高中数学 第1章第2节应用举例素材 新人教A版必修5
- 格式:doc
- 大小:535.50 KB
- 文档页数:8
应用举例第一课时解三角形的实际应用举例(1)方向角和方位角各是什么样的角?(2)怎样测量物体的高度?(3)怎样测量物体所在的角度?[新知初探]实际测量中的有关名称、术语名称定义图示仰角在同一铅垂平面内,视线在水平线上方时l与水平线的夹角俯角在同一铅垂平面内,视线在水平线l下方时与水平线的夹角方向角从指定方向线到目标方向线的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90°)错误!方位角从正北的方向线按顺时针到目标方向线所转过的水平角[小试身手](1)已知三角形的三个角,能够求其三条边()(2)两个不可到达的点之间的距离无法求得()预习课本P11~16,思考并完成以下问题(3)方位角和方向角是一样的()解析:(1)错误,要解三角形,至少知道这个三角形的一条边长.(2)错误,两个不可到达的点之间的距离我们可以借助第三个点和第四个点量出角度、距离求得.(3)错误.方位角是指从正北方向顺时针转到目标方向线的水平角,而方向角是以观测者的位置为中心,将正北或正南方向作起始方向旋转到目标的方向线所成的角(一般指锐角).答案:(1)×(2)×(3)×2.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的()A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°解析:选B如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°.∴点A在点B的北偏西15°.故选B.3.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为()A.α>βB.α=βC.α+β=90°D.α+β=180°解析:选B根据题意和仰角、俯角的概念画出草图,如图.知α=β,故应选B.4.已知船A在灯塔C北偏东85°且到C的距离为1 km,船B在灯塔C西偏北25°且到C的距离为 3 km,则A,B两船的距离为________km.解析:由题意得∠ACB=(90°-25°)+85°=150°,又AC=1,BC=3,由余弦定理得AB2=AC2+BC2-2AC·BC cos 150°=7,∴AB=7.答案:7测量高度问题[典例] 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两点C 与D .现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .[解] 在△BCD 中, ∠CBD =π-(α+β).由正弦定理得BC sin ∠BDC =CD sin ∠CBD .∴BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β).在Rt △ABC 中,AB =BC tan ∠ACB =s ·sin βtan θsin (α+β).测量高度问题的解题策略(1)“空间”向“平面”的转化:测量高度问题往往是空间中的问题,因此先要选好所求线段所在的平面,将空间问题转化为平面问题.(2)“解直角三角形”与“解斜三角形”结合,全面分析所有三角形,仔细规划解题思路.[活学活用]1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的A 处测得水柱顶端的仰角为45°,沿A 向北偏东30°方向前进100 m 到达B 处,在B 处测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m 解析:选A 如图,设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2×h ×100×cos 60°,即h 2+50h -5 000=0,解得h =50或h =-100(舍去),故水柱的高度是50 m.2.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000 m 到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为________m.解析:因为∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°, 所以∠ASB =180°-∠SAB -∠SBA =135°.在△ABS中,AB=AS·sin 135°sin 30°=1 000×2212=1 0002,所以BC=AB·sin 45°=1 0002×22=1 000(m).答案:1 000测量角度问题[典例]如图所示,A,B是海面上位于东西方向相距5(3+3) n mile的两个观测点.现位于A点北偏东45°方向、B点北偏西60°方向的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20 3 n mile的C点的救援船立即前往营救,其航行速度为30 n mile/h,则该救援船到达D点需要多长时间?[解]由题意,知AB=5(3+3) n mile,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理得BDsin∠DAB=ABsin∠ADB,即BD=AB sin∠DABsin∠ADB=5(3+3)sin 45°sin 105°=5(3+3)sin 45°sin 45°cos 60°+cos 45°sin 60°=10 3 n mile.又∠DBC=∠DBA+∠ABC=60°,BC=20 3 n mile,∴在△DBC中,由余弦定理,得CD=BD2+BC2-2BD·BC cos∠DBC=300+1 200-2×103×203×1 2=30 n mile,则救援船到达D点需要的时间为3030=1 h.测量角度问题主要是指在海上或空中测量角度的问题,如确定目标的方位,观察某一建筑物的视角等.解决它们的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.[活学活用]在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?解:设缉私船用t h在D处追上走私船,画出示意图,则有CD=103t,BD=10t,在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6,∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22,∴∠ABC=45°,BC与正北方向成90°角.∵∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即缉私船沿北偏东60°方向能最快追上走私船.测量距离问题题点一:两点间不可通又不可视1.如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.即AB=a2+b2-2ab cos α.若测得CA=400 m,CB=600 m,∠ACB=60°,试计算AB的长.解:在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC cos∠ACB,∴AB2=4002+6002-2×400×600cos 60°=280 000.∴AB=2007 (m).即A ,B 两点间的距离为2007 m. 题点二:两点间可视但有一点不可到达2.如图所示,A ,B 两点在一条河的两岸,测量者在A 的同侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60 m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________ m.解析:∠ABC =180°-75°-45°=60°, 所以由正弦定理得,AB sin C =ACsin B,∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m).即A ,B 两点间的距离为20 6 m. 答案:206题点三:两点都不可到达3.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA=δ.在△ADC 和△BDC 中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A ,B 两点间的距离.解:∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°, ∴∠DAC =60°, ∴AC =DC =32. 在△BCD 中,∠DBC =45°,由正弦定理,得BC =DCsin ∠DBC ·sin ∠BDC =32sin 45°·sin30°=64. 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos 45°=34+38-2×32×64×22=38. ∴AB =64(km). ∴A ,B 两点间的距离为64km.当A ,B 两点之间的距离不能直接测量时,求AB 的距离分为以下三类:(1)两点间不可通又不可视(如图①):可取某点C ,使得A ,B 与C 之间的距离可直接测量,测出AC =b ,BC =a 以及①ACB =γ,利用余弦定理得:AB =a 2+b 2-2ab cos γ.(2)两点间可视但不可到达(如图①):可选取与B 同侧的点C ,测出BC =a 以及①ABC 和①ACB ,先使用内角和定理求出①BAC ,再利用正弦定理求出AB .(3)两点都不可到达(如图①):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C ,D ,测出CD =m ,①ACB ,①BCD ,①ADC ,①ADB ,再在①BCD 中求出BC ,在①ADC 中求出AC ,最后在①ABC 中,由余弦定理求出AB .层级一 学业水平达标1.