七年级数学线段的长短比较
- 格式:doc
- 大小:35.50 KB
- 文档页数:3
初一数学《比较线段的长短》知识点精讲知识点总结1、线段的性质:两点之间,线段最短。
2、两点之间的距离:两点之间线段的长度叫做两点之间的距离。
3、比较线段长短的方法:(1)目测法;(2)度量法;(3)叠合法4、线段的中点:在线段上,到线段两个端点距离相等的点叫做线段的中点。
5、尺规作图:用没有刻度的直尺和圆规作图6、用尺规作线段:(1)作一条线段等于已知线段;(2)作一条线段等于已知线段的二倍;(3)作一条线段等于已知线段的和或差。
其方法是相同的,都是先画一条射线,然后用圆规在射线上截取即可,注意保留作图痕迹,画完图形后写出总结“某某线段即为所求作的线段”。
尺规作图的定义:仅用圆规和没有刻度的直尺作图的方法叫做尺规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.线段的中点:如下图,若点B在线段AC上,且把线段AC分成相等的两条线段AB与BC,这时点B叫做线段AC的中点.3. 用尺规作线段或比较线段(1)作一条线段等于已知线段:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.要点诠释:几何中连结两点,即画出以这两点为端点的线段.(2)线段的比较:叠合比较法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:要点诠释:线段的比较方法除了叠合比较法外,还可以用度量比较法.如图所示,在一条笔直公路a的两侧,分别有A、B两个村庄,现要在公路a上建一个汽车站C,使汽车站到A、B两村的距离之和最小,问汽车站C的位置应如何确定?【答案与解析】解:如图,连接AB与直线a交于点C,这个点C的位置就是符合条件的汽车站的位置.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】(1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.思维导图教学设计一、教材分析:1、教材的地位和作用本节课是教材第五章《平面图形及其位置关系》的第二节,是平面图形的重要的基础知识。
第2课时线段的长短比较要点感知 1 比较两条线段的长短,我们可用刻度尺分别测量出_____来比较大小,或把其中的一条线段移到________作比较.预习练习1-1 若线段AB=3 cm,CD=2 cm,则下列判断正确的是( )A.AB=CDB.AB>CDC.AB<CDD.不能判断要点感知2 两点之间的所有连线中,线段最短.简单说成:___________.连接两点的线段的_____,叫做这两点间的距离.预习练习2-1 如图,已知从A地到B地共有五条路,小红应选择第______条路最近,用数学知识解释是因为____________.要点感知3 仅用_____和_____作图的方法叫尺规作图.预习练习3-1 如图,已知线段a,借助圆规和直尺作一条线段使它等于3a.要点感知 4 线段上一点将线段分成相等的两条线段,这个点叫做线段的_____.类似地,还有线段的三等分点、四等分点等.预习练习4-1 已知点C是线段AB的中点,AB=4,则BC=_____.知识点1 线段的长短比较1.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法( )A.把两条大绳的一端对齐,然后同一方向上拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选2.如图所示,已知线段AD>BC,则线段AC与BD的关系是( )A.AC>BDB.AC=BDC.AC<BDD.不能确定知识点2 线段基本事实及两点间的距离3.把弯曲的河道改直,能够缩短航程,这样做的道理是( )A.两点之间,射线最短B.两点确定一条直线C.两点之间,线段最短D.两点之间,直线最短4.若点B在线段AC上,AB=10,BC=5,则A,C两点的距离是( )A.5B.15C.5或15D.不能确定知识点3 尺规作图5.已知线段a,b,c,借助圆规和直尺作线段AD,使AD=a+b-c.