一轮第二讲:不等式的解法
- 格式:doc
- 大小:114.32 KB
- 文档页数:4
高三数学第一轮复习:不等式的解法【本讲主要内容】不等式的解法【知识掌握】 【知识点精析】“≥”是不等“>”与方程“=”的联合体,故相应解集是不等式解集与方程解集的并集。
1. 常见不等式的解法步骤:(1)对ax>b 形式的不等式,当a>0时解集为⎪⎭⎫⎝⎛+∞,a b ,当a<0时解集为()-∞,b a ,当a =0且b<0时解集为R ,当a =0且b ≥0时,解集为Φ;因未限制a 的符号,故ax<b 可改为-ax>-b 不必另行列出。
2224c 。
(3)特殊的高次不等式f (x )>0或f (x )<0的解法关键是把函数式y =f (x )进行因式分解,依次得到方程f (x )=0的若干个解,用数轴标根法求解,要特别注意重根的情况的处理。
(4)分式不等式的解法关键是不能像分式方程那样去分母,而是采用移项、通分整理,变成标准型)()(x g x f >0或)()(x g x f <0,分解因式,类似高次不等式,用序根法求出。
(5)无理不等式,要注意两条:一是有意义的范围(偶次方根下被开方数非负),二是式子两边偶次方的前提是两边非负。
不能保证两边非负,就要进行讨论。
形如:)(x f >g (x )⇔⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧>>≥<≥2)]([)(0)(0)(0)(0)(x g x f x g x f x g x f 或; 形如:)(x f <g (x )⇔ ⎪⎩⎪⎨⎧<≥≥2)]([)(0)(0)(x g x f x g x f ;形如:)(x f >)(x g ⇔⎪⎩⎪⎨⎧>≥≥)()(0)(0)(x g x f x g x f ;(6)指数、对数不等式,化为同底的方法是指数、对数不等式的基本解法,要注意定义域为前提,且必须在原始不等式中求定义域,在无法确定指数、对数函数的单调性时,必须推论底与1的大小关系,然后分类解答。
不等式的解法不等式是数学中的一种基本关系符号,用于表示两个数的大小关系。
解不等式就是找到使不等式成立的数值范围,即满足不等式条件的数值。
在解不等式时,我们需要注意不等式的不同类型,包括一元一次不等式、一元二次不等式、绝对值不等式等。
下面将分别介绍这些类型不等式的解法。
一元一次不等式的解法:一元一次不等式的一般形式为:ax + b > c,其中a、b、c为已知常数,x为未知数。
我们可以按照以下步骤来解一元一次不等式:1. 将不等式转化为等价的形式,即去掉不等号,得到ax + b = c。
2. 根据已知条件和不等式的类型,确定不等号方向。
3. 利用正、负数的性质,将不等式中的未知数系数与常数项分离,得到x > c/a的形式。
4. 根据解集的要求,确定解的范围,即x的取值范围。
一元二次不等式的解法:一元二次不等式的一般形式为:ax^2 + bx + c > 0,其中a、b、c为已知常数,x为未知数。
解一元二次不等式的一种常用方法是利用因式分解和区间判断法,具体步骤如下:1. 将不等式转化为等价的形式,即ax^2 + bx + c = 0。
2. 根据已知条件和不等式的类型,确定不等号方向。
3. 利用因式分解将二次项拆解,得到(x + m)(x + n) > 0的形式。
4. 根据区间判断法,确定(x + m)(x + n)的符号性质,并绘制出二次函数的图像。
5. 根据二次函数图像和解集的要求,确定不等式的解集。
绝对值不等式的解法:绝对值不等式的一般形式为:|ax + b| > c,其中a、b、c为已知常数,x为未知数。
解绝对值不等式的一种常用方法是利用绝对值的性质和分情况讨论,具体步骤如下:1. 将不等式转化为等价的形式,即ax + b > c或ax + b < -c。
2. 将不等式分为两种情况讨论:- 当ax + b > c时,得到ax + b - c > 0的形式,利用绝对值的非负性质得到ax + b - c = ax + b - c > 0,即ax + b - c = ax + b > c。
高考数学一轮复习不等式的解法(2)导学案文文知识梳理:1、一元二次不等式a与相应的二次函数y=a,相应的一元二次方程a=0之间的关系如下表:判别式二次函数y=a的图象一元二次方程a=0一元二次不等式a一元二次不等式a解一元二次不等式的基本步骤:(1)、整理系数,一般使最高项的系数为正;(2)、尝试用字相乘法因式分解;(3)、计算判别式;(4)、结合二次函数图象的特征写出解集;2、分式不等式的解法思路:将不等式整理为:的形式,再转化为整式不等式求解,即:3、三角不等式的解法:数形结合4、绝对值不等式解法:|ax+b| ,或|ax+b|型不等式解法;cc二、题型探究探究一、一元二次不等式例1:已知关于x的不等式a的解集是(- ,),求-c的解集。
