Exact
- 格式:pdf
- 大小:809.01 KB
- 文档页数:37
exact1/ ɪgˈzækt; ɪɡˋzækt/ adjcorrect in every detail; precise 正确的; 准确的; 精确的: What were his exact words? 他的原话是怎麽说的? * I don't know the exact size of the room. 我不知道这个房间的确切面积. * He's in his mid-fifties; well, fifty-six to be exact (ie more accurately). 他五十多岁; 嗯, 确切地说是五十六岁.capable of being precise and accurate 严谨的; 精密的: an exact scholar 治学严谨的学者* She's a very exact person. 她是个一丝不苟的人. * the exact sciences, ie those in which absolute precision is possible, eg mathematics 精密科学(如数学).accurate/ ˈækjərət; ˋækjərət/ adjfree from error 正确无误的: an accurate clock, map, weighing machine 准确的钟﹑地图﹑衡器* accurate statistics, measurements, calculations, etc 准确的统计﹑测量﹑计算等* His description was accurate. 他的叙述很正确.careful and exact 精确的; 准确的: take accurate aim 瞄得准* Journalists are not always accurate (in what they write). 新闻工作者(的报道)并非一贯准确. > accurately advprecise/ prɪˈsaɪs; prɪˋsaɪs/ adjstated clearly andaccurately 叙述清楚而准确的: precise details, instructions, measurements 准确的细节﹑明确的指示﹑精确的尺寸* a precise record of events对事件的准确的记载.[attrib 作定语] exact; particular 精确的; 独特的: at that precise moment 恰在那时* It was found at the precise spot where she had left it. 那东西正好在她遗落的那个地点找到了.(of a person, his mind, etc) taking care to be exact and accurate, esp about minor details (指人﹑思想等)精细的, (尤指)一丝不苟的: a precise mind, worker 一丝不苟的头脑﹑工作者* 100, or 99.8 to be precise100, 或准确说来是99.8 * (often derog 常作贬义) a man with a very prim and precise (ie too careful or fussy) manner一个锱铢必较的男子.Right[usu pred 通常作表语] (of conduct, actions, etc) morally good; required by law or duty (指行为﹑行动等)正当, 适当, 合法, 符合要求: Is it ever right to kill? 杀害生命是正当的吗? * You were quite right to refuse/in deciding to refuse/in your decision to refuse. 你予以拒绝[决定予以拒绝/予以拒绝的决定]是恰当的. * It seems only right to warn you that...似乎应该警告你.... Cf 参看wrong 1.true or correct 对的; 正确的; 准确的: Actually, that's not quite right. 实际上, 那不完全对. * Did you get the answer right? 你找到正确的答案了吗? * Have you got the right money (ie exact fare) for the bus? 你有买公共汽车票(那个数)的零钱吗? * What's the right time?现在准确的时间是几点?best in view of the circumstances; most suitable 最切合实际的; 最适宜的; 最恰当的: Are we on the right road? 我们走的路对吗? * Is this the right way to the zoo? 去动物园是走这条路吗? * He's the right man for the job. 他是最适合做这件工作的人. * That coat's just right for you. 那件大衣你穿正合适. * the right side of a fabric, ie the side meant to be seen or used 织物的正面.(also all right) in a good or normal condition 情况良好或正常: `Do you feel all right?' `Yes, I feel quite all right/No, I don't feel (quite) right.'‘你感觉好吗?’‘很好[不(太)好].’ [attrib 作定语] (Brit infml 口) (esp inderogatory phrases 尤用於含贬义的词组) real; complete真实的; 完全的: you made a right mess of that! 你把那事完全弄糟了! * She's a right old witch!她是个不折不扣的老妖婆!Correct/ kəˈrekt; kəˋrɛkt/ adjtrue; right; accurate 正确的; 对的; 准确的: the correct answer 正确的答案* Do you have the correct time? 你的表准吗? * The description is correct in every detail. 每个细节的叙述都很准确. * Would I be correct in thinking that you are Jenkins? ie Are you Jenkins? 我想你就是詹金斯吧? * `Are you Jenkins?' `That's correct.'‘你是詹金斯吗?’‘是的.’(of behaviour, manners, dress, etc) in accordance with accepted standards or convention; proper (指行为﹑礼貌﹑衣着等)符合公认标准的, 得体的: Such casual dress would not be correct for a formal occasion. 这样的便服不宜在正式的场合穿. * a very correct young lady举止很得体的年轻女士. > correctly adv: answer correctly 正确地回答* behave very correctly举止十分得体。
函数exact函数是数学中一个重要的概念,它在数学和其他科学领域中都有着广泛的应用。
而函数中的一种特殊情况就是“exact”函数。
那么什么是“exact”函数呢?在本文中,我们将对其进行解释和说明。
函数的定义在介绍“exact”函数之前,我们需要先了解一下函数的定义。
函数是一种映射关系,它将一个集合的元素映射到另一个集合的元素。
函数通常用一个数学式子表示:y = f(x)y 是函数的输出,x 是函数的输入,f(x) 代表了函数本身。
函数可以接受任意数量的输入,并返回对应数量的输出。
特别地,当函数只接受一个输入时,它被称为单变量函数。
以下是一个简单的函数示例:f(x) = x^2它将输入 x 乘以自身得到的结果作为输出返回。
当输入为 2 时,输出为 4;当输入为 3 时,输出为 9。
函数的定义包括以下三个要素:1. 定义域:函数可接受的所有输入的集合。
2. 值域:函数的所有输出的集合。
3. 映射关系:将输入与输出联系在一起的规则。
f(x) = x^2 的定义域是实数集合,值域也是实数集合(因为任何实数的平方都是实数),映射关系是将输入的平方作为输出。
“exact”函数的定义“exact”函数是一类特殊的函数,它们的值可以被表示为有理数的比值,而且不会产生任何舍入误差。
这个定义中的“有理数”指的是整数、分数或整数与分数的混合数。
如果一个函数不满足这个条件,它就不是“exact”函数。
常见的“exact”函数包括以下几种:1. 三角函数,例如 sin(x)、cos(x)、tan(x) 等等。
它们的值可以被表示为一个有理数的比值,而不会产生任何误差。
2. 指数函数和幂函数,例如 e^x 和 x^n。
它们的值可以表示为一个有理数的比值,但在计算中可能会发生溢出或下溢,从而导致计算误差。
3. 对数函数,例如 ln(x) 和 log(x)。
它们的值可以表示为一个有理数的比值,但在计算中可能会发生除以零错误或无穷大错误,从而导致计算误差。
exact函数⽤法和实例
第⼀,exact函数解释
Excel教程中exact函数函数 EXACT 能区分⼤⼩写,exact函数⽤法就是测试两个字符串是否完全相同。
如果完全相同,返回 TRUE;否则,返回 FALSE。
专业免费答疑各种Excel问题,群⽂件有视频教程,对Excel感兴趣的朋友可加Excel学习交流群:284029260
exact函数的语法是:EXACT(text1,text2)
如下图所⽰,C1单元格公式:=EXACT(A1,B1),只有完全相同的时候,exact函数才返回TRUE。
使⽤exact函数时,需要注意的⼀些细节:
单元格的格式不⼀样,要把两个单元格的格式都设置成同⼀种。
最好设置成⽂本⽅式。
因为exact函数本⾝就是⽐较字符串的。
另外要去掉空格。
如果还不能进⾏⽐较,说明中间有隐含的东西,⽤LNE函数查两个单元格的的长度就知道。
第⼆,exact函数应⽤实例
Excel中,如果要⽐较字符串是否存在,可以使⽤EXACT函数⽐较字符串是否存在。