知识点4 线段中点及等分6.下列式子中,不能说明线段AB上的点C是线段AB的中点的是( )A.AC+CB=ABB.AC=CBC.AB=2ACD.CB=12AB7.(2012·葫芦岛)如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,BC=2 cm,则MC的长是( )A.2 cmB.3 cmC.4 cmD.6 cm8.如图,AB=2,AC=5,延长BC到D,使BD=3BC,求AD的长.9.两点间的距离是指( )A.连接两点的线段B.连接两点的线段的长度C.连接两点的直线的长度D.连接两点的直线10.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快赶到书店,请你帮助他选择一条最近的路线( )A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B11.已知点A,B,C都是直线l上的点,且AB=5 cm,BC=3 cm,那么线段AC的长度是( )A.8 cmB.2 cmC.8 cm或2 cmD.4 cm12.如图,点M,N把线段AB三等分,点C为NB的中点,且CM=6 cm,则AB=_____cm.13.如图,平面上有A、B、C、D4个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出确定蓄水池P的位置,使它与4个村庄的距离之和最小.14.如图,已知线段a,b,c,用圆规和直尺画线段,使它等于2a+b-c.15.已知点O为线段AB的中点,点C为OA的中点,并且AB=40 cm,求AC的长.16.如图,C为线段AB上一点,D是线段AC的中点,E为线段CB的中点.(1)如果AC=6 cm,BC=4 cm,试求DE的长;(2)如果AB=a,试探求DE的长度;(3)若C在线段AB的延长线上,且满足AC-BC=b cm,D、E分别为AC、BC的中点,你能猜想DE的长度吗?直接写出你的结论,不需要说明理由.挑战自我17.线段AB上有两点P、Q,点P将AB分成两部分,AP∶PB=2∶3;点Q将AB也分成两部分,AQ∶QB=4∶1;且PQ=3 cm.求AP,QB的长.参考答案课前预习要点感知1 线段的长度另一条线段上预习练习1-1 B要点感知2 两点之间线段最短长度预习练习2-1 ③两点之间线段最短要点感知3 圆规没有刻度的直尺预习练习3-1 图略,作法略.要点感知4中点预习练习4-1 2当堂训练1.A2.A3.C4.B5.(1)作射线AE.(2)在射线AE上顺次截取AB=a,BC=b.(3)在线段AC上截取CD=c.则线段AD即为所求作的线段.6.A7.B8.因为AB=2,AC=5,所以BC=AC-AB=3.因为BD=3BC=9,所以CD=6.所以AD=AB+BC+CD=11.课后作业9.B 10.B 11.C 12.1213.连接AC、BD的交点即为P点的位置,图略.14.(1)作射线AF.(3)在线段AD 上截取DE =c.则线段AE 即为所求作的线段.15.因为点O 为线段AB 的中点,AB=40 cm ,所以OA=21AB=20 cm. 因为点C 为OA 的中点, 所以AC=21OA=10 cm. 16.(1)CD=21AC=3 cm ,CE=21BC=2 cm ,所以DE=CD+CE=5 cm. (2)因为CD=21AC ,CE=21BC ,所以DE=CD+CE=21AC+21BC=21(AC+BC)=21AB=21a. (3)DE=21b. 17.画出图形设AP =2x cm ,PB =3x cm ,则AB =5x cm.因为AQ ∶QB =4∶1,所以AQ =4x cm ,QB =x cm.所以PQ =PB-QB =2x cm.因为PQ =3 cm ,所以2x =3.所以x =1.5.所以AP =3 cm ,QB =1.5 cm.。