探究二:利用函数的图象和性质解不等式例2:解不等式)探究三:利用三角函数的图象和性质解不等式例3:已知函数f(x)=2six+sin2x,x,求使x为正值的x的集合。
探究四:含有参数的不等式例4:解关于x的不等式(aR)三、方法提升解不等式的过程就是依据不等式的性质或函数的图象和性质进行恒等变形的过程,要注意对数函数和真数和底数的取值范围和对参数的讨论。
四、反思感悟五、课时作业1、不等式的解集是()2、已知不等式的解集为,不等式的解集为,不等式的解集为,则等于()3、设函数都上定义在上的奇函数,不等式的解集为,不等式的解集为,其中,则不等式的解集是()4、若不等式对一切实数恒成立,则实数的取值范围是、5、已知的解集为,则不等式的解集是、6、已知关于的不等式的解为或,则不等式的解集为、7、解不等式、8、解不等式:(1);(2)、10、若不等式对满足的所有都成立,求的取值范围、。
不等式的解法及知识点
不等式解法有哪些?对此想了解不等式的朋友可以来看看,下⾯由店铺⼩编为你准备了“不等式的解法及知识点”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!
不等式的解法及知识点
不等式的解法
不等式的解法:1、找出未知数的项、常数项,该化简的化简。
2、未知数的项放不等号左边,常数项移到右边。
3、不等号两边进⾏加减乘除运算。
4、不等号两边同除未知数的系数,注意符号的改变。
不等式知识点
拓展阅读:不等式的基本性质
1.如果x>y,那么y<X;如果Yy;(对称性)
2.如果x>y,y>z;那么x>z;(传递性)
3.如果x>y,⽽z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同⼀个整式,不等号⽅向不变;
4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同⼀个⼤于0的整式,不等号⽅向不变;
5.如果x>y,z<0,那么xz<YZ, p 即不等式两边同时乘以(或除以)同⼀个⼩于0的整式,不等号⽅向改变;
6.如果x>y,m>n,那么x+m>y+n;
7.如果x>y>0,m>n>0,那么xm>yn;
8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<Y的N次幂(N为负数)。
2021高三统考北师大版数学一轮课时作业:第7章第2讲一元二次不等式的解法含解析课时作业1.下列不等式中解集为R的是()A.-x2+2x+1≥0 B.x2-25x+错误!〉0C.x2+6x+10〉0 D.2x2-3x+4<0答案C解析在C项中,对于方程x2+6x+10=0,Δ=36-40=-4<0,所以不等式的解集为R。
2.若0<m<1,则不等式(x-m)错误!<0的解集为()A.错误!B.错误!C.错误!D。
错误!答案D解析当0〈m〈1时,m〈错误!,故不等式(x-m)错误!<0的解集为错误!.3.(2019·潍坊模拟)函数f(x)=错误!的定义域是()A.(-∞,1)∪(3,+∞)B.(1,3)C.(-∞,2)∪(2,+∞) D.(1,2)∪(2,3)答案D解析由题意知错误!即错误!故函数f(x)的定义域为(1,2)∪(2,3).故选D。
4.若集合A={x|x2-x<0},B={x|(x-a)(x+1)〈0},则“a〉1”是“A∩B≠∅”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析由题意得A={x|0<x〈1},因为A∩B≠∅,所以只需要满足条件a〉0即可,所以“a>1”是“A∩B≠∅”的充分不必要条件.5.(2019·吉林模拟)不等式x2-2x+m>0对一切实数x恒成立的充要条件是()A.m〉2 B.0<m〈1C.m>0 D.m>1答案D解析若不等式x2-2x+m>0对一切实数x恒成立,则对于方程x2-2x+m=0,Δ=4-4m<0,解得m>1,所以m〉1是不等式x2-2x+m〉0对一切实数x恒成立的充要条件,结合选项知选D。