学校体育馆的人字屋架为等腰三角形,如图,测得AC 的长度为4 m ,∠A =30°,则其跨度AB 的长为( )A .12 mB .8 mC .3 3 mD .4 3 m解析:选D 由题意知,∠A =∠B =30°, 所以∠C =180°-30°-30°=120°, 由正弦定理得,AB sin C =ACsin B, 即AB =AC ·sin C sin B =4·sin 120°sin 30°=4 3.2.一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( )A.1762 n mile/hB .34 6 n mile/h C.1722n mile/hD .34 2 n mile/h 解析:选A 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =68×32=346,∴v =MN 4=1762 n mile/h.3.如图,D ,C ,B 三点在地面同一直线上,DC =a ,从C ,D 两点测得A 点仰角分别是β,α(α<β),则A 点离地面的高度AB 等于( )A.a sin α·sin βsin (β-α) B.a sin α·sin βcos (α-β) C.a sin α·cos βsin (β-α) D.a cos α·sin βcos (α-β)解析:选A 设AB =x ,则在Rt △ABC 中,CB =x tan β,所以BD =a +x tan β,又因为在Rt △ABD 中,BD =x tan α,所以BD =a +x tan β=x tan α,从中求得x =a1tan α-1tan β=a tan αtan βtan β-tan α=a sin αsin βsin βcos α-sin αcos β=a sin αsin βsin (β-α),故选A.4.设甲、乙两幢楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两幢楼的高分别是( )A .20 3 m ,4033m B .10 3 m,20 3 m C .10(3-2)m,20 3 mD.1532 m ,2033m解析:选A 由题意,知h 甲=20tan 60°=203(m), h 乙=20tan 60°-20tan 30°=4033(m). 5.甲船在岛B 的正南A 处,AB =10 km ,甲船以4 km /h 的速度向正北航行,同时乙船自岛B 出发以6 km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们的航行时间是( )A.1507 min B.157 hC .21.5 minD .2.15 h解析:选A 由题意可作出如图所示的示意图,设两船航行t 小时后,甲船位于C 点,乙船位于D 点,如图.则BC =10-4t ,BD =6t ,∠CBD =120°,此时两船间的距离最近,根据余弦定理得CD 2=BC 2+BD 2-2BC ·BD cos ∠CBD =(10-4t )2+36t 2+6t (10-4t )=28t 2-20t +100,所以当t =514时,CD 2取得最小值,即两船间的距离最近,所以它们的航行时间是1507 min ,故选A.6.某人从A 处出发,沿北偏东60°行走3 3 km 到B 处,再沿正东方向行走2 km 到C 处,则A ,C 两地的距离为________km.解析:如图所示,由题意可知AB =33,BC =2,∠ABC =150°. 由余弦定理,得AC 2=27+4-2×33×2×cos 150°=49,AC =7. 则A ,C 两地的距离为7 km. 答案:77.坡度为45°的斜坡长为100 m ,现在要把坡度改为30°,则坡底要伸长________m. 解析:如图,BD =100,∠BDA =45°,∠BCA =30°, 设CD =x ,所以(x +DA )·tan 30°=DA ·tan 45°, 又DA =BD ·cos 45°=100×22=502, 所以x =DA ·tan 45°tan 30°-DA =502×133-502=50(6-2)m. 答案:50(6-2)8.一蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,那么x =________cm.解析:如图所示,设蜘蛛原来在O 点,先爬行到A 点,再爬行到B 点,易知在△AOB 中,AB =10 cm ,∠OAB =75°,∠ABO =45°,则∠AOB =60°,由正弦定理知: x =AB ·sin ∠ABO sin ∠AOB =10×sin 45°sin 60°=1063(cm).答案:106 39.如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里,求乙船航行的速度.解:如图,连接A1B2,在△A1A2B2中,易知∠A1A2B2=60°,又易求得A1A2=302×13=102=A2B2,∴△A1A2B2为正三角形,∴A1B2=10 2.在△A1B1B2中,易知∠B1A1B2=45°,∴(B1B2)2=400+200-2×20×102×22=200,∴B1B2=102,∴乙船每小时航行302海里.10.如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1 千米,AC=3 千米.假设小王和小李徒步攀登的速度为每小时1.2 千米,请问:两位登山爱好者能否在2个小时内徒步登上山峰(即从B点出发到达C点).解:由∠ADC=150°知∠ADB=30°,由正弦定理得1sin 30°=ADsin 120°,所以AD= 3.在△ADC中,由余弦定理得:AC2=AD2+DC2-2AD·DC·cos 150°,即32=(3)2+DC2-2·3·DC cos 150°,即DC2+3·DC-6=0,解得DC=-3+332≈1.372 (千米),∴BC≈2.372(千米),由于2.372<2.4,所以两位登山爱好者能够在2个小时内徒步登上山峰.层级二应试能力达标1.如图,从气球A 上测得其正前下方的河流两岸B ,C 的俯角分别为75°,30°,此时气球的高度AD 是60 m ,则河流的宽度BC 是( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m解析:选C 由题意知,在Rt △ADC 中,∠C =30°,AD =60 m ,∴AC =120 m .在△ABC 中,∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,由正弦定理,得BC =AC sin ∠BACsin ∠ABC =120×226+24=120(3-1)(m).2.如图所示为起重机装置示意图.支杆BC =10 m ,吊杆AC =15 m ,吊索AB =519 m ,起吊的货物与岸的距离AD 为( )A .30 m B.1532 mC .15 3 mD .45 m解析:选B 在△ABC 中,AC =15 m ,AB =519 m ,BC =10 m , 由余弦定理得cos ∠ACB =AC 2+BC 2-AB 22×AC ×BC=152+102-(519)22×15×10=-12,∴sin ∠ACB =32.又∠ACB +∠ACD =180°, ∴sin ∠ACD =sin ∠ACB =32. 在Rt △ADC 中,AD =AC ·sin ∠ACD =15×32=1532m. 3.如图所示,要测量底部不能到达的某电视塔AB 的高度,在塔的同一侧选择C ,D 两个观测点,且在C ,D 两点测得塔顶的仰角分别为45°,30°,在水平面上测得∠BCD =120°,C ,D 两地相距500 m ,则电视塔AB 的高度是( )A .100 2 mB .400 mC .200 3 mD .500 m解析:选D 设AB =x ,在Rt △ABC 中,∠ACB =45°,∴BC =AB =x .在Rt △ABD 中,∠ADB =30°,∴BD =3x .在△BCD 中,∠BCD =120°,CD =500 m ,由余弦定理得(3x )2=x 2+5002-2×500x cos 120°,解得x =500 m.4.如图所示,位于东海某岛的雷达观测站A ,发现其北偏东45°,与观测站A 距离202海里的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北θ(0°<θ<45°)的C 处,且cos θ=45.已知A ,C 两处的距离为10海里,则该货船的船速为( )A .485 海里/小时B .385 海里/小时C .27 海里/小时D .4 6 海里/小时解析:选A 因为cos θ=45,0°<θ<45°,所以sin θ=35,cos(45°-θ)=22×45+22×35=7210,在△ABC 中,BC 2=(202)2+102-2×202×10×7210=340,所以BC =285,该货船的船速为28512=485海里/小时.5.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)解析:如图,过点P 作PO ⊥BC 于点O ,连接AO ,则∠PAO =θ.设CO =x ,则OP =33x . 在Rt △ABC 中,AB =15,AC =25,所以BC =20. 所以cos ∠BCA =45.所以AO =625+x 2-2×25x ×45=x 2-40x +625.故tan θ=33x x 2-40x +625=331-40x +625x2=33⎝⎛⎭⎫25x -452+925 .当25x =45,即x =1254时,tan θ取得最大值为3335=539. 答案:5396.甲船在A 处观察乙船,乙船在它的北偏东60°方向的B 处,两船相距a n mile ,乙船正向北行驶,若甲船的速度是乙船的3倍,则甲船应沿________方向行驶才能追上乙船;追上时甲船行驶了________n mile.解析:如图所示,设在C 处甲船追上乙船,乙船到C 处用的时间为t ,乙船的速度为v ,则BC =t v ,AC =3t v ,又B =120°,则由正弦定理BC sin ∠CAB =AC sin B ,得1sin ∠CAB =3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴甲船应沿北偏东30°方向行驶.