第二讲 比较线段的长短一、两点间的距离两点的距离的定义:连接两点间的线段的长度,叫做这两点的距离. 例1 两点间的距离是指( )A .连接两点的线段的长度B .连接两点的线段C .连接两点的直线的长度D .连接两点的直线例2 如图所示,有一个正方体盒子放在桌面上,一只虫子在顶点A 处,一只蜘蛛在顶点B 处,蜘蛛沿着盒子表面准备偷袭虫子,那么蜘蛛要想最快地捉住虫子,应该怎样走?你能画出来吗?与你的同伴交流一下. 二、线段的基本事实关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短. 例3〈实际应用题〉如图,小明家到小颖家有三条路,小明想尽快到小颖家,应选线路___.三、尺规作图及比较线段的长短尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图,利用尺规作图可以将一条线段移到另一条线段上.用直尺(无刻度)和圆规作一条线段等于已知线段的步骤:(1)利用直尺(无刻度)作一条射线AB ;(2)用圆规量出已知线段的长度a (测量时使圆规两只脚的顶点分别与线段两端点重合,则圆规两只脚的顶点之间的距离即为线段的长度);(3)在射线AB 上用圆规截取AC 使AC =a ,则线段AC 即为所求的线段,如图. 例4 如图,已知线段AB ,用尺规作一条线段等于已知线段AB . 线段长短的比较方法:(1)度量法,用刻度尺分别量出两条线段的长度再比较;(2)叠合法,使两条线段的一个端点重合,另一个端点在同一侧,从而比较出两条线段的长短. 四、线段的中点 1.中点的概念 :若点M 把线段AB 分成相等的两条线段AM 和BM , 则点M 叫线段AB 的中点. 2.对线段的中点的认识:(1)线段的中点是线段上的点,且把线段分成相等的两条线段; (2)一条线段的中点有且只有一个;(3)如图,若M 是AB 的中点,则①AM =BM = AB ;12②AB =2AM =2BM ;③AM +BM =AB 且AM =BM .反过来也成立.例5 已知M 是线段AB 上的一点,下列条件中不能判定M 是线段AB 的中点的是( )个. A .AB =2AM B .BM = AB C .AM =BM D .AM +BM =AB五、课堂检测1.把两点之间线段的__________,叫做这两点之间的距离.两点之间的距离是一个数,它不是线段. 2. 若点B 在直线AC 上,线段AB =10,BC =5,则A ,C 两点间的距离是( )A .5B .15C .5或15D .无法确定3.(中考•徐州)点A ,B ,C 在同一数轴上,其中点A ,B 表示的数分别为-3,1,若BC =2,则AC 等于( )A .3B .2C .3或5D .2或64.两点之间的所有连线中,__________最短.简单说成两点之间________最短. 5.如图,从A 地到B 地共有三条路,其中走________最近,理由是________________________.6.如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是( )A .经过一点有无数条直线B .经过两点,有且仅有一条直线C .两点之间,线段最短D .以上都不对7.比较两条线段的长短,我们可以用刻度尺分别测量出它们的________来比较,即度量法,或者把其中的一条线段移到__________________作比较,即叠合法. 8.下列图形中能比较大小的是( )A .两条线段B .两条直线C .直线与射线D .两条射线9.如图,AB =CD ,则AC 与BD 的大小关系是( )A .AC >BDB .AC <BD C .AC =BDD .无法确定10.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条较长的绳子,请你为他们选择一种合适的方法( )A .把两条大绳的一端对齐,另外两端在公共端点的同侧,然后拉直两条大绳,另一端在外面的即为长绳B .把两条绳子接在一起C .把两条绳子重合,观察另一端情况D .没有办法挑选11.把一条线段分成__________的两条线段的点,叫做线段的中点.若点M 是线段AB 的中点,则有AM =________= ________,或AB =2________=2________.121212.(中考•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.13.