6.(2019·郑州模拟)已知关于x的不等式错误!>0的解集是(-∞,-1)∪错误!,则a的值为()A.-1 B.错误!C.1 D.2答案D解析由题意可得a≠0且不等式等价于a(x+1)错误!>0,由解集的特点可得a〉0且错误!=错误!,故a=2.故选D.7.(2019·江西九江模拟)不等式(a2-4)x2+(a+2)x-1≥0的解集是空集,则实数a的取值范围为()A。
第2讲 不等式的性质及其解法学校____________ 姓名____________ 班级____________一、知识梳理1.两个实数比较大小的方法(1)作差法⎩⎨⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b .(2)证明不等式还常用综合法、反证法和分析法. 2.不等式的性质 (1)不等式的性质①可加性:a >b ⇔a +c >b +c ; ②可乘性:a >b ,c >0⇒ac >bc ; a >b ,c <0⇒ac <bc ;③传递性:a >b ,b >c ⇒a >c ; ④对称性:a >b ⇔b <a . (2)不等式的推论①移项法则:a +b >c ⇔a >c -b ;②同向不等式相加:a >b ,c >d ⇒a +c >b +d ; ③同向不等式相乘:a >b >0,c >d >0⇒ac >bd ; ④可乘方性:a >b >0⇒a n >b n (n ∈N ,n >1); ⑤可开方性:a >b >0⇒a >b . 3.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程的思想. 4.三个“二次”间的关系判别式 Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数 y =ax 2+bx +c (a >0)的图像一元二次方程 ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2) 有两相等实根 x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅ ∅5.1212的解集是(x 1,x 2),不等式12)>0的解集是(-∞,x 1)∪(x 2,+∞).6.分式不等式及其解法 (1)f (x )g (x )>0(<0)⇔f (x )·g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔f (x )·g (x )≥0(≤0)且g (x )≠0. 二、考点和典型例题1、不等式的性质【典例1-1】(2022·安徽·芜湖一中高三阶段练习(文))已知0a b c d >>>>,且a d b c +=+,则以下不正确的是( )A .a c b d +>+B .ac bd >C .ad bc <D .a cb d>【典例1-2】(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是( )A .22a b >B .11b b a a +<+ C .22ac bc > D .332a b -+>【典例1-3】(2022·重庆八中模拟预测)(多选)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是( ) A .1ab ≤B .2a b +≥C .1a b ->D .3a b -<【典例1-4】(2022·广东汕头·二模)(多选)已知a ,b ,c 满足c <a <b ,且ac <0,那么下列各式中一定成立的是( ) A .ac (a -c )>0B .c (b -a )<0C .22cb ab <D .ab ac >【典例1-5】(2022·福建三明·模拟预测)(多选)设a b c <<,且0a b c ++=,则( ) A .2ab b <B .ac bc <C .11a c< D .1c ac b-<- 2、不等式的证明和解法【典例2-1】(2021·重庆市涪陵高级中学校高三阶段练习)已知{}{}2|430,||1|1A x x x B x x =-+≤=-≤(1)求集合A 和B ; (2)求A ∪B ,A ∩B ,【典例2-2】(2021·全国·高三专题练习)已知常数a ∈R ,解关于x 的不等式2212x ax a ->.【典例2-3】(2022·全国·高三专题练习)已知0a >,0b >2,求证:(1)2≤; (2)22216a b ≤+<.【典例2-4】(2022·安徽·芜湖一中三模(文))已知函数()12f x x x =---. (1)求函数()f x 的值域;(2)已知0a >,0b >,且221a b +=,不等式()2211422f x a b ≤+恒成立,求实数x 的取值范围. 