又∠ACB =180°-120°-30°=30°,∴BC =AB =a n mile ,∴AC =AB 2+BC 2-2AB ·BC cos 120° =a 2+a 2-2a 2·⎝⎛⎭⎫-12=3a (n mile) 答案:北偏东30°3a7.如图所示,在社会实践中,小明观察一棵桃树.他在点A 处发现桃树顶端点C 的仰角大小为45°,往正前方走4 m 后,在点B 处发现桃树顶端点C 的仰角大小为75°.(1)求BC 的长;(2)若小明身高为1.70 m ,求这棵桃树顶端点C 离地面的高度(精确到0.01 m ,其中3≈1.732).解:(1)在△ABC 中,∠CAB =45°,∠DBC =75°, 则∠ACB =75°-45°=30°,AB =4, 由正弦定理得BC sin 45°=4sin 30°,解得BC =42(m).即BC 的长为4 2 m. (2)在△CBD 中,∠CDB =90°,BC =42, 所以DC =42sin 75°. 因为sin 75°=sin(45°+30°) =sin 45°cos 30°+cos 45°sin 30°=6+24, 则DC =2+2 3.所以CE =ED +DC =1.70+2+23≈3.70+3.464 ≈7.16(m).即这棵桃树顶端点C 离地面的高度为7.16 m.8.如图,在一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值; (2)求P 到海防警戒线AC 的距离.解:(1)依题意,有PA =PC =x ,PB =x -1.5×8=x -12.在△PAB 中,AB =20,cos ∠PAB=PA 2+AB 2-PB 22PA ·AB =x 2+202-(x -12)22x ·20=3x +325x ,同理在△PAC 中,AC =50,cos ∠PAC =PA 2+AC 2-PC 22PA ·AC =x 2+502-x 22x ·50=25x .∵cos ∠PAB =cos ∠PAC ,∴3x +325x=25x , 解得x =31.(2)作PD ⊥AC 于D ,在△ADP 中,由cos ∠PAD =2531,得sin ∠PAD =1-cos 2∠PAD =42131, ∴PD =PA sin ∠PAD =31×42131=421千米. 故静止目标P 到海防警戒线AC 的距离为421千米.第二课时 三角形中的几何计算(1)已知三角形的两边及内角怎样求其面积?(2)已知三角形的面积如何求其他量?[新知初探] 三角形的面积公式预习课本P16~18,思考并完成以下问题(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12bc sin A =12ac sin B.[点睛] 三角形的面积公式S =12ab sin C 与原来的面积公式S =12a ·h (h 为a 边上的高)的关系为:h =b sin C ,实质上b sin C 就是△ABC 中a 边上的高.[小试身手](1)公式S =12ab sin C 适合求任意三角形的面积( )(2)三角形中已知三边无法求其面积( )(3)在三角形中已知两边和一角就能求三角形的面积( ) 解析:(1)正确,S =12ab sin C 适合求任意三角形的面积.(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正弦值,进而求面积. (3)正确.已知两边和两边的夹角可直接求得面积,已知两边和一边的对角,可求得其他边和角,再求面积.答案:(1)√ (2)× (3)√2.在△ABC 中,已知a =2,b =3,C =120°,则S △ABC =( ) A.32B.332C. 3D .3解析:选B S △ABC =12ab sin C =12×2×3×32=332.3.已知△ABC 的面积为32,且b =2,c =3,则A 的大小为( )A .60°或120°B .60°C .120°D .30°或150°解析:选A 由S △ABC =12bc sin A 得32=12×2×3×sin A , 所以sin A =32, 故A =60°或120°,故选A.4.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 解析:由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4,由sin 2A +cos 2A =1,解得sin 2A +⎝⎛⎭⎫1-sin A 42=1,sin A =817. 答案:817三角形面积的计算[典例] 已知△ABC 中,B =30°,AB =23,AC =2,求△ABC 的面积. [解] 由正弦定理,得sin C =AB sin B AC =23sin 30°2=32. ∵AB >AC ,∴C =60°或C =120°.当C =60°时,A =90°,S △ABC =12AB ·AC =23;当C =120°时,A =30°,S △ABC =12AB ·AC sin A = 3.故△ABC 的面积为23或 3.(1)求三角形面积时,应先根据题目给出的已知条件选择最简便、最快捷的计算方法,这样不仅能减少一些不必要的计算,还能使计算结果更加接近真实值.(2)事实上,在众多公式中,最常用的公式是S ①ABC =12ab sin C =12bc sin A =12ac sin B ,即给出三角形的两边和夹角(其中某边或角需求解)求三角形面积,反过来,给出三角形的面积利用上述公式也可求得相应的边或角,应熟练应用此公式.[活学活用]△ABC 中,若a ,b ,c 的对角分别为A ,B ,C ,且2A =B +C ,a =3,△ABC 的面积S △ABC =32,求边b 的长和B 的大小. 解:∵A +B +C =180°,又2A =B +C ,∴A =60°. ∵S △ABC =12bc sin A =32,sin A =32,∴bc =2.①又由余弦定理得3=b 2+c 2-2bc cos A =b 2+c 2-2×2×12,即b 2+c 2=5.② 解①②可得b =1或2.由正弦定理知a sin A =b sin B ,∴sin B =b sin A a =b2.当b =1时,sin B =12,B =30°;当b =2时,sin B =1,B =90°.三角恒等式证明问题 [典例] 在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A .证明:[法一 化角为边]左边=a -c (a 2+c 2-b 2)2ac b -c (b 2+c 2-a 2)2bc =a 2-c 2+b 22a ·2bb 2-c 2+a 2=b a =2R sin B 2R sin A =sin B sin A =右边,其中R 为△ABC 外接圆的半径. ∴a -c cos Bb -c cos A =sin Bsin A.[法二 化边为角]左边=sin A -sin C cos B sin B -sin C cos A =sin (B +C )-sin C cos Bsin (A +C )-sin C cos A=sin B cos C sin A cos C =sin Bsin A =右边(cos C ≠0),∴a -c cos B b -c cos A =sin Bsin A.1.三角恒等式证明的三个基本原则 (1)统一边角关系. (2)由繁推简.(3)目标明确,等价转化. 2.三角恒等式证明的基本方法(1)把角的关系通过正、余弦定理转化为边的关系,然后进行化简、变形.(2)把边的关系转化为角的关系,一般是通过正弦定理,然后利用三角函数公式进行恒等变形.[活学活用]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .求证:cos B cos C =c -b cos Ab -c cos A. 证明:法一:由正弦定理,得c -b cos Ab -c cos A=2R sin C -2R sin B cos A 2R sin B -2R sin C cos A =sin (A +B )-sin B cos A sin (A +C )-sin C cos A =sin A cos B sin A cos C =cos Bcos C .法二:由余弦定理,得c -b cos Ab -c cos A =c -b 2+c 2-a 22c b -b 2+c 2-a 22b=a 2+c 2-b 22c b 2+a 2-c 22b =a 2+c 2-b 22ac b 2+a 2-c 22ab=cos B cos C.与三角形有关的综合问题 题点一:与三角形面积有关的综合问题1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知a cos B -c =b 2.(1)求角A 的大小;(2)若b -c =6,a =3+3,求BC 边上的高. 解:(1)由a cos B -c =b2及正弦定理可得,sin A cos B -sin C =sin B2, 因为sin C =sin(A +B )=sin A cos B +cos A sin B , 所以sin B 2+cos A sin B =0.因为sin B ≠0,所以cos A =-12,因为0<A <π,所以A =2π3. (2)由余弦定理可知, a 2=b 2+c 2-2bc cos2π3=b 2+c 2+bc , 所以(3+3)2=b 2+c 2+bc =(b -c )2+3bc =6+3bc , 解得bc =2+2 3.设BC 边上的高为h ,由S △ABC =12bc sin A =12ah ,得12(2+23)sin 2π3=12(3+3)h, 解得h =1. 题点二:三角形中的范围问题2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2c -a )cos B -b cos A =0. (1)求角B 的大小;(2)求3sin A +sin ⎝⎛⎭⎫C -π6的取值范围. 