y x x =-≤上是减函数,故由复合函数的单调性得1y x =-为定义域(],1-∞上的减函数,C 选项错误;对于D 选项,2y x =-为减函数,故D 选项错误. 故选:B. 9.B 【详解】由220t x x =-≠,可知函数22t x x =-开口向上,对称轴x 1=,x 0≠且x 2≠. 因为函数22t x x =-在区间(,0)-∞,(0,1)上单调递减, 所以原函数() f x 的单调递增区间(,0)-∞,(0,1).故选:B . 10.C 【详解】∵函数()y f x =是定义在[]4,4-上的减函数,且()()12f a f a +>, ∴4124a a -+<≤≤,解得12a <≤, 故选:C . 11.A 【详解】因为()f x 是偶函数,所以()()f x f x =,所以()1213f x f ⎛⎫-< ⎪⎝⎭等价于()1213f x f ⎛⎫-< ⎪⎝⎭,因为()f x 在区间[)0,+∞上单调递增,所以1213x -<,即112133x -<-<,解得:1233x <<,所以原不等式的解集为1233⎛⎫⎪⎝⎭,,故选:A. 12.D 【详解】因为奇函数()f x 在(),0-∞上单调递增的,且()30f =,所以奇函数()f x 在()0,∞+上单调递增的,且()3(3)0f f -==,所以有:(1)当0x >时,因为()30f =,所以当3x >时,()0f x >,当03x <<时,()0f x <, 当1x >时,由()()10()03x f x f x x ->⇒>⇒>,当01x <<时,由()()10()03x f x f x x ->⇒<⇒<,所以01x <<,(2)当0x <时,因为()30f -=,所以当03x >>-时,()0f x >,当3x <-时,()0f x <, 因此由()()10()03x f x f x x ->⇒<⇒<-,综上所述:由()()10x f x ->⇒()(),33,(0,1)-∞-+∞, 故选:D 13.A 【详解】∵函数()f x 在[]1,2上为减函数, ∴()()min 1722222f x f ==-⨯=-. 故选:A. 14.C 【详解】解:若“[1x ∃∈,2],使得2210x x λ--<成立”是假命题, 即“[1x ∃∈,2],使得12x x λ>-成立”是假命题, 故[1x ∀∈,2],12x x λ-…恒成立,令1()2f x x x=-,[1x ∈,2],所以()f x 是增函数(增函数+增函数=增函数), 所以min ()(1)1f x f ==,1λ∴…,故选:C . 15.D 【详解】因为2y x =在()0+∞,上单减,所以21y x -=在()1+∞,上单减, 即21y x -=在[]2,6上单减, 所以f (x )的最大值为()22=221f -=. 故选:D 16.B 【详解】 函数()21x m f x x +=+,即()221m f x x -=++,[]0,1x ∈, 当2m =时,()2f x =不成立;当20m ->,即2m >时,()f x 在[]0,1递减,可得()0f 为最大值, 即()05012m f +==,解得52m =成立;当20m -<,即2m <时,()f x 在[]0,1递增,可得()1f 为最大值, 即()25122m f +==,解得3m =不成立; 综上可得52m =. 故选:B . 17.D 【详解】解:①当0a =时,2=2y ax =+,不符合题意;②当0a >时,2y ax =+在[]1,2上递增,则()()2223a a +-+=,解得3a =; ③当0a <时,2y ax =+在[]1,2上递减,则()()2223a a +-+=,解得3a =-.综上,得3a =±, 故选:D . 18.C 【详解】如图所示可得:10,21,a a -<⎧⎨≥-⎩或10a -=,解得:1,12a ⎡⎤∈-⎢⎥⎣⎦,故选:C.19.A 【详解】对任意*x ∈N ,()3f x ≥恒成立,即21131x ax x ++≥+恒成立,即知83a x x ⎛⎫≥-++ ⎪⎝⎭.设8()g x x x =+,*x ∈N ,则(2)6g =,17(3)3g =.∵(2)(3)g g >,∴min 17()3g x =, ∴8833x x ⎛⎫-++≤- ⎪⎝⎭,∴83a ≥-,故a 的取值范围是8,3⎡⎫-+∞⎪⎢⎣⎭.