数值方法课后习题答案第3章
- 格式:pdf
- 大小:325.12 KB
- 文档页数:21
《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。
解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。
解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。
第三章 逐次逼近法1.1内容提要1、一元迭代法x n+1=φ(x n )收敛条件为:1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。
由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。
2、多元迭代法x n+1=φ(x n )收敛条件为:1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。
3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。
4、线性方程组的迭代解法,先作矩阵变换 U L D A --= Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)(Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()( 超松弛迭代法公式的矩阵形式f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111)(])1[()(三种迭代方法当1)(<B ρ时都收敛。
5、线性方程组的迭代解法,如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。
6、线性方程组的迭代解法,如果A 不可约对角占优,则Gauss-Seidel 法收敛。
7、Newton 迭代法,单根为二阶收敛 2211'''21lim)(2)(lim---∞→+∞→--=-==--k k k k k k k k x x x x f f c x x ξξαα8、Newton 法迭代时,遇到重根,迭代变成线性收敛,如果知道重数m , )()('1k k k k x f x f m x x -=+仍为二阶收敛 9、弦割法)()())((111--+---=k k k k k k k x f x f x x x f x x 的收敛阶为1.618,分半法的收敛速度为(b-a )/2n-110、Aitken 加速公式11211112)(),(),(+----+-+--+---+---===k k k k k k k k k k k x x x x x x x x x x x ϕϕ1.2 典型例题分析1、证明如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。
第一章习题1. 序列满足递推关系,取及试分别计算,从而说明递推公式对于计算是不稳定的。
n1 1 0.01 0.00012 0.01 0.0001 0.0000013 0.0001 0.000001 0.000000014 0.000001 0.0000000110-105 0.00000001 10-10n1 1.000001 0.01 0.0000992 0.01 0.000099 -0.000099013 0.000099 -0.00009901-0.010000994 -0.00009901 -0.01000099-1.00015 -0.01000099-1.0001初始相差不大,而却相差那么远,计算是不稳定的。
2. 取y0=28,按递推公式,去计算y100,若取(五位有效数字),试问计算y100将有多大误差?y100中尚留有几位有效数字?解:每递推一次有误差因此,尚留有二位有效数字。
3.函数,求f(30)的值。
若开方用六位函数表,问求对数时误差有多大?若改用另一等价公式计算,求对数时误差有多大?设z=ln(30-y),,y*, |E(y)| 10-4z*=ln(30-y*)=ln(0.0167)=-4.09235若改用等价公式设z=-ln(30+y),,y*, |E(y)|⨯10-4z*=-ln(30+y*)=-ln(59.9833)=-4.094074.下列各数都按有效数字给出,试估计f的绝对误差限和相对误差限。
1)f=sin[(3.14)(2.685)]设f=sin xyx*=3.14, E(x)⨯10-2, y*=2.685, E(y)⨯10-3,sin(x*y*)=0.838147484, cos(x*y*)=-0.545443667⨯(-0.5454) ⨯⨯10-2+3.14(-0.5454) ⨯⨯10-3|⨯10-2⨯10-2|E r(f)| ⨯10-2⨯10-2<10-22)f=(1.56)设f = x y ,x*=1.56, E(x)⨯10-2, y*=3.414, E(y)⨯10-3,⨯⨯⨯10-2⨯⨯⨯10-3|⨯⨯⨯10-2⨯⨯⨯10-3|=0.051|E r(f)| =0.01125.计算,利用下列等式计算,哪一个得到的结果最好,为什么?6.下列各式怎样计算才能减少误差?7. 求方程x2-56x+1=0的二个根,问要使它们具有四位有效数字,至少要取几位有效数字?如果利用伟达定理, 又该取几位有效数字呢?解一:若要取到四位有效数字,如果利用伟达定理,解二:由定理二,欲使x1,x2有四位有效数字,必须使由定理一知,∆至少要取7位有效数字。
第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。
(1)用单项式基底。
(2)用Lagrange 插值基底。
(3)用Newton 基底。
证明三种方法得到的多项式是相同的。
解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:6421111111111222211200-=-==x x x x x x A 37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。