解:(1)由正弦定理得:(2sin C -sin A )cos B -sin B cos A =0, 即sin C (2cos B -1)=0,∵sin C ≠0,∴cos B =12,∵B ∈(0,π),∴B =π3.(2)由(1)知B =π3,∴C =2π3-A ,∴3sin A +sin ⎝⎛⎭⎫C -π6=3sin A +cos A =2sin ⎝⎛⎭⎫A +π6. ∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6, ∴2sin ⎝⎛⎭⎫A +π6∈(1,2], ∴3sin A +sin ⎝⎛⎭⎫C -π6的取值范围是(1,2]. 题点三:三角形中的最值问题3.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . 已知sin (A -B )sin (A +B )=b +cc .(1)求角A 的大小;(2)当a =6时,求△ABC 面积的最大值,并指出面积最大时△ABC 的形状. 解:(1)由sin (A -B )sin (A +B )=b +cc ,得sin (A -B )sin (A +B )=sin B +sin Csin C .又sin(A +B )=sin(π-C )=sin C , ∴sin(A -B )=sin B +sin C , ∴sin(A -B )=sin B +sin(A +B ).∴sin A cos B -cos A sin B =sin B +sin A cos B +cos A sin B ,∴sin B +2 cos A sin B =0, 又sin B ≠0,∴cos A =-12.∵A ∈(0,π),∴A =2π3. (2)S =12bc sin A =34bc =34×2R sin B ·2R sin C=3R 2sin B ·sin C =3R 2sin B ·sin ⎝⎛⎭⎫π3-B =32R 2sin ⎝⎛⎭⎫2B +π6-34R 2,B ∈⎝⎛⎭⎫0,π3. 由正弦定理2R =asin A=6sin2π3=43, ∴R =2 3.当2B +π6=π2,即B =C =π6时,S max =33,∴△ABC 面积的最大值为33,此时△ABC 为等腰钝角三角形. 题点四:多边形面积问题4.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .解:如图,连接BD ,则S =S △ABD +S △CBD =12AB ·AD sin A +12BC ·CD sin C .∵A +C =180°,∴sin A =sin C , ∴S =12sin A (AB ·AD +BC ·CD )=16sin A .在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD cos A =20-16cos A , 在△CDB 中,由余弦定理得BD 2=CD 2+BC 2-2CD ·BC cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12,∴A =120°,∴S =16sin A =8 3.(1)解决此类问题的关键是根据题意画出图形,将图形中的已知条件与未知量之间的关系转化为三角形中的边与角的关系,求解三角形使问题获解.(2)三角形问题中,常涉及求边、求角及求面积等几个问题,用正、余弦定理作为解题的工具进行转化求解.在涉及变量取值范围或最值问题时,常常用到函数等数学相关知识.(3)解三角形时,角的取值范围至关重要.角的取值范围往往隐含在题目中,不深入挖掘很容易出错.层级一 学业水平达标1.在△ABC 中,A =60°,AB =1,AC =2,则S △ABC 的值为( ) A.12 B.32 C.3 D .23 解析:选B S △ABC =12AB ·AC ·sin A =32.2.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为( ) A .-78 B.78 C .-87 D.87解析:选B 设等腰三角形的底边长为a ,顶角为θ,则腰长为2a ,由余弦定理得,cos θ=4a 2+4a 2-a 28a 2=78.3.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的大小为( )A .135°B .45°C .60°D .120°解析:选B ∵S =14(a 2+b 2-c 2)=12ab sin C ,由余弦定理得:sin C =cos C ,∴tan C =1.又0°<C <180°,∴C =45°.4.在△ABC 中,若cos B =14,sin C sin A =2,且S △ABC =154,则b =( )A .4B .3C .2D .1解析:选C 依题意得,c =2a ,b 2=a 2+c 2-2ac cos B =a 2+(2a )2-2×a ×2a ×14=4a 2,所以b =c =2a .因为B ∈(0,π),所以sin B =1-cos 2B =154,又S △ABC =12ac sin B =12×b2×b ×154=154,所以b =2,选C. 5.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为( )A .40 3B .20 3C .40 2D .202 解析:选A 设另两边长为8x,5x ,则cos 60°=64x 2+25x 2-14280x 2,解得x =2或x =-2(舍去).故两边长分别为16与10,所以三角形的面积是12×16×10×sin 60°=40 3.6.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.解析:∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.答案:437.如图,在△ABC 中,已知B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB =________.解析:在△ADC 中,cos C =AC 2+DC 2-AD 22·AC ·DC =72+32-522×7×3=1114.又0°<C <180°,∴sin C =5314. 在△ABC 中,AC sin B =ABsin C,∴AB =sin C sin B ·AC =5314×2×7=562.答案:5628.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.解析:不妨设b =2,c =3,cos A =13,则a 2=b 2+c 2-2bc ·cos A =9,∴a =3. 又∵sin A =1-cos 2 A =223, ∴外接圆半径为R =a 2sin A =32·223=928.答案:9289.在△ABC 中,求证:b 2cos 2A -a 2cos 2B =b 2-a 2.证明:左边=b 2(1-2sin 2A )-a 2(1-2sin 2B )=b 2-a 2-2(b 2sin 2A -a 2sin 2B ), 由正弦定理a sin A =bsin B ,得b sin A =a sin B ,∴b 2sin 2A -a 2sin 2B =0,∴左边=b 2-a 2=右边, ∴b 2cos 2A -a 2cos 2B =b 2-a 2.10.如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.解:在△ABC 中,AB =5,AC =9,∠BCA =30°,由正弦定理,得AB sin ∠BCA =AC sin ∠ABC, ∴sin ∠ABC =AC ·sin ∠BCA AB =9×sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910. 在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°, 由正弦定理,得AB sin ∠ADB =BDsin ∠BAD,解得BD =922,故BD 的长为922. 层级二 应试能力达标1.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( ) A .5 B .6 C .7 D .8 解析:选C 如图,由题意得⎩⎪⎨⎪⎧a +b +c =20,12bc sin 60°=103,a 2=b 2+c 2-2bc cos 60°,则bc =40,a 2=b 2+c 2-bc =(b +c )2-3bc =(20-a )2-3×40, ∴a =7.2.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152B.15 C .2 D .3 解析:选A 因为b 2-bc -2c 2=0,所以(b -2c )(b +c )=0,所以b =2c .由a 2=b 2+c 2-2bc cos A ,解得c =2,b =4, 因为cos A =78,所以sin A =158,所以S △ABC =12bc sin A =12×4×2×158=152.3.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( ) A. 3 B . C .2 3 D .4 解析:选B ∵S =12bc sin A ,∴3=12×2c sin 120°,∴c =2,∴a =b 2+c 2-2bc cos A =4+4-2×2×2×⎝⎛⎭⎫-12=23, 设△ABC 外接圆的半径为R ,∴2R =a sin A =2332=4, ∴R =2.4.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞ B .(10,+∞) C .(0,10)D.⎝⎛⎦⎤0,403 解析:选D ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403. 5.已知△ABC 的面积S =3,A =π3,则AB AC ________.解析:S △ABC =12·|AB AC A ,即3=12·|AB AC |·32,AB AC 4,AB AC AB AC A =4×12=2.