故选:A. 20.D 【详解】由题意,对于任意1,22x ⎡⎤∈⎢⎥⎣⎦,都有()f x x <成立,所以1b x a x ++<即11b x a x -<++<对于任意1,22x ⎡⎤∈⎢⎥⎣⎦恒成立,所以只需()1,,22b g xx x x ⎡⎤=+⎢⎣∈⎥⎦的最大值与最小值的差小于2即可,当4b ≥时,()g x 在1,22⎡⎤⎢⎥⎣⎦上单调递减,则()()1113222122222g g b b b ⎛⎫-=+--=-< ⎪⎝⎭,解得73b <,不合题意;当14b ≤时,()g x 在1,22⎡⎤⎢⎥⎣⎦上单调递增,则()()1321222g g b ⎛⎫-=--< ⎪⎝⎭,所以1,341b ⎛⎤ ⎥⎝-⎦∈;当144b <<时,()g x 在1,2b ⎡⎤⎢⎥⎣⎦上单调递减,在,2b ⎡⎤⎣⎦上单调递增,则()()()222221122222b g g b b g g b b b ⎧-=+-<⎪⎪⎨⎛⎫⎪-=+-< ⎪⎪⎝⎭⎩,所以19,44b ⎛⎫∈ ⎪⎝⎭, 综上,19,34b ⎛⎫∈- ⎪⎝⎭.21.A 【详解】由题意,函数243y kx kx =++对任意x ∈R 有0y > (1)当0k =时,30y =>成立;(2)当0k ≠时,函数为二次函数,若满足对任意x ∈R 有0y >,则2030161204k k k k >⎧∴<<⎨∆=-<⎩综上:30,4k ⎡⎫∈⎪⎢⎣⎭故选:A 22.D 【详解】因为函数()21f x x =-,在[)1,1x ∈-上递增, 所以()f x 的值域为[)3,1-, 故选:D 23.D 【详解】 由41331111x x y x x x +++===++++作出图象, 如图,由图象可得要取得最小值2,则1a ≥-;∵在区间(,]a b 上单调递减,则x b =时,取得最小值为2,即311b =+,可得2b =, ∴a 的取值范围为[1,2)-24.B 【详解】函数()()2211f x x a x =+-+的单调递减区间是21(,]2a --∞-, 依题意得(]21,2(,]2a --∞⊆-∞-,于是得2122a --≥,解得32a ≤-,所以实数a 的取值范围是3(,]2-∞-. 故选:B 25.D 【详解】解:函数1y x =的图象向左平移1个单位可得函数11y x =+的图象, 因为函数1y x =在(),0-?和()0,+?上单调递减,则函数11y x =+在(),1-∞-和()1,-+∞上单调递减. 故选:D . 26.D 【详解】由f (x )≥g (x )得0≤x ≤3;由f (x )<g (x ),得x <0,或x >3,所以()2,02,03,3x x F x x x x x x <⎧⎪=-≤≤⎨⎪>⎩易得F (x )无最大值,无最小值. 故选:D 27.B 【详解】因函数f (x )为偶函数,于是有f (-x )=f (x ),从而得f (2)=f (-2), 又f (x )在区间(-∞,-1]上单调递增,且-2<32-<-1, 所以f (2)=f (-2)<3()2f -<f (-1). 故选:B 28.A 【详解】函数()f x 是R 上的单调递减函数,则1212,()()∃<>x x f x f x ,由减函数定义知,此命题是真命题,即命题:“若甲则乙”是真命题;反之,()()1212x x f x f x ∃<>,,则函数()f x 是R 上的单调递减函数,条件与减函数定义不符,即命题:“若乙则甲”是假命题, 所以甲是乙的充分不必要条件. 故选:A 29.A 【详解】解:不等式()31x k k x +≥+可化为()()()211x x x k x -+≥-. 当01x <<时,2k x x ≥+,可得 2k ≥; 当1x =时,00≥,k ∈R ; 当1x >时,2k x x ≤+,可得 2k ≤. 综上,k 的取值范围为{}2. 故选:A . 30.C 【详解】因为函数(31)4,1()1,1a x a x f x x x -+<⎧=⎨-+≥⎩是定义在R 上的减函数, 所以310,31411a a a -<⎧⎨-+≥-+⎩,解得1173a ≤<.所以实数a 的取值范围为11,73⎡⎫⎪⎢⎣⎭.故选:C. 31.C 【详解】解:根据题意,函数221()11()ax a x a a a f x a x a x a x a--+--===+---,若()f x 在区间(2,)+∞上单调递减,必有2102a a ⎧->⎨⎩…,解可得:1a <-或12a <…,即a 的取值范围为(-∞,1)(1-⋃,2], 故选:C .【详解】解:因为函数()()2213f x x m x =-+-+,开口向下,对称轴为1x m =-,依题意14m -≥,解得3m ≤-,即(],3m ∈-∞- 故选:D 33.C 【详解】因为()2111x f x x x x==++,可知()f x 在[)2,+∞上单调递减,所以不等式()()22228f x f x x +>-+成立,即2222222823228x x x x x x x ⎧+≥⎪-+≥⇒<⎨⎪+<-+⎩. 