【典例2-5】(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数. (1)求24a a +的最小值; (2)求证:bc ac ab a b c a b c++≥++. 不等式的综合应用【典例3-1】(2021·宁夏·青铜峡市宁朔中学高三阶段练习(文))若函数243y kx kx =++对任意x ∈R 有0y >恒成立,则实数k 的取值范围为( )A .30,4⎡⎫⎪⎢⎣⎭B .3,4⎛⎫+∞ ⎪⎝⎭C .(),0-∞D .30,4⎡⎤⎢⎥⎣⎦【典例3-2】(2022·全国·高三专题练习)若关于x 的不等式()2330-++<x m x m 的解集中恰有3个正整数,则实数m 的取值范围为( ) A .[)2,1--B .()3,4C .(]5,6D .(]6,7【典例3-3】(2022·浙江·高三专题练习)若不等式2430mx mx +-<对任意实数x 恒成立,则实数m 的取值范围为_______.【典例3-4】(2021·福建省南平市高级中学高三阶段练习)命题“x R ∃∈,2290x mx ++<”为假命题,则实数m 的取值范围是___________.【典例3-5】(2021·黑龙江·嫩江市高级中学高三阶段练习(理))已知函数2()2f x x ax =-+-,[1,3]x ∈ (1)若()0f x <恒成立,求a 的范围. (2)求()f x 的最小值()g a .第2讲 不等式的性质及其解法学校____________ 姓名____________ 班级____________一、知识梳理1.两个实数比较大小的方法(1)作差法⎩⎨⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b .(2)证明不等式还常用综合法、反证法和分析法. 2.不等式的性质 (1)不等式的性质①可加性:a >b ⇔a +c >b +c ; ②可乘性:a >b ,c >0⇒ac >bc ; a >b ,c <0⇒ac <bc ;③传递性:a >b ,b >c ⇒a >c ; ④对称性:a >b ⇔b <a . (2)不等式的推论①移项法则:a +b >c ⇔a >c -b ;②同向不等式相加:a >b ,c >d ⇒a +c >b +d ; ③同向不等式相乘:a >b >0,c >d >0⇒ac >bd ; ④可乘方性:a >b >0⇒a n >b n (n ∈N ,n >1); ⑤可开方性:a >b >0⇒a >b . 3.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程的思想. 4.三个“二次”间的关系判别式 Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数 y =ax 2+bx +c (a >0)的图像一元二次方程 ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2) 有两相等实根 x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅ ∅5.1212的解集是(x 1,x 2),不等式12)>0的解集是(-∞,x 1)∪(x 2,+∞).6.分式不等式及其解法 (1)f (x )g (x )>0(<0)⇔f (x )·g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔f (x )·g (x )≥0(≤0)且g (x )≠0. 三、考点和典型例题3、不等式的性质【典例1-1】(2022·安徽·芜湖一中高三阶段练习(文))已知0a b c d >>>>,且a d b c +=+,则以下不正确的是( )A .a c b d +>+B .ac bd >C .ad bc <D .a cb d>【答案】D 【详解】0a b >>,0c d a c b d >>⇒+>+,ac bd >,故A ,B 正确;()()220a d b c a d b c ->->⇒->-,即()()2244a d ad b c bc ad bc +->+-⇒<,故C 正确;对ad bc <两边同除bd 得a cb d<,故D 错误. 故选:D.