(中考•长沙)如图,C,D是线段AB上的两点,且D是线段AC的中点,若AB=10 cm,BC=4 cm,则AD的长为()A.2 cm B.3 cm C.4 cm D.6 cm14.已知线段AB=8 cm,点C是直线AB上一点,BC=2 cm,若M是AB的中点,N是BC的中点,则线段MN的长度是()A.5 cm B.7 cm或3 cm C.5 cm或3 cm D.7 cm15.已知数轴上有点A,B,C,它们所表示的有理数分别是6,-8,x.(1)求线段AB的长;(2)求线段AB的中点D表示的数;(3)已知AC=8,求x的值.16.平面上有A,B两点,且AB=7 cm.(1)若在该平面上找一点C,使CA+CB=7 cm,则点C在何处?(2)若使CA+CB>7 cm,则点C在何处?(3)是否存在点C,使得CA+CB<7 cm?17.已知线段a,b,c(a>c),如图所示.求作:线段AB,使AB=a+b-c.18.如图,已知点A,B,C,D,E在同一直线上,且AC=BD,点E是线段BC的中点.(1)点E是线段AD的中点吗?说明理由;(2)当AD=10,AB=3时,求线段BE的长度.19.如图,若线段AB =20 cm ,点C 是线段AB 上一点,M ,N 分别是线段AC ,BC 的中点. (1) 求线段MN 的长.(2)根据(1)中的计算过程和结果,设AB =a ,其他条件不变,你能猜出MN 的长度吗?请用一句简洁的话表达你发现的规律.【思路点拨】本题的解题关键是先将MN 分成MC ,NC 两段,而MC = AC ,NC = BC ,后又将 AC + BC 转化成 AB 进行计算.1212121212。
1 / 1 比较线段的长短
1.比较线段的长短
(1)比较两条线段长短的方法有两种:度量比较法、重合比较法.
就结果而言有三种结果:AB CD > 、AB CD = 、AB CD < .
(2)线段的中点:把一条线段分成两条相等的线段的点.
(3)线段的和、差、倍、分及计算
做一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段.
如图,AB BC = ,C 为AB 中点, 12AC AB = ,2AB AC =,D 为CD 中点,则1124
CD DB CB AB ===,4AB CD =,这就是线段的和、差、倍、分.。
七年级数学上册第35课时线段的长短比较说课稿新)湘教版一. 教材分析《湘教版七年级数学上册》第35课时主要内容是线段的长短比较。
本节课的内容是在学生已经掌握了线段的定义和性质的基础上进行教学的。
教材通过具体的实例和图片,引导学生探究线段的长度比较方法,培养学生的观察能力和思维能力。
教材还通过练习题的形式,帮助学生巩固所学知识,提高解题能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对线段的定义和性质有一定的了解。
但是,学生对线段的长度比较方法还没有明确的认知,需要通过实例和操作来进一步理解和掌握。
此外,学生的观察能力和思维能力还需要进一步培养和提高。
三. 说教学目标1.知识与技能目标:学生能够理解线段的长度比较方法,并能够运用到实际问题中。
2.过程与方法目标:通过观察实例和操作,学生能够培养观察能力和思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学的兴趣和信心。
四. 说教学重难点1.教学重点:线段的长度比较方法。
2.教学难点:如何引导学生理解和掌握线段的长度比较方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法和小组合作学习法。
2.教学手段:利用多媒体课件和实物模型进行教学。
六. 说教学过程1.导入:通过展示一些实际问题,引导学生思考如何比较线段的长度。
2.新课导入:介绍线段的长度比较方法,并通过实例进行讲解和演示。
3.课堂讲解:通过讲解和分析实例,让学生理解线段的长度比较方法。
4.课堂练习:让学生通过练习题来巩固所学知识。
5.小组讨论:让学生分组讨论,共同解决问题,培养学生的合作能力。
6.课堂小结:总结本节课所学内容,强调重点和难点。
7.课后作业:布置练习题,让学生进一步巩固所学知识。