故选:C. 34.D 【详解】因为函数()f x 在R 上为增函数,则不等式()2()43f x a f x ≥-+--对(]0,3x ∀∈恒成立,即243x a x -+≥--对(]0,3x ∀∈恒成立, 所以243a x x ≥-+-对(]0,3x ∀∈恒成立, 令()()224321g x x x x =-+-=--+, 当(]0,3x ∈,则()()(]2213,1g x x =--+∈-,所以1a ≥,故a 的取值范围为[)1,+∞.35.A 【详解】易得函数()f x 在R 上单调递增,则由()()324f x f x +<-可得324x x +<-,解得3x <-, 故不等式的解集为(),3-∞-. 故选:A . 36.D 【详解】由a b ad bc c d ⎛⎫=- ⎪⎝⎭,则1211x a a x --⎛⎫≥ ⎪+⎝⎭即(1)(2)(1)1x x a a ---+≥,所以221a a x x --≤-恒成立, 在R 上2x x -的最小值为14-,所以2114a a --≤-,整理可得(21)(23)0a a +-≤, 解得1322a -≤≤,实数a 的最大值为32, 故选:D 37.ACD因为“对任意x 1,x 2∈(0,+∞),都有1212()()f x f x x x -->0” 所以不妨设0< x 1<x 2,都有12()()f x x <, 所以f (x )为(0,+∞)上的增函数.对于A :f (x )=-2x在(0,+∞)上为增函数,故A 正确; 对于B :f (x )=-3x +1在(0,+∞)上为减函数,故B 错误;对于C :f (x )=x 2+4x +3对称轴为x =-2,开口向上,所以在(0,+∞)上为增函数,故C 正确;对于D :f (x )=x -1x ,因为1y x =在(0,+∞)上为增函数, 21y x=-在(0,+∞)上为增函数,所以f (x )=x -1x在(0,+∞)上为增函数, 故D 正确; 故选:ACD 38.AC 【详解】在A 中,因为()[]()212,2f x x x =-+∈-是减函数,所以当2x =时,函数取得最小值,最小值为3-,因此3a <-,A 正确;在B 中,因为()[]()212,2f x x x =-+∈-减函数,所以当2x =-时,函数取得最大值,最大值为5,因此5a <,B 错误;在C 中,[]22()2(1)1(0,3)g x x x x x =-=--∈,所以当1x =时,函数取得最小值,最小值为1-,当3x =时,函数取得最大值,最大值为3,故函数的值域为[]1,3-,由()g x a =有解,知[]1,3a ∈-,C 正确;在D 中,[][]2,2,0,3,()()x t f x g t ∀∈-∃∈=等价于()f x 的值域是()g t 的值域的子集,而()f x 的值域是[]3,5-,()g t 的值域[]1,3-,D 错误. 故选:AC 39.ABD函数()f x 的定义域为[]0,2,则函数()2f x 中,[]20,2x ∈,即[]0,1x ∈,函数()2f x 的定义域为[]0,1,故A 错误;函数()1f x x=图象不连续,故其单调递减区间是()(),0,0,-∞+∞,故B 错误;函数()f x 是定义域上减函数,由单调性知()()f m f n >时,有m n <,即C 正确; 函数11y x x =+⋅-定义域为[)1,+∞,函数21y x =-定义域为(][),11,-∞-+∞,故不是同一函数,即D 错误. 故选:ABD. 40.BC 【详解】解:由()()()()11221221x f x x f x x f x x f x +>+,得()()()12120x x f x f x -->⎡⎤⎣⎦, 所以()f x 在R 上单调递增,所以A 错,因为()f x 为R 上的递增函数,所以()()()212f f f -<<,所以B 对,因为()f x 在R 上为增函数,()()112122f x f x x x x +<-+⇔+<-+⇒<,所以C 对函数R 上为增函数时,不一定有()00=f ,如()2x f x =在R 上为增函数,但(0)1f =,所以D 不一定成立,故D 错. 故选:BC 41.22 【详解】 由1030x x -≥⎧⎨+≥⎩,解得31x -≤≤,即函数的定义域为[]3,1-,()()()2242134214y x x x =+-+=+-++,当1x =-时,2y 取得最大值8,即max 22y =.