【典例1-2】(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是( ) A .22a b > B .11b b a a +<+ C .22ac bc > D .332a b -+>【答案】D 【详解】对于A :当2a =,4b =-时不成立,故A 错误;对于B :当12a =-,1b =-,所以2ba =,101b a +=+,即11b b a a +>+,故C 错误;对于C :当0c 时不成立,故C 错误;对于D :因为a b >,所以330a b >>,又30b ->,所以33332b a b b --≥+>+=(等号成立的条件是0b =),故D 正确. 故选:D.【典例1-3】(2022·重庆八中模拟预测)(多选)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是( ) A .1ab ≤ B .2a b +≥ C .1a b -> D .3a b -<【答案】ABD 【详解】对于A ,由3ab a b ++= ,a b +≥ ,当且仅当a b = 时等号成立,3ab ∴+≤ ,)310≤ ,1ab ∴≤ ,当且仅当1a b == 时等号成立,故A 正确; 对于B ,由3ab a b ++=,得()()4114,11a b b a ++=∴+=+ , 由基本不等式得)44(1)(1)21212211a b a b a a a +=+++-=++-≥-=++ ,当且仅当a=b =1时成立;故B 正确;对于C ,若1,1,a b == 满足3ab a b ++=,01a b -=<,故C 错误;对于D ,∵3ab a b ++=,∴3ab a b a b =+++> ,由B 的结论得23a b ≤+< ,()()()()222949439a b a b ab a b a b --=+--=+--+-⎡⎤⎣⎦()()()()2421730a b a b a b a b =+++-=+++-<,()29,3a b a b ∴--<< ,故D 正确; 故选:ABD.【典例1-4】(2022·广东汕头·二模)(多选)已知a ,b ,c 满足c <a <b ,且ac <0,那么下列各式中一定成立的是( ) A .ac (a -c )>0 B .c (b -a )<0 C .22cb ab < D .ab ac >【答案】BCD 【详解】解:因为a ,b ,c 满足c <a <b ,且ac <0, 所以0,0,0,0,0c a b a c b a <>>->->,所以ac (a -c )<0 ,c (b -a )<0,22cb ab <,ab ac >, 故选:BCD【典例1-5】(2022·福建三明·模拟预测)(多选)设a b c <<,且0a b c ++=,则( ) A .2ab b < B .ac bc < C .11a c< D .1c ac b-<- 【答案】BC 【详解】因为a b c <<,0a b c ++=,所以0<<a c ,b 的符号不能确定, 当0b =时,2ab b =,故A 错误,因为a b <,0c >,所以ac bc <,故B 正确, 因为0<<a c ,所以11a c<,故C 正确, 因为a b <,所以a b ->-,所以0c a c b ->->,所以1c ac b->-,故D 错误, 故选:BC4、不等式的解法【典例2-1】(2021·重庆市涪陵高级中学校高三阶段练习)已知{}{}2|430,||1|1A x x x B x x =-+≤=-≤(1)求集合A 和B ; (2)求A ∪B ,A ∩B ,【答案】(1){}13A x x =≤≤;{}02B x x ≤≤ (2){}03A B x x ⋃=≤≤;{}12A B x x ⋂=≤≤ 【解析】 (1)解:解不等式2430x x -+≤得13x ≤≤,所以{}13A x x =≤≤, 解不等式|1|1x -≤得02x ≤≤,所以{}02B x x ≤≤; (2)解:{}03A B x x ⋃=≤≤,{}12A B x x ⋂=≤≤.【典例2-2】(2021·全国·高三专题练习)已知常数a ∈R ,解关于x 的不等式2212x ax a ->. 【详解】∵2212x ax a ->,22120x ax a ∴-->,即(4)(3)0x a x a +->, 令(4)(3)0x a x a +-=,解得14ax =-,23a x =, ①当0a >时43a a -<,解集为4a xx ⎧<-⎨⎩∣或3a x ⎫>⎬⎭; ②当0a =时,20x >,解集为{xx R ∈∣且0}x ≠; ③当0a <时,43a a ->,解集为3a xx ⎧<⎨⎩∣或4a x ⎫>-⎬⎭. 