如下图所⽰:在C2单元格输⼊公式:=OR(EXACT(B2,$A$2:$A$5)) ,按“Ctrl+Shift+回车”组合键完成数组公式的输⼊,就可以⽐较字符串是否存在。
其中A2是V003是⼤写的,B2v003是⼩写的,因此使⽤exact函数会得到结果为FALSE。
EXACT函数最主要就是能区分⼤⼩写。
excel的exact公式Excel的Exact公式是一种非常有用的函数,它可以帮助我们在处理数据时进行精确的匹配和比较。
在本文中,我将为大家介绍Exact公式的使用方法以及一些实际应用场景。
让我们来了解一下Exact函数的基本语法。
Exact函数的作用是比较两个文本字符串是否完全相同,它的语法如下:=EXACT(文本1, 文本2)其中,文本1和文本2是需要进行比较的两个文本字符串。
Exact 函数会返回一个布尔值,如果两个文本字符串完全相同,则返回TRUE,否则返回FALSE。
接下来,让我们通过一个简单的例子来演示Exact函数的使用。
假设我们有一个学生成绩表,其中包含了学生的姓名和他们的成绩。
我们想要判断某个学生的成绩是否及格,可以使用Exact函数进行比较。
具体的步骤如下:1. 首先,在Excel表格中创建一个新的列,用来显示及格与否的结果。
2. 在第一个单元格中输入Exact函数的公式,比如=EXACT(B2, "及格"),其中B2是学生成绩所在的单元格。
3. 拖动填充手柄,将公式应用到其他单元格中。
4. 结果列将显示TRUE或FALSE,表示学生的成绩是否及格。
除了判断字符串是否相同之外,Exact函数还可以用于检查两个文本字符串中的大小写是否一致。
这在处理数据时非常有用,可以避免因为大小写不一致而导致的错误匹配。
例如,我们可以使用Exact函数来检查两个人的姓名是否相同,如下所示:=EXACT(A2, "John Smith")Exact函数还可以与其他函数结合使用,进一步扩展其功能。
例如,我们可以使用Exact函数和IF函数来实现根据条件进行数据筛选的功能。
具体的步骤如下:1. 首先,在Excel表格中创建一个新的列,用来显示筛选结果。
2. 在第一个单元格中输入公式,比如=IF(EXACT(A2, "男"), B2, ""),其中A2是性别所在的单元格,B2是需要筛选的数据。
高效使用Excel中的EXACT函数在日常工作中,Excel是一个非常有用的工具,可以帮助我们处理数据、制作图表和进行分析。
其中,EXACT函数是一个非常重要的函数,它可以帮助我们精确地比较两个文本字符串是否完全相同。
在本文中,我将介绍EXACT函数的用法,并共享一些我个人的观点和理解。
一、EXACT函数的基本用法1.什么是EXACT函数?EXACT函数是一个逻辑函数,用于比较两个文本字符串是否完全相同。
它的语法非常简单,如下所示:=EXACT(text1, text2)2.EXACT函数的返回值当text1和text2完全相EXACT函数将返回TRUE;否则,返回FALSE。
这个函数的作用在于帮助我们进行准确的字符串比较,特别是在数据处理和查重方面有重要的应用价值。
3.EXACT函数的注意事项在使用EXACT函数时,需要注意以下几点:- EXACT函数区分大小写:它会区分文本字符串的大小写,因此在比较文本时要格外小心;- 不仅用于英文文本:EXACT函数同样适用于中文、数字和符号等各种类型的文本字符串。
二、深入探讨EXACT函数的应用场景1.数据清洗和查重在数据处理过程中,经常会遇到需要进行数据清洗和查重的情况。
EXACT函数可以帮助我们快速准确地比较数据中的文本字符串,从而找出重复或相似的数据。
2.密码或验证码验证在网络安全领域,EXACT函数可以用于验证密码或验证码的准确性。
通过比较用户输入的密码和系统存储的密码,可以及时发现并阻止非法访问。
3.文本匹配和筛选在文本处理和筛选中,EXACT函数可以帮助我们精确地匹配和筛选出符合特定条件的文本数据,从而简化数据分析和处理的流程。
三、我的观点和理解在我个人看来,EXACT函数是一个非常实用的函数,它可以帮助我们在工作中提高数据处理的准确性和效率。
在使用EXACT函数时,我建议多加注意以下几点:- 谨慎处理大小写:在使用EXACT函数进行文本比较时,要格外注意文本的大小写,以避免因为大小写不一致而导致比较结果出错;- 结合其他函数使用:EXACT函数可以与其他函数结合使用,如IF函数、VLOOKUP函数等,从而实现更加复杂的数据处理和分析需求。
excel 文本函数exact
EXACT函数是Excel中的一个文本函数,用于比较两个文本字符串是否完全相同。
它的语法如下:
EXACT(text1, text2)
其中,text1和text2是要比较的两个文本字符串。
函数返回一个逻辑值,如果两个字符串完全相同,则返回TRUE;如果不同,则返回FALSE。
例如,使用EXACT函数比较"A"和"A",结果为TRUE;比较"A"和"a",结果为FALSE。
EXACT函数对于区分大小写非常敏感,即大写和小写字母被视为不同的字符。
如果需要忽略大小写,可以使用LOWER或UPPER函数将字符串转换为统一的大小写,然后再进行比较。
注意:EXACT函数只能比较两个文本字符串,不能比较数字或其他类型的数据。
在Excel表格中,Exact函数是一种非常常用的函数,它可以帮助用户进行数据比较和匹配,确保数据的精准性和准确性。
在这篇文章中,我们将深入探讨Exact函数的定义、用法和实际应用,帮助您更好地掌握这一功能,优化数据处理操作。
1. Exact函数的定义Exact函数是Excel中的一个文本函数,它用于比较两个文本字符串是否完全相同,包括大小写字母和字符的一致性。
其基本语法为=EXACT(text1, text2),其中text1和text2为要比较的两个文本字符串。
如果两者完全相同,则返回TRUE,否则返回FALSE。
2. Exact函数的用法- 在数据清洗中,Exact函数可以帮助用户排除重复数据或进行准确匹配,确保数据的一致性和准确性。
- 在数据分析中,Exact函数可以帮助用户进行精准的数据比对和筛选,提高数据处理的精度和效率。
- 在报表生成和数据展示中,Exact函数可以确保数据的准确性,避免因数据比对错误而导致的误判或错误展示。
3. 实际应用场景在日常工作中,Exact函数常常用于以下场景:- 尊称、产品编号等文本数据的精确匹配和比对;- 数据表中重复数据的排除和清理;- 数据筛选和分类时的准确比对;- 数据报表生成和展示时的数据准确性保障。
4. 个人观点和理解对于Exact函数,我个人认为它在日常工作中有着非常重要的作用。
在处理大量文本数据时,利用Exact函数可以快速、准确地进行数据比对和匹配,避免了繁琐的手工操作和可能的人为错误。
另外,在数据分析和报表生成中,Exact函数也可以为我们提供可靠的数据支持,确保数据的真实性和可信度。
总结回顾通过本文的介绍和探讨,我们更全面、深入地了解了Exact函数在Excel中的定义、用法和实际应用。
在日常工作中,充分利用Exact函数可以提高数据处理的准确性和效率,为我们的工作带来便利和帮助。
在工作中,我们应该不断学习和掌握Excel的各种函数,充分利用这些功能来优化我们的数据处理和分析工作。
exact函数的使用方法
exact函数是Excel中的一个逻辑函数,用于比较两个或多个值是否完全相同。
该函数会返回TRUE或FALSE。
使用方法:
1. 在需要比较的单元格中输入要比较的值。
2. 在另一个单元格中输入exact函数的公式,例如
=exact(A1,B1),其中A1和B1是要比较的单元格。
3. 按下Enter键,即可得到比较结果。
注意事项:
1. exact函数区分大小写,因此如果要比较的值大小写不同,exact函数将返回FALSE。
2. 如果要比较的值是文本或日期,应该将它们用引号括起来,例如=exact('hello','HELLO')或=exact(C1,D1)。
3. 如果要比较的值是数值,exact函数将在比较之前将其转换为文本。
4. 如果要比较多个值,可以在exact函数中使用逗号将它们分隔开,例如=exact(A1,B1,C1)。
- 1 -。
exactly构词法摘要:一、引言- 介绍exactly 的构词法- 说明exactly 在英语中的重要性二、exactly 的词源及含义- 词源:ex-词根+actly-副词后缀- 含义:完全地、精确地、严格地三、exactly 的用法- 用作副词- 用作形容词- 与其他词搭配使用四、exactly 的常见短语及例句- 举例说明exactly 在实际语境中的运用五、exactly 与相似词汇的区别- 比较exactly 与一些相似词汇的区别六、exactly 在实际应用中的价值- 说明exactly 在实际应用场景中的重要性七、总结- 概括全文内容- 强调exactly 在英语学习中的重要性正文:【引言】exactly,这个英语单词在日常生活和学习中频繁出现,掌握了它的构词法,对于提升英语水平有着重要意义。
本文将详细解析exactly 的构词法,并探讨其在英语中的重要性。
【二、exactly 的词源及含义】exactly 这个词来源于拉丁语,由词根ex-(表示“完全”或“离开”)和副词后缀-actly 组成。
exactly 作为一个副词,表示“完全地”、“精确地”或“严格地”。
在英语中,它常常用于强调某个动作或状态的精确性、完美性或一致性。
【三、exactly 的用法】1.用作副词:exactly 主要用作副词,修饰动词、形容词或其他副词,表示强调。
例如:He exactly followed my instructions.(他严格遵循了我的指示。
)2.用作形容词:exactly 也可以用作形容词,表示“精确的”或“准确的”。
例如:an exact science(精确的科学)3.与其他词搭配使用:exactly 还可以与其他词搭配使用,形成一些常用的短语。
例如:exactly right(完全正确)、exactly the same(完全相同)【四、exactly 的常见短语及例句】以下是一些exactly 的常见短语及例句:1.exactly right(完全正确)例句:Your answer is exactly right.(你的答案完全正确。