答案:26.在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b a +ab =6cos C ,则tan C tan A +tan Ctan B=________. 解析:∵b a +ab =6cos C ,∴a 2+b 2ab =6×a 2+b 2-c 22ab ,∴2a 2+2b 2-2c 2=c 2, 又tan C tan A +tan C tan B =sin C cos A sin A cos C +sin C cos B sin B cos C =sin C (sin B cos A +cos B sin A )sin A sin B cos C=sin C sin (B +A )sin A sin B cos C =sin 2C sin A sin B cos C =c 2ab cos C =c 2aba 2+b 2-c 22ab =2c 2a 2+b 2-c 2=4. 答案:47.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知sin A sin B =sin C tan C . (1)求a 2+b 2c 2的值;(2)若a =22c ,且△ABC 的面积为4,求c 的值. 解:(1)由已知sin A sin B =sin C tan C 得cos C =c 2ab .又cos C =a 2+b 2-c 22ab ,故a 2+b 2=3c 2,故a 2+b 2c 2的值为3. (2)由a =22c, a 2+b 2=3c 2得b =102c . 由余弦定理得cos C =255,故sin C =55. 所以12×22c ×102c ×55=4,解得c =4.8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =2,2cos 2 B +C2+sin A =45.(1)若满足条件的△ABC 有且只有一个,求b 的取值范围; (2)当△ABC 的周长取最大值时,求b 的值.解:2cos 2 B +C 2+sin A =45⇒1+cos(B +C )+sin A =45⇒sin A -cos A =-15.又0<A <π,且sin 2A +cos 2A =1,有⎩⎨⎧sin A =35,cos A =45.(1)若满足条件的△ABC 有且只有一个,则有a =b sin A 或a ≥b ,则b 的取值范围为(0,2]∪⎩⎨⎧⎭⎬⎫103. (2)设△ABC 的周长为l ,由正弦定理得 l =a +b +c =a +asin A(sin B +sin C ) =2+103[sin B +sin(A +B )]=2+103[sin B +sin A cos B +cos A sin B ]=2+2(3sin B +cos B ) =2+210sin(B +θ),其中θ为锐角,且⎩⎨⎧sin θ=1010,cos θ=31010 ,l max =2+210,当cos B =1010,sin B =31010时取到.此时b =asin Asin B =10.(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,a =k ,b =3k (k >0),A =45°,则满足条件的三角形有( ) A .0个 B .1个 C .2个D .无数个解析:选A 由正弦定理得a sin A =bsin B, ∴sin B =b sin A a =62>1,即sin B >1,这是不成立的.所以没有满足此条件的三角形.2.在△ABC 中,A =π3,BC =3,AB =6,则C =( )A.π4或3π4B.3π4C.π4D.π6解析:选C 由BC sin A =AB sin C ,得sin C =22.∵BC =3,AB =6,∴A >C ,则C 为锐角,故C =π4.3.在△ABC 中,a =15,b =20,A =30°,则cos B =( ) A .±53 B.23 C .-53D.53解析:选A 因为a sin A =b sin B ,所以15sin 30°=20sin B ,解得sin B =23.因为b >a ,所以B >A ,故B 有两解,所以cos B =±53. 4.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6解析:选B ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b6=k (k >0), 则⎩⎪⎨⎪⎧b +c =4k ,c +a =5k ,a +b =6k ,解得⎩⎪⎨⎪⎧a =72k ,b =52k ,c =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin 2A 2=c -b2c ,则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形解析:选B 由已知可得1-cos A 2=12-b2c,即cos A =bc,b =c cos A .法一:由余弦定理得cos A =b 2+c 2-a 22bc ,则b =c ·b 2+c 2-a 22bc,所以c 2=a 2+b 2,由此知△ABC 为直角三角形. 法二:由正弦定理,得sin B =sin C cos A .在△ABC 中,sin B =sin(A +C ), 从而有sin A cos C +cos A sin C =sin C cos A , 即sin A cos C =0.在△ABC 中,sin A ≠0,所以cos C =0.由此得C =π2,故△ABC 为直角三角形.6.已知圆的半径为4,a ,b ,c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .82 C. 2D.22解析:选C ∵a sin A =b sin B =csin C =2R =8,∴sin C =c 8,∴S △ABC =12ab sin C =abc 16=16216= 2.7.在△ABC 中,三边长分别为a -2,a ,a +2,最大角的正弦值为32,则这个三角形的面积为( )A.154 B.1534C.2134D.3534解析:选B ∵三边不等,∴最大角大于60°.设最大角为α,故α所对的边长为a +2,∵sin α=32,∴α=120°.由余弦定理得(a +2)2=(a -2)2+a 2+a (a -2),即a 2=5a ,故a =5,故三边长为3,5,7,S △ABC =12×3×5×sin 120°=1534.8.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为( )A.33B.36C.63D.66解析:选D 设BD =a ,则BC =2a ,AB =AD =32a . 在△ABD 中,由余弦定理,得cos A =AB 2+AD 2-BD 22AB ·AD=⎝⎛⎭⎫32a 2+⎝⎛⎭⎫32a 2-a 22×32a ·32a=13. 又∵A 为△ABC 的内角,∴sin A =223. 在△ABC 中,由正弦定理得,BC sin A =ABsin C. ∴sin C =AB BC ·sin A =32a2a ·223=66.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.把答案填在题中横线上)9.在△ABC 中,已知a cos A =b cos B =ccos C,则这个三角形的形状是________. 解析:由正弦定理a sin A =b sin B =c sin C 得sin A cos A =sin B cos B =sin C cos C,∴tan A =tan B =tan C ,∴A =B =C ,三角形ABC 为等边三角形.答案:等边三角形10.在△ABC 中,B =30°,C =120°,则A =________,a ∶b ∶c =________. 解析:A =180°-B -C =30°,由正弦定理得a ∶b ∶c =sin A ∶sin B ∶sin C , 即a ∶b ∶c =sin 30°∶sin 30°∶sin 120°=1∶1∶ 3. 答案:30° 1∶1∶311.已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则B =________,△ABC 的面积等于________.解析:由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =B =π3,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.答案:π3 3412.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b =2a ,B =A +60°,则A =________,三角形的形状为________.解析:∵b =2a ,由正弦定理,得sin B =2sin A ,又B =A +60°,∴sin(A +60°)=2sin A ,即12sin A +32cos A =2sin A ,∴tan A =33.又0°<A <180°,∴A =30°,B =90°.答案:30° 直角三角形13.已知三角形ABC 中,BC 边上的高与BC 边长相等,则AC AB +AB AC +BC 2AB ·AC 的最大值是________.解析:由题意得, 12 b c sin A =12 a 2⇒bc sin A =a 2,因此AC AB +AB AC +BC 2AB ·AC =b c +c b +a 2bc =b 2+c 2+a 2bc =a 2+2bc cos A +a 2bc =2cos A +2sin A =2 2 s in ⎝⎛⎭⎫A +π4≤22,从而所求最大值是2 2.答案:2214.在△ABC 中,已知cos A =35,cos B =513,b =3,则sin C =________,c =________.解析:在△ABC 中,∵cos A =35>0,∴sin A =45.∵cos B =513>0,∴sin B =1213. ∴sin C =sin [π-(A +B )]=sin(A +B ) =sin A cos B +cos A sin B =45×513+35×1213=5665.由正弦定理知b sin B =csin C ,∴c =b sin Csin B =3×56651213=145.答案:5665 14515.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________km.。