七. 说板书设计板书设计要简洁明了,能够突出教学重点。
可以设计一个简单的线段长度比较的图示,配合文字说明,帮助学生理解和记忆。
八. 说教学评价教学评价可以通过课堂练习、课后作业和小组讨论来进行。
华师大版数学七年级上册《线段的长短比较》教学设计一. 教材分析《线段的长短比较》是华师大版数学七年级上册的一章内容,主要介绍了线段的长度比较方法。
本章节在学生的数学知识体系中占据重要地位,为学生后续学习几何图形和其他复杂数学概念打下基础。
教材通过生动的图形和实例,引导学生理解线段长度比较的方法,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在进入七年级之前,已经掌握了初步的数学知识,包括实数运算、图形认知等。
但他们对线段的认知仍较为基础,对线段长度比较的方法和技巧尚不熟悉。
因此,在教学过程中,需要关注学生的认知水平,通过合适的教学方法激发学生的学习兴趣,帮助他们理解和掌握线段长度比较的方法。
三. 教学目标1.知识与技能:使学生理解线段长度比较的方法,能够运用相关知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:线段长度比较的方法及其应用。
2.难点:对线段长度比较方法的理解和灵活运用。
五. 教学方法1.情境教学法:通过生活实例和图形,激发学生学习兴趣,引导学生主动探究。
2.启发式教学法:提问引导学生思考,培养学生解决问题的能力。
3.合作学习法:小组讨论、分享,提高学生交流和合作能力。
4.实践操作法:让学生亲自动手操作,加深对知识的理解和记忆。
六. 教学准备1.准备相关图形和实例,用于课堂演示和练习。
2.准备课件,辅助教学。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:比较两条线段的长度。
例如,教室的长度为10米,宽度为8米,请问哪条线段更长?引导学生思考并回答问题。
2.呈现(10分钟)展示一些线段,让学生观察并尝试比较它们的长度。
通过实际操作,引导学生发现线段长度比较的方法。
同时,讲解线段长度比较的原理,引导学生理解。
北师大版数学七年级上册4.2《比较线段的长短》教学设计一. 教材分析《比较线段的长短》是北师大版数学七年级上册第4章《几何图形》中的一个知识点。
这部分内容主要是让学生掌握比较线段长短的方法,培养学生的观察、操作和推理能力。
教材通过生活实例引入线段的比较,让学生在实际情境中体会数学与生活的联系,感受数学的价值。
二. 学情分析七年级的学生已经具备了一定的空间观念和逻辑思维能力,但对线段的认识还停留在直观层面。
因此,在教学过程中,教师需要从学生的实际出发,引导学生通过观察、操作、思考、交流等活动,逐步理解和掌握线段的比较方法。
三. 教学目标1.知识与技能:让学生掌握比较线段长短的方法,能运用这些方法解决实际问题。
2.过程与方法:培养学生的观察、操作和推理能力,提高学生解决问题的能力。
3.情感态度与价值观:让学生感受数学与生活的联系,体验数学的价值。
四. 教学重难点1.重点:比较线段长短的方法。
2.难点:如何在实际问题中灵活运用比较线段长短的方法。
五. 教学方法1.情境教学法:通过生活实例引入线段的比较,激发学生的学习兴趣。
2.观察法:引导学生观察线段的特点,发现比较线段长短的方法。
3.操作法:让学生动手操作,加深对线段比较方法的理解。
4.讨论法:分组讨论,培养学生的合作意识和沟通能力。
六. 教学准备1.教学课件:制作课件,展示线段比较的方法和实际应用。
2.教学素材:准备一些生活中的图片和实例,用于导入和巩固环节。
3.学具:为学生准备尺子、直线等工具,便于操作和实践。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的线段,如尺子、书桌、道路等,引导学生关注线段。
然后提出问题:“如何比较这些线段的长短?”激发学生的思考和兴趣。
2.呈现(10分钟)展示一些线段,让学生观察并尝试比较它们的长短。
引导学生发现,可以通过观察线段的形状、位置和度量工具来比较长短。
同时,介绍线段的度量方法,如用尺子量、用直角三角板比较等。