Exact inference and optimal invariant estimation for the tail coefficient of symmetricα-stable∗distributionsJean-Marie Dufour†C.R.D.E.and D´e partment de Sciences EconomiqueUniversit´e de Montr´e al,Montr´e al,Qu´e bec H3C3J7,CanadaJeong-Ryeol Kurz-Kim‡Deutsche BundesbankWilhelm-Epstein-Straße14,60431Frankfurt am Main,GermanyAbstractBecause of its simplicity the Hill estimator(Hill,1975)is the most popu-lar one for estimation of the stability parameter ofα-stable distributions.Itsconfidence interval forfinite samples,however,can be given only based on theasymptotic distribution,which can be far different from thefinite sample dis-tributions.In this paper,using the Monte-Carlo method we provide the Hillestimator with exact confidence intervals forfinite samples.By performingconfidence intervals forfinite samples,we use the so-called Hodges-Lehmannestimator(Hodges and Lehmann,1963).A powerful advantage of the Hodges-Lehmann estimator is that the truncation parameter for tail,k/n(which de-pends on unknownα)do not need to be assumed as known.It reveals alsothat the Hodges-Lehmann estimate is more efficient than the Hill estimate inthe sense of mean square error.Furthermore,we alsofind that median is theoptimal centering for the Hill estimator.JEL Classification: C1;C15;C22;G0;E0∗The views expressed in this paper are those of the authors,and not necessarily those of the Deutsche Bundesbank.Research support from the Alexander-von-Humboldt Foundation is gratefully acknowledged by the two authors†e-mail:jean.marie.dufour@umontreal.ca‡e-mail:jeong-ryeol.kurz-kim@bundesbank.deKeywords: α-stable distribution;Hill estimator;Monte-Carlo test;exact confidence interval;finite-sample;Hodges-Lehmann estimator.1IntroductionSince the influential works of Mandelbrot(1963),stable Paretian(shortly,α-stable) distributions have often been considered to be a more realistic distribution for high frequency variables,such asfinancial data than the normal distribution,because asset returns,for example,are typically heavy–tailed and excessively peaked around zero—phenomena that can be captured byα-stable distributions withα<2.Statistical inferences for estimations and hypothesis tests under theα-stable distributional assumption depends crucially onα,see DuMouchel(1973a,1975)and Mittnik et al.(1998).Therefore,one of the most important tasks for using theα-stable distribution is tofind exact confidence intervals forfinite samples for estimated α.To discriminateα<2fromα=2would be one example how important it is to know what the exact confidence interval is.However,the confidence interval of all the estimators usually used can be only given by the asymptotic distribution which can be far different from that forfinite samples.The followings are the usually used estimators forα:the most popular estimation forαis the Hill estimator(Hill, 1975)which is a simple nonparametric estimator based on order statistic.Pickands (Pickands,1975)and Dekkers,Einmal and Haan estimator(Dekkers,Einmal and de Haan,1989)are some variations of the Hill estimator.For a roughly checking,the quantile estimation of McCulloch(1986)may be also used.Some modifications are also considered by many authors:Mittnik and Rachev(1998)modify the Pickands estimator using high order approximations and Huisman et al.(2001)propose a weighted Hill estimator taking the trade-offof bias and variance of the Hill estimator into account.One more drawback of the Hill estimator and its modified estimators is that the truncation parameter,ratio of the observations in tails to the sample size,must be known(which depends again on unknownα).In this paper,using Monte Carlo(MC)method we propose an exact test method and at the same time an estimation1 for the stability parameter ofα-stable distri-butions.This is because one can construct an exact confidence interval forfinite samples in the estimation procedures,or rather an estimate in the test procedure. Our MC method improves the Hill estimation in three ways.First,it provides exact confidence intervals forfinite samples.Second,the truncation parameter for tail, k/n do not need to be assumed as known for our estimator.Third,the Monte Carlo estimate is more efficient than the Hill estimate in the sense of mean square error.By doing this,we additionally show that the Hill estimator based on median-relocated data is more efficient than that based on mean-relocated.The rest of the paper is organized as follows.Section2gives a short summary of 1An estimation procedure which is based on MC method is termed Hodges-Lehmann estimation in the literature.See Hodges and Lehmann(1963)for the basic idea.