数值分析第三章答案【篇一:常州大学数值分析作业第三章】答:matlab 程序function [a,y]=lagrange(x,y,x0) %检验输入参数if nargin 2 || nargin 3error(incorrect number of inputs); endif length(x)~=length(y)error(the length of x must be equal to it of y); endm=length(x);n=m-1;l=zeros(m,m); %计算基本插值多项式的系数for i=1:n+1 c=1;for j=1:n+1if i~=jif abs(x(i)-x(j))eps abs(x(i)-x(j))epserror(there are two two same nodes);endc=conv(c,poly(x(j)))/(x(i)-x(j));end endl(i,:)=c; end%计算lagrange插值多项式的系数 a=y*l;%计算f(x0)的近似值 if nargin==3y=polyval(a,x0);工程(专)学号:14102932enda=fliplr(a); return[a,y] = lagrange(x,y,x0); p1 = vpa(poly2sym(a),3) y[a,y] = lagrange(x,y,x0); p2=vpa(poly2sym(a),3) yp2 = x2 - 0.109x - 0.336 y =0.5174[a,y]=lagrange(x,y,x0); p4=vpa(poly2sym(a),3) yp4 =x4 + 0.00282x3 - 0.514x2 + 0.0232x + 0.0287 y =0.5001次多项式在2.8处的值。
答:matlab 程序 function[t,y0]=aitken(x,y,x0,t0) if nargin==3 t0=[]; endn0=size(t0,1);m=max(size(x)); n=n0+m;t=zeros(n,n+1);t(1:n0,1:n0+1)=t0; t(n0+1:n,1)=x; t(n0+1:n,2)=y; if n0==0 i0=2; elsei0=n0+1; endfor i=i0:nfor j=3:i+1t(i,j)=fun(t(j-2,1),t(i,1),t(j-2,j-1),t(i,j-1),x0); end endy0=t(n,n+1); returnfunction [y]=fun(x1,x2,y1,y2,x) y=y1+(y2-y1)*(x-x1)/(x2-x1); return%选取0、1、3、4四个节点,求三次插值多项式 x=[0,1,3,4];y=[0.5,1.25,3.5,2.75]; x0=2.8;[t,y0]=aitken(x,y,x0) t =0 0.5000 00 0 1.01.25002.6000 0 0 3.03.50003.29993.23000 4.02.75002.07502.28503.4190 y0 =3.41900000000000016、选取适当的函数y=f(x)和插值节点,编写matlab程序,分别利用lagrange插值方法,newton插值方法确定的插值多项式,并将函数y=f(x)的插值多项式和插值余项的图形画在同一坐标系中,观测节点变化对插值余项的影响。
第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
第三章直接法解线性方程组
习题3-1
1. 写出列主元消去算法。
For k =1 to n-1 do
1)消元:
(1) 选主元:
(2) 判别: , than stop
(3) 换行: (j=k,k+1,...,n+1)
(4) 计算乘数: (i=k+1,...,n)
(5) 消元:
(i=k+1,...,n; j=k+1,...,n+1) 2) 回代:
(1) ,than stop
(2) 回代:for k=n,n-1,...,1 do
(3) 打印:print x j =a j,n+1
2. 用全主元高斯—约当消元法求下列方程的解
3. 用全主元高斯—约当消去法求下列矩阵的逆矩阵
4. 请用列全主元高斯—约当消去法求下列矩阵的逆矩阵
6.如果在解方程组过程中,希望顺便求出系数矩阵A的行列式值det(A),用什么方法比较方便?需注意一些什么问题?如果用高斯—约当列主元消去法,如何求出det(A)?
高斯消元法解方程时;主元素高斯消元法解方程时,注意换行列会改变行列式的符号;用高斯—约当列主元消去法解方程时,把列主元 记录下来,把换行的次数m记录下来,。
7. 设A x=b是线性方程组
1) 用列元高斯约当消去法,求解此方程组。
2) 求系数矩阵的行列式。
3) 求系数矩阵的逆矩阵。
也是一个指标为k的初等下三角阵,其中I i,j 为排列阵:
证明:
只是m i,k与m j,k换了个位置。
9.试证明单位下三角阵的逆矩阵仍然是一个单位下三角阵。
证:
证得 下三角阵的逆阵仍是下三角阵。
当A为单位下三角阵时, ,B也是单位下三角阵。
习题3-2
5. 设A为n阶非奇异阵,且有分解式 A=LU,其中L为单位下三角阵,
U为上三角阵,求证:A的所有顺序主子式均不为零。
证明:U一定是非奇异阵,否则A=LU也奇异。
记A的顺序主子阵为A k ,L的顺序主子阵为L k ,
U的顺序主子阵为U k ,由分块阵的乘法
6. 设A对称正定,试证明A一定可以进行以下分解:A=UU T,其中U是上三角阵,若限定U的对角元为正的,此分解唯一。
证明:若A对称正定,则 `也对称正定,这是因为
也对称,
由 正定, 可进行cholesky分解,
存在唯一具有正对角元的下三角阵L,使 =LL T ,
也是具有正对角元的下三角阵,
记 , A=(U T)T U T=UU T,
U为具有正对角元的上三角阵,此分解也唯一。
证明:
第三章 直接法解线性方程组。