故答案为: 2242.][53,,22⎛⎫-∞-⋃+∞ ⎪⎝⎭因为函数()|21|||2f x x x a =++--的定义域为R ,所以|21|||2x x a ++-≥恒成立,令1()|21|||2||||2g x x x a x x a =++-=++-,当12a -<时,31,1()1,2131,2x a x a g x x a x a x a x ⎧⎪+->⎪⎪=++-<≤⎨⎪⎪-+-≤-⎪⎩,故当12x =-时,min 1()22g x a =+≥即可,解得32a ≤,当12a <-时,131,21()1,231,x a x g x x a a x x a x a ⎧+->-⎪⎪⎪=---<≤-⎨⎪-+-≤⎪⎪⎩,当12x =-时,min 1()22g x a =--≥,解得52a ≤-, 当12a =-时,1()3||22g x x =+≥不恒成立.综上,52a ≤-或32a ≤.故答案为:][53,,22⎛⎫-∞-⋃+∞ ⎪⎝⎭43.2[223,)3-【详解】2322()33,(20)33x x f x x x x x ++==++--<<++, 令3(1,3)t x =+∈,因为2y t t=+在(1,2)单调递减,在(2,3)单调递增,所以222t t+≥,当1t =时,23y t t =+=,当3t =时,2113y t t =+=所以()f x ∈2[223,)3-,即值域为:2[223,)3-.故答案为:2[223,)3-44.2a ≤ 【详解】函数()223f x x ax =-+的对称轴是x a =,开口向上,若函数()223f x x ax =-+在区间[]28,是单调递增函数,则2a ≤,故答案为:2a ≤. 45.[]3,2--解:要使函数在R 上为增函数,须有()f x 在(],1-∞上递增,在()1,+?上递增,且21151a a --⨯-≤,所以有21201151a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤,故a 的取值范围为[]3,2--. 故答案为:[]3,2--. 46.(1)函数()f x 在区间[)2,+∞上单调递增; 设任意的[)12,2,x x ∈+∞,且12x x >,则()()()222212112212214444f x f x x x x x x x x x -=---=-+-()()()()()121212121244x x x x x x x x x x =-+--=-+-,因为12x x >,[)12,2,x x ∈+∞,所以120x x ->,1240x x +->,所以()()120f x f x ->,即()()12f x f x >, 所以函数()f x 在区间[)2,+∞上的单调递增; (2)函数2()4f x x x =-对称轴为2x =,开口向上, 所以函数()f x 在区间[0,2]上单调递减,在[2,5]上单调递增;所以()()2min 22424f x f ==-⨯=-,()00f =,()255455f =-⨯=,所以函数()f x 在区间[0,5]上的最大值为5M =,最小值为4m =-, 所以4455m M -==-. 47.(1)证明:设211x x >>,由题有()()()()()21121212123221111x x x x f x f x x x x x -++-=-=----, ∵211x x >>,∴210x x ->, 110x ->, 210x ->,∴()()120f x f x ->, 即()()12f x f x >,∴函数()f x 在区间()1,+?上是单调递减函数. (2)由(1)可知()f x 在区间[]3,5上单调递减, ∴()f x 的最大值为()532f =, 最小值为()754f =. ∴函数()f x 在区间[]3,5上的最大值为52, 最小值为74. 48.(1)()22f x mx mx =--,()0f x <220mx mx --<10m =,()2f x =-()0f x <恒成立 22080m m m <⎧⎨+<⎩080m m <⎧⇒⎨-<<⎩80m ⇒-<<综上(]8,0m ∈-(2)225mx mx m --<-+27mx mx m -+<()217m x x -+<271m x x <-+∵[]1,3x ∈ ∴[]211,7x x -+∈∴[]271,71x x ∈-+∴1m <,(),1m ∈-∞ 49.