北师大版数学七年级上册《2 比较线段的长短》教学设计3一. 教材分析《2 比较线段的长短》是北师大版数学七年级上册的教学内容。
这部分内容主要包括线段的比较,目的让学生理解线段的大小比较方法,能够运用这些方法解决实际问题。
教材通过引入生活中实际的情景,让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。
二. 学情分析七年级的学生已经具备了一定的几何图形的基础知识,对长度、角度等概念有初步的认识。
但线段的长短比较对他们来说还是一种新的认识,需要通过具体的活动和操作,让学生在实际操作中感受和理解线段的长短比较方法。
三. 教学目标1.让学生理解线段长短比较的方法,并能够运用这些方法解决实际问题。
2.培养学生的观察能力、动手操作能力和逻辑思维能力。
3.激发学生学习数学的兴趣,感受数学与生活的紧密联系。
四. 教学重难点1.重点:线段长短比较的方法。
2.难点:如何运用线段长短比较的方法解决实际问题。
五. 教学方法采用问题驱动法、操作实验法、小组合作法等教学方法,引导学生观察、思考、操作、交流,从而理解线段长短比较的方法。
六. 教学准备1.准备长短不同的线段模型。
2.准备练习题和作业。
3.准备教学课件。
七. 教学过程1.导入(5分钟)通过生活中的实际问题,如裁缝师傅剪裁衣服时需要比较布料的长度,引发学生对线段长短比较的思考。
2.呈现(10分钟)教师展示长短不同的线段模型,让学生直观地感受线段的长短。
同时,引导学生思考:如何比较这些线段的长短?3.操练(10分钟)学生分组进行线段长短比较的实验,通过实际操作,总结出比较线段长短的方法。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师通过出示不同长度的线段,让学生运用刚刚学到的方法进行比较。
同时,让学生解释比较的依据,加深对线段长短比较方法的理解。
5.拓展(10分钟)让学生运用线段长短比较的方法解决实际问题,如计算比赛路线的长度、设计不等式等。
6.小结(5分钟)教师引导学生总结本节课所学的内容,巩固线段长短比较的方法。
浙教版数学七年级上册6.3《线段的长短比较》教学设计一. 教材分析浙教版数学七年级上册6.3《线段的长短比较》是学生在学习了平面几何基本概念的基础上进一步探究线段长度的比较。
本节内容通过实际问题引入,让学生在解决实际问题的过程中,体会线段长度比较的方法,培养学生的空间想象能力和解决问题的能力。
教材以学生为主体,注重引导学生的思考,培养学生的创新意识。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念,对图形的认知有一定的基础。
但线段长度的比较对于他们来说是一个新的概念,需要通过实例来理解和掌握。
此外,学生的空间想象能力和解决问题的能力参差不齐,需要在教学中进行因材施教。
三. 教学目标1.理解线段长度的比较方法,掌握比较线段长短的技巧。
2.培养学生的空间想象能力和解决问题的能力。
3.增强学生的团队协作意识,提高学生的表达沟通能力。
四. 教学重难点1.重点:线段长度的比较方法。
2.难点:如何运用线段长度的比较方法解决实际问题。
五. 教学方法1.情境教学法:通过实际问题引入,激发学生的学习兴趣,培养学生解决问题的能力。
2.互助教学法:分组讨论,让学生在合作中学习,提高团队协作能力。
3.实例教学法:通过具体案例,让学生加深对线段长度比较方法的理解。
六. 教学准备1.准备相关案例和实际问题,用于导入和巩固环节。
2.准备线段模型或教具,用于展示和操作环节。
3.准备练习题,用于课后巩固和拓展环节。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如:“在一条直线上,如何比较两条线段的长度?”让学生思考并讨论,引发学生对线段长度比较的兴趣。
2.呈现(10分钟)展示线段模型或教具,引导学生观察和描述线段的长度。
让学生通过观察和操作,初步认识线段长度的比较方法。
3.操练(10分钟)分组讨论,让学生在合作中学习线段长度的比较方法。
每组选取一个实例,运用线段长度比较方法进行操作和解释。
教师巡回指导,解答学生疑问。