α-stable distributions and Hill estimator. The procedures of estimation and test are described as well. In Section 3, the MC method based estimation and test procedure are explained. In Section 4 various simulation studies demonstrate i) the power of the MC method based test, ii) compare confidence intervals for finite samples of the Hodges-Lehmann estimate with those of the Hill estimate, and iii) efficiency of the two estimates. An empirical application is given in Section 5. Section 6 summarizes the paper and contain some concluding remarks.2 Framework2.1 A brief summary on α-stable distributionsA r.v. X is said to be stable if for any positive numbers A andB , there is a positived number C and a real number D such that AX 1 + BX 2 = CX + D, where X 1 d d and X 2 are independent r.v.’s with X i = X, i =1, 2; and “ = ” denotes equality indistribution. Moreover, C =(A α + B α)1/α for some α ∈ (0, 2], where the exponent α is called index of stability. When 0 <α < 2, the tails of the distribution are thicker than those of the normal distribution. The tails become thicker as α decreases such that moments of order α or higher do not exist. A stable r.v., X , with index α is called α-stable. The α-stable distributions are described by four parameters denoted by S (α, β, µ, σ). Although the α-stable laws are absolutely continuous, their densities can be expressed only by complicated special function except some special cases.2 Therefore, the logarithm of the characteristic function, φ(t ), of the α-stable distribution is the best way of characterizing all members of this family and given as ∞ ln φ(t )=ln e ist d P(S < s )= −σα|t |α[1 − iβ sign(t )tan πα =1,2 ]+ i µt, for α −∞ −σ|t |[1 + iβ π 2sign(t )ln |t |]+ i µt, for α =1, The shape of the α-stable distribution is determined by the stability parameter α.For α =2 t he α-stable distribution reduces to the normal distribution, (i.e. S (2, 0,σ,µ) ≡ N (µ, 2σ2)), the only member of the α-stable family with finite vari-ance. If α< 2, moments of order α or higher do not exist and the tails of the distri-bution become thicker i.e., the magnitude and frequency of outliers (from the view-point of the Gaussian) increase as α decreases. Skewness is governed by β ∈ [−1, 1]. When β = 0, the distribution is symmetric. The location and scale of the α-stable distributions are denoted by µ and σ. The standardized version of the α-stable distribution is given by S ((x − µ)/σ; α, β, 1, 0).2The Gaussian (α = 2) the symmetric Cauchy (α =1,β = 0) and the L´e vy distribution (α =0.5,β = 1) are the special cases whose densities are expressible via elementary functions.Assume that random sequence {X i }∞ is in the domain of attraction 3 (DA) ofi =1 an α-stable law with index α ∈ (0,2). This is equivalent to saying that X 1,X 2,··· are i.i.d. r.v.s and that constants a n > 0and b n ∈ R exist, such thatd b −1(S n −a n ) −→ S (α), (1)n d where S n = X 1 + ···+ X n ; S (α) is an α-stable r.v.;and “−→ ” denotes convergence in distribution. If the X i ’s are α-stable, then (1) holds with b = n n 1 α, and 1−µ(n 1 α−1), for α =1, a n = 2 σln n, for α =1,π(2) dand b −1(S n −a n )= X 1. The assumption that the X i ’s are in the DA of an α-stablen law is more general than assuming that they are α-stable distributed, because the former requires only conditions on the tails of the distribution. DA condition (1) is equivalent toP(|X 1| >x )= x −αL (x ),x > 0, (3) where L (x ) is a slowly varying function.4A strong argument in favor of the α-stable distribution for a distributional assumption for heavy-tailed empirical data is that only the α-stable distribution can serve as limiting distribution of sums of i.i.d. r.v.s as proved in Zolotarev (1986). For more details on the α-stable distributions and discussions of the role of the α-stable distribution in financial market and macroeconometric modelling, see Zolotarev (1986), Samorodnitsky and Taqqu (1994), McCulloch (1996), Rachev et al. (1999) and Rachev and Mittnik (2000).2.2 Hill estimator and two practical problems for its appli-cation2.2.1 Hill estimatorThe most popular estimation for α is Hill-estimator (Hill, 1975) which is a simple nonparametric estimator based on order statistic. Because of its simplicity and popularity, we use Hill estimator for constructing our test statistic.5 Given a sample of n observations, X 1,X 2,...,X n the Hill estimator is given as−1k ˆαH = k −1 ln X n +1−j :n −ln X n −k :n , (4)j =13See Samorodnitsky and Taqqu, 1994, p. 5 for definition of domain of attraction.L (cx )4L (x ) is a slowly varying function as x →∞,if for every constant c >0,lim x →∞ L (x ) existsand is equal to 1. See Ibragimov and Linnik (1971, p. 394) for more details on slowly varying functions.5Basically, any consistent estimator can be used to formulate our test statistic.with standard errorkˆαHSD(ˆαH)= ,(5)(k−1)(k−2)where k is number of observations which lie on the tails of distributions of interest to be optimally chosen depending on the sample size,n,and tail–thickness,α, as k=k(n,α),and X j:n denotes the j-order statistic of the sample size n.The asymptotic properties of the Hill estimator are studied by many authors and now well developed:Mason(1982)and Hsing(1992)consider weak consistency of the Hill estimator for independent and dependent case,respectively.The strong consistency is proved by Deheuvels et al.