解:(1)()()()f xy f x f y =+,令1x y ==,则()1f 2f =(1)f ∴(1)0=;证明:(2)由()()()f xy f x f y =+可得()()()y f f y f x x =-,设120x x >>,1122()()()x f x f x f x -=,121x x >, ∴12()0x f x <,即12())0(f x f x -< 12()()f x f x ∴<,所以()f x 在(0,)+∞上单调递减; (3)因为()(3)(931)1x x x f k f f --+≥,所以(3)(931)x x xf k f ≥-+,由(2)得·3931(*)·30x x x x k k ⎧≤-+⎨>⎩恒成立, 令30x t =>,则(*)可化为2(1)10t k t -++≥对任意0t >恒成立,且0k >, 11k t t ∴+≤+,又12t t+≥, ∴12k +≤,即1k ≤,01k ∴<≤.。
<一>求函数定义域、值域方法和典型题归纳一、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。
(1)常见情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。
③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。
(2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。
(形如:2()x f x x=) 练习1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2.抽象函数(没有解析式的函数) 解题的方法精髓是“换元法”,根据换元的思想,我们进行将括号为整体的换元思路解题,所以关键在于求括号整体的取值范围。
总结为: (1)给出了定义域就是给出了所给式子中x 的取值范围; (2)在同一个题中x 不是同一个x ;(3)只要对应关系f 不变,括号的取值范围不变。
(4)求抽象函数的定义域个关键在于求f(x)的取值范围,及括号的取值范围。
例1:已知f(x+1)的定义域为[-1,1],求f (2x-1)的定义域。
练习2、设函数()f x 的定义域为[01],,则函数2()f x 的定义域为__________;函数2)f 的定义域为_________;3、若函数(1)f x +的定义域为[23]-,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
函数的最值
知识梳理
1. 函数最大值
一般地,设函数()y f x =的定义域为I . 如果存在实数M 满足:
①对于任意x 都有()f x M ≤.②存在0x I ∈,使得0()f x M =.那么,称M 是函数()y f x =的最大值.
2. 函数最小值
一般地,设函数()y f x =的定义域为I . 如果存在实数M 满足:
①对于任意x 都有()f x M ≥.②存在0x I ∈,使得0()f x M =.那么,称M 是函数()y f x =的最小值. 注意:对于一个函数来说,不一定有最值,若有最值,则最值一定是值域中的一个元素.
3. 函数的最值与其单调性的关系.
(1)若函数在闭区间[,]a b 上是减函数,则()f x 在[,]a b 上的最大值为 f (a ),最小值为 f (b );
(2)若函数在闭区间[,]a b 上是增函数,则()f x 在[,]a b 上的最大值为 f (b ),最小值为 f (a ).
4.二次函数在闭区间上的最值.
探求二次函数在给定区间上的最值问题,一般要先作出()y f x =的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.
例题精讲 【例1】求函数()3f x x =在[0,3]上的最大值和最小值.
解:因为函数()3f x x =在[0,3]上单调递增
所以()3f x x =在[0,3]上的最大值为(3)339f =⨯=;
()3f x x =在[0,3]上的最小值为(0)300f =⨯=;
【例2】求函数1
2-=x y 在区间[2,6]上的最大值和最小值. 解:函数12-=x y 的图象如下图所示,所以1
2-=x y 在区间[2,6]上单调递减; 所以12-=x y 在区间[2,6]上的最大值为2221
=-; 最小值为22615
=-. 题型一 利用图象求最值
【例3】求下列函数的最大值和最小值.