《海伦——秦九韶公式》教案【教学内容】人教A版普通高中课程标准试验教科书必修5 第一章“阅读与思考”海伦与秦九韶.【教学对象】高一学生.【教材分析】本节内容选自高中数学必修五的第一章,是阅读与思考部分的内容,在《高中数学新课程标准》中并没有做要求,教材中只占用一篇幅叙述了海伦公式与秦九韶公式(“三斜求积”公式)的记载历史,并未给出证明和应用.本节内容之前学生已经学习了解三角形,从而这节课是三角形面积公式的延续与拓展.本节课的主要设计对象为数学学习程度较好的学生——在完成《高中数学新课程标准》中要求的学习之后仍有余力的学生,意在引领学生了解数学文化史,同时启发学生运用所学知识由“三斜求积”公推导海伦公式,并让学生从中体会数学之美.【学情分析】高一学生在进入本节课的学习之前,需要熟悉前面已学过的三角形面积公式,余弦定理的推论,同角三角函数的平方关系以及平方差公式和完全平方公式.【教学目标】∙知识与技能:(1)会推导秦九韶公式与海伦公式,并理解海伦公式的本质;(2)理解秦九韶公式与海伦公式的本质相同.(3)会用海伦公式解决简单的涉及到三角形三边与面积之间关系的问题.∙过程与方法:(1)经历推导秦九韶公式与海伦公式的全过程,培养学生严谨的的数学逻辑思维;(2)提高学生会应用海伦公式解决涉及到三角形三边与面积之间关系问题的能力.∙情感态度与价值观:(1)体会公式书写的简洁美;(2)体会数学以不变应万变的魅力.【教学重点】秦九韶公式与海伦公式的推导及其应用.【教学难点】秦九韶公式与海伦公式的本质.【教学方法】引导探究、实力应用.【教学过程】(一)旧知回顾1.三角形的面积公式:(1)ah S ABC 21=∆(h 为边a 上的高); (2)==∆C ab S ABC sin 21 = . 2.余弦定理的推论:bca cb A 2cos 222-+=;=B cos ;=C cos . 3.同角三角函数的平方关系:+α2sin 1=.[师生活动]通过提问,让学生回答出本节课涉及到的已经学习过的公式.(二)新课引入【引例】问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里。
1.2 应用举例【课题】:1.2.3解三角形在三角形面积计算上的应用【学情分析】:在学习本节之前学生能解决直角三角形以及已知三角形的一边和这边上的高的三角形面积计算问题。
学生学了正弦定理和余弦定理并积累了一些解三角形的知识后,对三角形的面积的计算就可以向学生提出更高的要求了。
因此,在学生已掌握了正弦定理、余弦定理的基础上,让学生探讨解决“已知二边及夹角和已知三边求三角形面积”的问题,就有了可能。
【教学目标】:(1)知识与技能:使学生掌握在“已知二边及夹角”和“已知三边”的条件下求三角形面积的方法;提高计算和使用计算工具的能力;进一步领会方程的思想,提高解决问题尤其是实际问题的能力(2)过程与方法:通过合作与探究,加深对正弦定理、余弦定理的理解,提高方程思想在实际中的运用能力(3)情态与价值:体验探求的乐趣,体会正弦定理、余弦定理的结构美,激发并提高学生学习数学的热情和兴趣【教学重点】:(1)公式的发现和它的灵活应用(2)方程思想的运用【教学难点】:在不同的条件下灵活的应用公式【课前准备】:Powerpoint或投影片【教学过程设计】:教学环节教学活动设计意图创设情景问题1:在三角形ABC中,a=4,b=3,C = 60°,则ABCS∆=______ 生:求出对应边上的高,再利用12S a h=⋅求解∵AC=b,BC=a,作AD⊥BC,则AD为三角形BC边上的高∴AD=bsinC1sin2ABCS ab C=创设情景,引出问题,让学生主动学习,积极思考,由浅入深,寻求答案,灵活应用例1:在△ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2)(1)已知a=14.8cm,c=23.5cm, B=148.50;(2)已知B=62.70,C=65.80,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.例2:如图,在某市进行环境建设中,要把一个三角形的区域改造成市内公园,经过测量得到这个三角形区域的三条边分别为68cm ,88cm,127cm,这个区域的面积是多少?(精确到0.1cm2)例3:在△ABC中,求证:(1)222222sin sinsina b A Bc C++=(2)2222(cos cos cos)a b c bc A ca B ab C++=++例1,2是在不同条件下求三角形的面积问题,归根到底是灵活运用正弦定理和余弦定理,应让学生归纳总结方法并提高计算能力,例3是边化角或角化边思想的体现练一练1.在△ABC中,A=600,b=1,3ABCS=,则△ABC外接圆的半径是_________________.2. 在△ABC中,已知B=600,cosC=13,AC=36,则△ABC的面积是____3.在ABC∆中,193,32,222==++=acbbccba,求ABC∆的面积4.在△ABC中,2sin cos2A A+=,AC=2,AB=3,则△ABC的面积是_________________.通过练习进一步熟悉公式,灵活地针对不同的条件解决问题,从而增加学生学好数学的兴趣和信心基础练习:1、在△ABC 中,a=2,A=030,C=045,则△ABC 的面积是_________________ 解:由正弦定理sin sin a bA B=有sin 2sin1051)sin sin 30a B b A === ∴11sin 21)1222ABC S ab C ∆==⋅⋅= 2、在△ABC 中,a,b,c 分别为A ,B ,C的对边,且tan tan tan A B A B +=⋅,a=4,b+c=5,则△ABC 的面积为________________________35. 3 C.D.222A 解:由tan tan tan A B A B ++=⋅得tan tan 1tan tan A BA B+=-⋅∴ A+B=23π C=3π又 ∵ 22222cos 1645c a b ab C b bb c ⎧=+-=+-⎨+=⎩∴ b=32113sin 4sin 2223ABCS ab C π==⋅⋅⋅=∴选C3、在△ABC 中,已知a 比b 长2,b 比c 长2,且最大角的正弦是32,则△ABC 的面积是____________________解:由已知可知A 是最大角,所以3sin 2A =A=0060120或 又222(4)(2)2(2)cos c c c c c A +=++-⋅⋅+当A=0120时,上式化为260c c --=,解得c=3或c=-2(舍去) 当A=060时,上式无意义∴ 113153sin 532224ABCSbc A ==⋅⋅⋅= 4、在△ABC 中,a,b,c 分别为A ,B ,C 的对边的长,S 是△ABC 的面积,若a=4,b=5,S=53,求c 的长度。
A 级 基础巩固一、选择题1.已知A 、B 两地的距离为10 km ,B 、C 两地的距离为20 km ,现测得∠ABC =120°,则A 、C 两地的距离为( D )A .10 kmB . 3 kmC .10 5 kmD .107 km[解析] 在△ABC 中,AB =10,BC =20,∠ABC =120°,则由余弦定理,得 AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =100+400-2×10×20cos120° =100+400-2×10×20×(-12)=700,∴AC =107,即A 、C 两地的距离为107 km .2.如图,在河岸AC 测量河的宽度BC ,测量下列四组数据,较适宜的是( D )A .γ,c ,αB .b ,c ,αC .c ,α,βD .b ,α,γ[解析] 本题中a 、c 、β这三个量不易直接测量,故选D .3.一船向正北航行,看见正西方向有相距10 n mlie 的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( C )A .5 n mlieB .5 3 n mlieC .10 n mlieD .10 3 n mlie[解析] 如图,依题意有∠BAC =60°,∠BAD =75°,∴∠CAD =∠CDA =15°,从而CD =CA =10, 在Rt △ABC 中,求得AB =5, ∴这艘船的速度是50.5=10(n mlie/h).4.某观察站C 与两灯塔A 、B 的距离分别为300 m 和500 m ,测得灯塔A 在观察站C 北偏东30°,灯塔B 在观察站C 正西方向,则两灯塔A 、B 间的距离为( C )A .500 mB .600 mC .700 mD .800 m[解析] 根据题意画出图形如图.在△ABC 中,BC =500,AC =300,∠ACB =120°, 由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos120° =3002+5002-2×300×500×(-12)=490 000,∴AB =700(m).5.要直接测量河岸之间的距离(河的两岸可视为平行),由于受地理条件和测量工具的限制,可采用如下办法:如图所示,在河的一岸边选取A 、B 两点,观察对岸的点C ,测得∠CAB =45°,∠CBA =75°,且AB =120 m 由此可得河宽为(精确到1m)( C )A .170 mB .98 mC .95 mD .86 m[解析] 在△ABC 中,AB =120,∠CAB =45°,∠CBA =75°,则∠ACB =60°,由正弦定理,得BC =120sin45°sin60°=406.