(1988).Goldie and Smith(1987)provide asymptotic normality of the Hill estimator,i.e.√k(ˆ−α−1)∼N(0,ˆα−2).(6)α−1HFor estimating the tail–thickness parameter via the Hill estimator,however,two practical problems should be solved.Thefirst one is how to choose the truncation parameter,k/n,and the other is how to choose the centering parameter from the empirical data.2.2.2Choice of optimal kThe theoretical relation between k andαcan be also driven from the second-order property as(see de Haan and Peng,1998)α−1k=n.(7)Γ(2−α)sin(π∗α/2)The problem for using this relation is not practicable because k is again a function of the unknownα.Note also that the choice of k involves a tradeoff,because it must be sufficiently small so that the observation,X n−k:n is in the tail of the distribution; but if too small,the estimator will lack precision.Mittnik et al.(1998)provide the optimal truncation parameters for some selected sample sizes andαwhich are chosen by simulation.However,certainly in practice,the true value ofαis not known,so that the relation between k andα—whether theoretical and/or simulative—is only of theoretical interest.This is a severe drawback for the Hill estimator as like Pickands-and Dekkers,Einmal and Haan estimator from the viewpoint of empirical relevance.As will be shown,for our MC method based estimation procedure,namely the Hodges-Lehmann estimator,αdo not need to be assumed as known,which is one of the most attractive advantages for our MC method.2.2.3Centering of data for the Hill estimationThe other practical problem is how to choose a centering parameter for re-location of empirical data for the Hill estimator.Note that the Hill estimator is scale-invariant,but not location-invariant so that X has to be centered in a proper way in the beginning of the estimation.The theoretical centering for variables in the DA of an α-stable law is as given in(2)which contains the unknownα.Despite of existence of thefirst moment for1<α<2,the mean can not often serve optimally as a centering parameter because of itsfluctuation,especiallyαis small.Therefore, median is an alternative choice as centering parameter.Regarding centering we perform two simulations.Thefirst simulation shows how the Hill estimator works if one do not take the non-zero mean into account,i.e.a centering is ignored.The second one shows efficiency of the Hill estimator among three centerings,namely true mean,sample mean and sample median.The case for true mean is not of empirical relevance,but it will be a bench mark for the other two sample statistics.Thefirst simulation is designed asα=1.0,1.25,1.5,1.75,1.95,2,β=0,µ=0,0.1,0.5,1andσ=1with sample size of n=100,250,500,1000,5000 10,000replications were made.For estimation we use the usual Hill estimator. The only difference of the design for the second simulation is thatµ=0and we have three re-locations,where the sample is re-located by true mean,by estimated sample mean and by the estimated sample median.The pseudoα-stable r.v.s were generated with the algorithm of Chambers et al.(1976)improved by Weron(1996).6 The results of the simulations are summarized in Table1and2in Appendix.Table 1shows as is expected that if the non-zero mean is ignored for the Hill estimator the lost of efficiency of the estimate is severe for all adaptedαand n.The lost of efficiency is the more larger,the bigger the difference between the sample mean and zero grows.Table2shows that the case of using the median as a centering parameter is almost as efficient as the case of using the true mean for allαand n adopted in the simulation.Furthermore,it is clearly shown that the case of using the median as a centering parameter is more efficient than those using the mean in the sense of mean square error for allαand n adopted in the simulation.The difference of the two root mean squares for the case median and mean is the larger, the smallerαis,which is expected because of largefluctuation for smallαand the difference remains even for large sample size(n=5000).3 Monte-Calro method based estimation