(1)25332,[,]22
y x x x =--∈- (2)|1||2|y x x =+--
解:(1)二次函数232y x x =--的对称轴为 x =-1.
画出函数的图象,由下图,可知:
当1x =-时,max 4y =;当32x =时,min 94
y =-.
所以函数25332,[,]22y x x x =--∈-最大值为4,最小值为94
-. (2)3,2|1||2|21,
123,1
x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩ 作出函数图象,如下图,可知:[3,3]y ∈-
所以函数的最大值为 3, 最小值为-3.
题型二 利用函数单调性求最值
【例4】求函数9()f x x x
=+在[1,3]x ∈上的最大值和最小值. 分析:先判断函数的单调性,再求最值.
解:因为1213x x ≤<≤ 所以12121299()()()f x f x x x x x -=+-+121299()x x x x =-+-211212
9()x x x x x x -=-+ 因为1213x x ≤<≤所以120x x -<,129x x ≤ 所以12
910x x -<,所以12()()0f x f x ->,12()()f x f x > 所以9()f x x x
=+在区间[1,3]上单调递减; 所以求函数()f x 在[1,3]x ∈上的最小值为918(3)333f =+
=,最大值为9(1)1101f =+=. 题型三 函数最值的应用
【例5】已知函数22()x x a f x x
++=,[1,)x ∈+∞ (1)当12
a =时,求函数()f x 的最小值. (2)若对任意的[1,)x ∈+∞,()0f x >恒成立,试求a 的取值范围.
解:(1)当12a =时,2122()x x f x x ++=
设121x x ≤<
则121212
11()()(2)(2)22f x f x x x x x -=++-++ 因为120x x -<,所以1221x x >,12210x x ->
所以12()()0f x f x -<,12()()f x f x <
所以()f x 在区间[1,)+∞上单调递增
所以的最小值为17(1)1222
f =++=. (2)()0f x >对[1,)x ∈+∞恒成立?
220x x a ++>对[1,)x ∈+∞恒成立?
22a x x >-- 对[1,)x ∈+∞恒成立.
令222(1)1u x x x =--=-++,其在[1,)+∞上是减函数,
∴当1x =时,max 3u =-. 因此3a >-.
故实数a 的取值范围是(3,)-+∞.
课堂练习
仔细读题,一定要选择最佳答案哟!
1.函数f (x )=⎩⎨⎧
2x +6 x ∈[1,2]x +7 x ∈[-1,1]
,则f (x )的最大值、最小值分别为( ) A .10,6 B .10,8 C .8,6 D .以上都不对 2.已知f (x )在R 上是增函数,对实数a 、b 若a +b >0,则有( )
A .f (a )+f (b )>f (-a )+f (-b )
B .f (a )+f (b )<f (-a )+f (-b )
C .f (a )-f (b )>f (-a )-f (-b )
D .f (a )-f (b )<f (-a )+f (-b )
3. 若f (x )=-x 2+2ax 与g (x )=
a x +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1] C .(0,1)
D .(0,1] 4.函数y =|x -3|-|x +1|有( )
A .最大值4,最小值0
B .最大值0,最小值-4
C .最大值4,最小值-4
D .最大值、最小值都不存在
5.函数y =-x 2-10x +11在区间[-1,2]上的最小值是________.
6.如果函数f (x )=-x 2+2x 的定义域为[m ,n ],值域为[-3,1],则|m -n |的最小值为________.
7. 已知函数2()23f x x x =--,若[,2]x t t ∈+时,求函数()f x 的最值.
8. 求函数()1
x f x x =-在区间[2,5]上的最大值和最小值. 9. 已知函数 f (x )=x 2+2ax +2,x ∈[-5,5].
(1)当 a =-1 时,求 f (x )的最大值和最小值;
(2)求使函数 y =f (x )在区间[-5,5]上是单调函数的 a 的取值范围.。