设△ABC 中,AB 边上的高为h ,则h 即为河宽, ∴h =BC ·sin ∠CBA =406×sin75°≈95(m).6.甲船在湖中B 岛的正南A 处,AB =3 km ,甲船以8 km/h 的速度向正北方向航行,同时乙船从B 岛出发,以12 km/h 的速度向北偏东60°方向驶去,则行驶15 min 时,两船的距离是( B )A .7 kmB .13 kmC .19 kmD .10-3 3 km[解析] 由题意知AM =8×1560=2,BN =12×1560=3,MB =AB -AM =3-2=1,所以由余弦定理,得MN 2=MB 2+BN 2-2MB ·BN cos120°=1+9-2×1×3×(-12)=13,所以MN =13 km .二、填空题7.在相距2km 的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C 两点之间的距离是__6__km .[解析] 如图所示,由题意易知C =45°,由正弦定理得AC sin60°=2sin45°,从而AC =222·32=6(km).8.一只蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,则x =__1063__cm .[解析] 如图,由题意知,∠BAC =75°,∠ACB =45°.∠B =60°, 由正弦定理,得x sin ∠ACB =10sin B ,∴x =10sin ∠ACB sin B =10×sin45°sin60°=1063.三、解答题9.如图,我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知CD =6 000 m .∠ACD =45°,∠ADC =75°,目标出现于地面B 处时测得∠BCD =30°,∠BDC =15°.求炮兵阵地到目标的距离.(结果保留根号)[解析] 在△ACD 中,∠CAD =60°, AD =CD ·sin45°sin60°=63CD .在△BCD 中,∠CBD =135°,BD =CD ·sin30°sin135°=22CD ,∠ADB =90°.在Rt △ABD 中,AB =AD 2+BD 2=426CD =1 00042(m).10.一艘船以32.2 n mile/h 的速度向正北航行.在A 处看灯塔S 在船的北偏东20°的方向,30 min 后航行到B 处,在B 处看灯塔在船的北偏东65°的方向,已知距离此灯塔6.5 n mile 以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?[解析] 在△ASB 中,∠SBA =115°,∠S =45°.由正弦定理,得SB =AB sin20°sin45°=16.1sin20°sin45°≈7.787(n mile).设点S 到直线AB 的距离为h ,则h =SB sin65°≈7.06(n mile).∵h >6.5 n mile ,∴此船可以继续沿正北方向航行.B 级 素养提升一、选择题1.已知船A 在灯塔C 北偏东85°且到C 的距离为2 km ,船B 在灯塔C 西偏北25°且到C 的距离为 3 km ,则A 、B 两船的距离为( D )A .2 3 kmB .3 2 kmC .15 kmD .13 km[解析] 如图可知∠ACB =85°+(90°-25°)=150°,AC =2,BC =3,∴AB 2=AC 2+BC 2-2AC ·BC ·cos150°=13, ∴AB =13.2.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( A )A .1762 n mile/hB .34 6 n mile/hC .1722n mile/hD .34 2 n mile/h[解析] 如图所示,在△PMN 中,PM sin45°=MNsin120°,∴MN =68×3222=346,∴v =MN 4=1762(n mile/h).3.如图,货轮在海上以40 km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为140°的方向航行.为了确定船的位置,船在B 点观测灯塔A 的方位角为110°,航行12 h 到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是( B )A .10 kmB .10 2 kmC .15 kmD .15 2 km[解析] 在△ABC 中,BC =40×12=20( km),∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,则A =180°-(30°+105°)=45°. 由正弦定理,得AC =BC ·sin ∠ABC sin A =20·sin30°sin45°=102( km).二、填空题4.海上一观测站测得方位角240°的方向上有一艘停止航行待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90 n mile.此时海盗船距观测站107 n mile ,20 min 后测得海盗船距观测站20 n mlie ,再过__403__min ,海盗船到达商船.[解析] 如下图,设开始时观测站、商船、海盗船分别位于A 、B 、C 处,20 min 后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理,得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD =400+900-7002×20×30=12.∴∠ADC =60°,在△ABD 中,由已知得∠ABD =30°, ∠BAD =60°-30°=30°, ∴BD =AD =20,2090×60=403(min).5.如图,一艘船上午8∶00在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午8∶30到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距4 2 n mile ,则此船的航行速度是__16__n mile/h .[解析] 在△ABS 中,∠A =30°,∠ABS =105°, ∴∠ASB =45°,∵BS =42,BS sin A =ABsin ∠ASB ,∴AB =BS ·sin ∠ASBsin A =42×2212=8,∵上午8∶00在A 地,8∶30在B 地, ∴航行0.5小时的路程为8 n mile , ∴此船的航速为16 n mile/h . 三、解答题6.如图,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.[解析] 由题意可得DE 2=502+1202=1302, DF 2=1702+302=29 800, EF 2=1202+902=1502, 由余弦定理,得cos ∠DEF =1665.C 级 能力拔高1.为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如图).能够测量的数据有俯角和A 、B 间的距离.请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.[解析] 方案一:①需要测量的数据有:点A 到点M 、N 的俯角α1、β1;点B 到点M 、N 的俯角α2、β2;A 、B 间的距离d (如图).②第一步:计算AM ,由正弦定理,得AM =d sin α2sin α1+α2;第二步:计算AN ,由正弦定理,得AN =d sin β2sin β2-β1;第三步:计算MN ,由余弦定理,得 MN =AM 2+AN 2-2AM ·AN cos α1-β1.方案二:①需要测量的数据有:点A 到点M 、N 的俯角α1、β1;点B 到点M 、N 的俯角α2、β2;A 、B 间的距离d (如图).②第一步:计算BM ,由正弦定理,得BM =d sin α1sin α1+α2;第二步:计算BN ,由正弦定理,得BN =d sin β1sin β2-β1;第三步:计算MN ,由余弦定理,得 MN =BM 2+BN 2+2BM ·BN cos β2+α2.2.已知海岛B 在海岛A 的北偏东45°方向上,A 、B 相距10 n mile ,小船甲从海岛B 以2 n mile/h的速度沿直线向海岛A 移动,同时小船乙从海岛A 出发沿北偏西15°方向也以2 n mile/h 的速度移动.(1)经过1 h 后,甲、乙两小船相距多少海里?(2)在航行过程中,小船甲是否可能处于小船乙的正东方向?若可能,请求出所需时间,若不可能,请说明理由.[解析] 经过1 h 后,甲船到达M 点,乙船到达N 点, AM =10-2=8,AN =2,∠MAN =60°,所以MN 2=AM 2+AN 2-2AM ·AN cos60°=64+4-2×8×2×12=52.所以MN =213.所以经过1 h 后,甲、乙两小船相距213海里.(2)设经过t (0<t <5)h 小船甲处于小船乙的正东方向,则甲船与A 距离为AE =(10-2t )n mile ,乙船与A 距离为AF =2t n mile ,∠EAF =60°,∠EF A =75°,则由正弦定理,得AF sin45°=AE sin75°,即2tsin45°=10-2t sin75°,则t =10sin45°2sin75°+2sin45°=103+3=53-33<5.答:经过53-33小时小船甲处于小船乙的正东方向.。
1.2应用举例问题1:在日常生活和工农业生产中,为了达到某种目的,常常想测得一个点与另一个不可到达的点间的距离或在远处的两个物体之间的距离,这样的想法能实现吗?如何实现呢? 问题2:在有关三角形的相关实际题目中,常常涉及到各种角:比如“方位角”、“仰角”、“俯角”等,这些角之间都一样吗?它们如何区分呢?为什么在实际问题中常常出现这些角? 答案:问题1:学习过了正、余弦定理后,上述所提的问题是能够实现。
有时由于条件所限,需要测量像一个点与河对面一点或船到礁石这类不可到达点的距离时,一般作法是在河这边或主航道上发生一段位移,从两个不同地点测出到这个不能到达点的视角及这段位移的长度,从而通过计算得出答案。