and testprocedureIn this Section,we introduce the Monte-Calro method based estimation and test procedure.The technique of MC method,originally proposed by Dwass(1957)for implementing permutation tests and later extended by Barnard(1963)and recently6The same random generator will be used for all the followings simulations.reconsidered by Dufour(2004),provides an attractive method of building exact testsfrom statistics whosefinite sample distribution is intractable but can be simulated.The most compromising advantage of the MC method is that in contrast to boot-strap techniques and other conventional test methods which have only asymptoticjustification,an exactfinite-sample inference can be obtained.Consequently,the validity of this MC method based exact randomized test does not depend on the number of replications made.For more details on the MC method,see Birnbaum (1974),and Dufour and Kiviet(1998).The idea of the MC based estimator goes back to the work of Hodges and Lehmann(1963).For our random sample a assumption needed is given in the following Assump-tion.Assumption1X is an i.i.d. α-stable distributed r.v., i.e. X1,X2,...,X n∼S(α,0,µ,σ).Note that X is not strictlyα-stable r.v.Assumption1is somewhat a generalizationfrom the usual assumption of standard symmetricα-stable r.v.(i.e.,c=1,µ=0), because the centering parameter is also an important issue from the viewpoint of empirical relevance.Now,we test our random sample,{X1,X2,...,X n},forH0(α0):α=α0.(8)To perform this test,we need a test statistic which is free from nuisance parameters under the null hypothesis.A possible statistic can be given asST=ˆα−α0,(9) whereˆαmay be an any αmay be an any consistent estimator forα.The fact thatˆconsistent estimator forαmeans that our MC method can provide any consistent estimator with exact confidence interval forfinite samples,which is usually basedon asymptotic distributions.This is a strong advantage of our MC method.Specifically,we apply the Hill estimator for our test statistic as:ST H=ˆαHM−α0,(10)where the Hill estimator,αHM,is based on re-located data by median and can be estimated as⎡⎛⎞⎤−1k(α0)ˆαHM(α0)=⎣⎝k−1 ln˜X n+1−j:n⎠−ln˜X n−k:n⎦,(11)j=1˜˜with X i:=X i−X med,where X j:n stands for the j-th order statistic of the samplesize n.Note that the truncation parameter of the Hill estimator in(11)do notdepend any more on unknown truncation parameter for tail k/n,butα0 under the null hypothesis.This enables us to use the theoretical relation between k and n as in(7)and/or the optimal k/n ratio reported in Mittnik et al.(1998).This is a further strong advantage of our MC method besides exact confidence intervals for finite samples.To estimate the stability parameter using our Monte Carlo based method,the test statistic in(10)should be nuisance free.Because the estimator in11is location and scale invariant the test statistic10is pivotal as proved in the following lemma.Proposition1[Invariance] Let X1,X2,...,X n be i.i.d. random variables which follow a S(α,β,µ,σ)distribution, and letˆα=a(X1,X2,...,X n)(12)be an estimator of α.If the estimator ˆαis scale invariant, i.e.ˆα=a(cX1,...,cX n)=a(X1,X2,...,X n),for all c>0,(13)then the estimator ˆαhas a distribution which only depends on α,βand µ/σ.If ˆfurthermore, αis location-scale-invariant, i.e.ˆα=a(cX1+d,...,cX n+d)=a(X1,X2,...,X n),for all c>0and d∈R,(14)ˆthen the estimator αhas distribution which only depends on β.Proof1To get the first result, we observe thatX i/σ∼S(α,β,µ/σ,1),i=1,...,n.(15)Then, using the scale-invariance property (13) with c=1/σ,we can write:ˆα=a(X1/σ,...,X n/σ),(16)from which we see that the distribution of ˆαonly depends on α,βand µ/σ.Similarly, under the location-scale invariance condition (14), the result follows on observing that(X i−µ)/σ∼S(α,β,0,1),i=1,...,n,(17) hence, taking c=1/σand d=−d/σ,∗∗ˆα=a(X1,...,X n),(18)∗=(X i−µ)/σ,i=1,...,n.where XiThe MC based estimation and test procedure is as follows:Given a random sample,{X1,X2,...,X n},which corresponds Assumption1.1Determine the set of possibleαunder null hypothesis.From the viewpoint of empirical relevance it will be reasonablyα0 ∈(12].2Calculate test statistics(ˆαHM−α0)for everyα0,where the step length of two neighborhood ofα0 may be0.01,for example.3Generate typically99or999samples for every element of the set by a stable random variable generator and calculate test statistics.4Compute p-values under the every possible null hypothesis.5Take theˆαHM as the estimate forαat which the p-value has its minimum and will be usually zero.This is Hodges-Lehmann estimate.