从而将问题转化为一个数学问题:已知一个三角形的两角及夹边,要求这个三角形的其中一边,显然只要根据正弦定理,就可以达到目的。
例如:当我们想在河这边测出河对面两点之间距离的时候,往往可以这样做:在河这边的两个不同的地点分别测出望河对面两点及另一地点的视角,再结合这两个地点之间的距离,通过通过三次应用正弦定理计算求得河对面两点之间的距离。
问题2:在实际生活中,方位也是大家所熟悉的,首先在地图上,东西南北这四个基本方位要能区分开来。
“仰角”就是由低处往高处望,相应视线与水平线所成的角;而“俯角”就是由高处往低处看,相应的视线与水平线所成的角。
另外,常见的还有其它一些角,对于在具体问题中所出现的新名词,自己应该根据在具体问题中去体会其含义。
从而正确地将问题解决。
只有这些角能正确地区分开来,才能将问题恰当地解决。
因为在实际问题中一个物体相对于另一个物体的位置关系,常常用方位来描述,这也符合人们的习惯,自然就会出现有关一些方位的词语了。
而这些角在数学上体现往往又是在三角形中,所以有关三角形的实际问题,经常又会与这些角有关。
例1在一次夏令营活动中,同学们在相距10海里的A 、B 两个小岛上活动结束后,有人提出到隔海相望的未知的C 岛上体验生活,为合理安排时间,他们需了解C 岛与B 岛或A 岛的距离.为此他们测得从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,那么B 岛和C 岛之间的距离是多少海里?解:在ABC ∆中,由题意知60,75CAB ABC ∠=∠=,∴45ACB ∠=。
由正弦定理︒45sin AB =︒60sin BC ,∴BC = 点评:本题中涉及到“视角”这样一个名词,这个名词的意思对于大家来说并不陌生,根据题意的叙述正确画出示意图来,然后在相应三角形的应用正弦定理就可以达到目的,真正把数学融入实际生活。
练习1 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为450和300, 而且两条船与炮台底部连线成300角,(炮台底部与江面平行),求两条船相距多少米? 例2 如图1-2-1所示,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15的方向上,行驶5 km 后到达B 处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD 。
解:要测出高CD ,只要测出高所在的直角三角形的另一条直角边或斜边的长即可。
根据已知条件,可以计算出BC 的长。
在△ABC 中,∠A =15°,∠C =25°-15°=10°,根据正弦定理,A BC sin =C AB sin, BC =C A AB sin sin =︒︒10sin 15sin 5≈7.4524(km ), CD =BC ×tan ∠DBC ≈BC ×tan8°≈1047(m ).答:山的高度约为1047米.点评:此类问题主要容易错在角度的具体位置找不对,另外在具体问题中有时可能不知道采用什么定理以及在哪些三角形中应用相应定理去解决问题,这些都要根据具体题目的已知条件去作具体分析。
练习2 航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的高度为海拔10000m,速度为180km (千米)/h (小时)飞机先看到山顶的俯角为150,经过420s (秒)后又看到山顶的俯角为450,求山顶的海拔高度(取2=1.4,3=1.7).例3 在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角为2θ,再继续前进103m 至D 点,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高。
解法一:如图所示,(用正弦定理求解)由已知可得在∆ACD 中,AC=BC=30,AD=DC=103,∠ADC =180︒-4θ,∴θ2s i n 310=)4180sin(30θ-︒ 。
因为 sin4θ=2sin2θcos2θ∴ c os2θ=23,得 2θ=30︒∴ θ=15︒,∴在Rt ∆ADE 中,AE=ADsin60︒=15答:所求角θ为15︒,建筑物高度为15m解法二:(设方程来求解)设DE= x ,AE=h在 Rt ∆ACE 中,(103+ x)2 + h 2=302在 Rt ∆ADE 中,x 2+h 2=(103)2两式相减,得x=53,h=15∴在 Rt ∆ACE 中,tan2θ=x h +310=33 ∴2θ=30︒,θ=15︒ 答:所求角θ为15︒,建筑物高度为15m解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得∠BAC=θ, ∠CAD=2θ, AC = BC =30m , AD = CD =103m②÷① 得 cos2θ=23,2θ=30︒,θ=15︒,AE=ADsin60︒=15 答:所求角θ为15︒,建筑物高度为15m 。
点评:本题中所涉及的角之间的关系要注意把握,有的同学看到4θ是否会想到将其给表示为含θ的三角式,从而走向误区,导致问题无法解决。
练习3 在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102(cos =θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?受到台风的侵袭的时间有多少小时?例4 在ABC ∆中,若22tan tan b A a B =,判断此三角形的形状。
解:方法1:化角为边 由已知可得,22tan tan b B a A=即:22sin cos cos sin B A b B A a =,由正、余弦定理得:222222222222b b c a a R bc a a c b bR ac+-=+-,22222222b c a b a c b a +-∴=+-,2222422224a b a c a a b b c b ∴+-=+-,()2222440a c b c a b ∴---=即:()()222220a b c a b ---=,a b =或222a b c +=; 方法2:化边为角2sin sin a b R A B ==,由已知变形得 ()()222s i n s i n c o s s i n c o s 2s i nR A A B B A R B =,即22s i n c o s s i n s i n c o s s i n A B A B A B =,22sin cos sin sin sin cos 0A A B B A B ∴-=即:()s i n s i n s i n c o s c o s 0A B A A B B -=,()s i n s i n s i n 2s i n 20A B A B ∴-=,又s i n ,s A B 均为不0,s i n 2s A B ∴=,22A B ∴=或2218A B +=即A B =或90A B +=。
因此该三角形是等腰三角形或直角三角形。
点评:此类型的问题比较常见,思考方式通常就是两个方向,一是从角的角度去判断;二是从边的角度去判断。
有时,两种方法都能达到目的,而有时则只能采用某种办法才能达到目的或者用另外的办法很复杂。
在具体问题中注意选择恰当的方式。
练习4.在ABC ∆中,求证:.sin sin cos cos AB A c b B c a =-- 练习答案:1.如图,A 为炮台,B 为炮台底部,C 、D 为两条小船,则30,30,60,4500==∠=∠=∠AB CBD DAB CAB330,30,900==∴=∠=∠BD BC ABC ABDC BD ∆∴中,由余弦定理得,m CD 30=。
2.如图 ∵=∠A 150 =∠DBC 450 ∴=∠ACB 300,AB= 180km (千米)/h (小时)⨯420s (秒)= 21000 (m )∴在ABC ∆中,ACB AB A BC ∠=sin sin ∴)26(1050015sin 21210000-=⋅=BC ∵AD CD ⊥,∴0sin sin 45CD BC CBD BC =∠=⨯=)26(10500-22⨯=7350 3.设经过t 小时台风中心移动到Q 点时,台风边沿恰经过O 城,由题意可得:OP=300,PQ=20t ,OQ=r(t)=60+10t因为102cos =θ,α=θ-45°,所以1027sin =θ,54cos =α 由余弦定理可得:OQ 2=OP 2+PQ 2-2·OP·PQ·αcos即 (60+10t)2=3002+(20t)2-2·300·20t·54 即0288362=+-t t , 解得121=t ,242=t , -2t 121=t答:12小时后该城市开始受到台风气侵袭,受到台风的侵袭的时间有12小时?4.[证法一](考虑“角换边”)左边=AC A C B C C B A C R B R B C R A R cos sin )sin(cos sin )sin(cos sin 2sin 2cos sin 2sin 2-+-+=-- ====-+-+A B A C C B A C A C A C B C C B C B sin sin sin cos cos sin cos sin )sin cos cos (sin cos sin )sin cos cos (sin 右边; [证法二](考虑“角换边”)左边====-+-+=-+⋅--+⋅-A B a b bc a b a c b a bc a c b c b ca b a c c a sin sin 2222222222222222右边. 〖达标检测〗A 组 基础过关一、填空题1.如图,一艘船上午9:30在A 处得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距82n mile .此船的航速是 mile/h第1题二、解答题2.某人在塔AB 的正东C 处,沿着南偏西60的方向前进40米到达D 处,望见塔在东北方向,若沿途测得塔的最大仰角为30,求塔高.第2题3.如图,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离。