αl andˆ6Take theˆαr as the left and right limit ofη%confidence interval at which the p-value is(1−η)/100,whereˆαr.This is now the exact confidenceαl<ˆinterval for the Hodges-Lehmann estimate in the step6.In comparison with Hill estimator(and also other usually used Pickands-and Dekkers,Einmahl and de Haan estimator)three advantages of our MC method based estimation and test are summarized once more:first,our MC test provides exact confidence intervals forfinite samples,whereas confidence intervals for the Hill estimates are based on the asymptotic distributions.Second,for our estimation the truncation parameter,k/n must not be assumed to be known.Note that the Hill estimator in(4)contains an unknown truncation parameter for tail,k/n which depends again on the unknownα.This is because in our estimation procedure every possibleαunder H0 is checked and the optimal k/n can be chosen by the theoretical relation in(7)and/or the optimal k/n ratio in Mittnik et al.(1998).Third,as will be shown the distribution of our MC estimates has a smaller bias and a standard deviation as well than that of the Hill estimates.4Simulation studyAnalytical derivatives of distributional properties of the MC estimator and/or con-fidence intervals for bothfinite and asymptotic samples are not tractable.In this section,therefore,via simulation we demonstrate three advantages of our estima-tion and test discussed in the previous section.By doing this,the Hill estimation is performed in two cases,namely by known k/n(henceforth,Hill KNOWN)and un-known k/n(henceforth,Hill UNKNOWN).The known case means that the stability parameterαis known and,hence,the truncation parameter k/n is optimal for the Hill estimation,which is not necessarily realistic.For the empirically more relevantunknown case we choose an initialαrandomly between1and2and determine cor-responding k.This is also not very much realistic,because it means that we have any information aboutαof the data of interest.But,the two case(Hill KNOWN,and Hill UNKNOWN)describe two extremes in the real world and,hence,can be seen as best and worst case that can happen in empirical works.In our simulation study,if αis known we take an optimal truncation parameter k/n from the Table in Mittnik et al.(1998).4.1Power function of the Monte Carlo method based testThe theoretical size and power of the MC method based test is considered in Dufour (2004).Although the discrepancy of the correct size and the superior power of the MC method based test over the conventional test goes to zero as sample size goes infinity,the behavior of power function forfinite sample is usually of interest.To check the power of our MC method based test we perform a simulation study by drawing from symmetricα-stable pseudo-r.v.s re-located by the median. As pseudo-empirical data we take the sameα-stable random sample as generated before,and test H0 =α=α0,whereα0 is assumed to be values from1.0to2.0 in steps of0.1.For sample size n=100,250,5001000,2000,5000and10000are selected and the number of replication is10000.For calculating of the test statistic in(9)containing the Hill estimator,we use as optimal k the numbers tabulated in Mittnik et al.(1998).To demonstrate the power function,we select an usual significance level95%.Figures1shows the power functions for the selectedα,n and percentage points as described before.Figure1somewhere here.As is expected,the power converges to the corresponding ideal value for each given significance level,as the sample size grows.A sample size of2000gives a rather satisfactory power.A large lost of power can be observed in extremely small sample sizes.4.2Comparison of confidence intervalsThe most powerful advantage of the MC test is that it is able to provide exact confidence intervals forfinite samples.The usual standard deviation in5is valid asymptotically which is very likely different from those forfinite samples.To com-pare confidence intervals from the MC test and the Hill estimator we perform a simulation designed as before.Table2summarizes the results.Table1somewhere here.Before a comparison of the three estimates some remarks regarding the exactconfidence intervals of our MC test are in order:the exact confidence intervalsforfinite samples are the more asymmetric,the smaller the sample size is and thehigher the quantile is.Note that the asymptotic distributions of the Hill estimateis symmetric at all sample sizes and all quantiles.In comparison of the confidence intervals of our MC test with those of the asymptotic Hill estimates the former are smaller than the latter.For example,the asymptotic confidence interval at95%for sample size of250is[1.19651.8035]for Hill KNOWN and[1.15961.8404]Hill UNKNOWN,whereas the MC test gives an exactinterval[1.31071.7700].Even a large sample size,for example5000,the asymptotic95%confidence interval([1.42221.5778])still wider than that of the MC([1.46011.5506]).The fact that the exact confidence intervals derived by the MC method aresmaller than those of the asymptotic results forfinite samples means the size ofa test based on the asymptotic results suffers from size distortion.To check thesize distortion,a simulation was made.We use the8Hill estimators used in Ta-ble2in Appendix.Forαwe selectα=1.25,1.5,1.75,1.95and for sample sizen=100,250,500,1000,2000,5000.For each combination forαand n100000repli-cations were made.For evaluating the asymptotic distribution of the Hill estimator,√k(ˆ−α−1)∼N(0,ˆα−2),we use the optimal k from Mittnik et al.(1998).Tableα−1H3a-c show the result of the simulation for size distortion of the Hill estimators.Table2a-c somewhere here.As is expected the size distortion is generally severe for all consideredαandsample sizes when the asymptotic distribution is used for tests forfinite sample.This is valid up to a small difference at all for all considered Hill estimators.Fora given sample size the more severe the size distortion the largerαis.And for all consideredαeven large samples,say5000,the size distortion is not removed orrather likely to become more severe.4.3Efficiency of Hodge-Lehmann estimatorTo compare the performances of the MC estimator with the the Hill estimator,weperform simulations by drawing from symmetricα-stable pseudo-random variables.Specifically,we consideredα-values of1.5and sample size of n=100,250,500,1000,2000,5000.For each of the resulting18(α,n)-combinations we generated1000replications of the corresponding random samples.Table1shows the simulation results.Table3somewhere here.As is expected,the MC method based estimator shows smaller MSEs than those of the Hill UNKNOWN and even the Hill KNOWN estimator for all consideredα’s and sample sizes.The efficiency improvement measured by the ratio between the MSE of the Hill KNOWN estimator and the MSE of the MC method based estimator is approximately70–85%depending on sample size.For the case of unknown k/n—more empirically relevant case—the efficiency improvement is more clearly that the ratio of the two RMSE’s amount to20–60%.Bith the mean absolute deviation and standard deviation of the estimates show the same results as those of the RMSE.5An empirical applicationTo illustrate the use of the Monte Carlo test,we employ two empirical data.They are daily return of the exchange rates of Euro against US$(January04.1999-March31.2005,1571observations)and Dow Jones Index for the same period(1599 observations).Figure2shows empirical densities of the two time series(thick solid line)compared with the normal density(thin solid line).Figure2somewhere here.Each of the empirical densities show excessively peaked around the mean and at the same time thicker tails than those of the normal density.In order to check whether the empirical datafits Assumption1,i.e.symmetric, we use a test in ABC?(Journal of Financial Econometrics)andfind that the two series are symmetric.We estimate the two times series by means of our MC method based test pro-cedure.Table4shows the results of the estimation and the Hodge-Lehmann-type estimates and the corresponding confidence interval are graphically demonstrated in Figure3,where the solid line gives p-values at givenαof the empirical data and the three dotted lines give simulated quantiles of90,95and99%.Table4somewhere here.Figure3somewhere here.Additionally,the estimates by means of the Hill estimation are1.82and1.75for Euro/US$and Dow Jones index,respectively.6Concluding RemarksIn this paper we considered estimation and test of stability parameter ofα-stable distributions using Monte Carlo test.Specifically,we show an application of our MC method based on the Hill estimator,but any estimator can be straightforward used as statistic.The main contribution of the paper is to improve the Hill estimator.It turns out that confidence intervals forfinite samples based on our MC method are shorter than those of asymptotic distributions for anyαon which confidence intervals of the Hill estimator are based.Secondly,our estimate do not need to assume the tail ratio k/n to be known.Furthermore,our estimate is more efficient than the Hill estimator in the sense of mean square error.Based on the maximized MC method proposed by Dufour(2004)an estimation and test for the asymmetric parameter of α-stable distributions are studying by the authors.。