综上所述:当a >0时,不等式的解集为4a xx ⎧<-⎨⎩∣或3a x ⎫>⎬⎭; 当a =0时,不等式的解集为{xx R ∈∣且0}x ≠; 当a <0时,不等式的解集为3a xx ⎧<⎨⎩∣或4a x ⎫>-⎬⎭. 【典例2-3】(2022·全国·高三专题练习)已知0a >,0b >2,求证:(1)2≤; (2)22216a b ≤+<. 【解析】(1)2,且0,0a b >>,所以20≥>,当且仅当1a b ==时,取“=”,所以01<,所以2==. (2)由2222()2,4a b a b ab a b +=+-+=--所以221642216a b ab ab ab +=--=-222(16)164)162(416ab =--=-=-,01ab <,所以344≤<,所以29(416≤<,所以218232≤<(, 所以22216a b ≤+<.【典例2-4】(2022·安徽·芜湖一中三模(文))已知函数()12f x x x =---. (1)求函数()f x 的值域;(2)已知0a >,0b >,且221a b +=,不等式()2211422f x a b ≤+恒成立,求实数x 的取值范围. 【答案】(1)[]1,1-(2)74⎛⎤-∞ ⎥⎝⎦,【解析】 (1)解:当2x ≥时,()()()12=12=1f x x x x x =------; 当1x ≤时,()()()12=12=1f x x x x x =-----+--;当12x <<时,()()()12=12=23f x x x x x x =----+--,所以 ()()1,1f x ∈-, 综上函数()f x 的值域为[]1,1- (2)因为221a b +=,()22222222111112222222b a a =b a b a b ⎛⎫+⨯+++≥+ ⎪⎝⎭+,当且仅当222222=b a a b ,即=a b 时等号成立,要使不等式()2211422f x a b ≤+恒成立,只需()42f x ≤,即()12f x ≤恒成立,由(1)知当2x ≥时,()()()12=12=1f x x x x x =------不合题意;当1x ≤时,()()()112=122f x x x x x =-----+-≤恒成立;当12x <<时,()()()112=12=232f x x x x x x =----+--≤,解得714x <≤,综上74x ≤,所以x 的取值范围为74⎛⎤-∞ ⎥⎝⎦,.【典例2-5】(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数.(1)求24a a +的最小值; (2)求证:bc ac ab a b c a b c ++≥++. 【解析】(1)因为24a a +24=322a a a ++≥=,当且仅当“2a =”时等号成立, 所以当2a =时,24a a +的最小值为3. (2)因为2bc ac c a b +≥,同理2ac ab a b c +≥,2bc ab b a c +≥, 所以三式相加得22()bc ac ab a b c a b c ⎛⎫++≥++ ⎪⎝⎭, 所以bc ac ab a b c a b c++≥++,当且仅当“a b c ==”时等号成立 5、不等式的综合应用【典例3-1】(2021·宁夏·青铜峡市宁朔中学高三阶段练习(文))若函数243y kx kx =++对任意x ∈R 有0y >恒成立,则实数k 的取值范围为( )A .30,4⎡⎫⎪⎢⎣⎭B .3,4⎛⎫+∞ ⎪⎝⎭C .(),0-∞D .30,4⎡⎤⎢⎥⎣⎦【答案】A【详解】由题意,函数243y kx kx =++对任意x ∈R 有0y >(1)当0k =时,30y =>成立;(2)当0k ≠时,函数为二次函数,若满足对任意x ∈R 有0y >,则2030161204k k k k >⎧∴<<⎨∆=-<⎩综上:30,4k ⎡⎫∈⎪⎢⎣⎭故选:A 【典例3-2】(2022·全国·高三专题练习)若关于x 的不等式()2330-++<x m x m 的解集中恰有3个正整数,则实数m 的取值范围为( )A .[)2,1--B .()3,4C .(]5,6D .(]6,7【答案】D【详解】因为不等式()2330-++<x m x m 的解集中恰有3个正整数,即不等式()()30x x m --<的解集中恰有3个正整数,所以3m >,所以不等式的解集为()3,m所以这三个正整数为4,5,6,所以67m <≤,即67a <≤故选:D【典例3-3】(2022·浙江·高三专题练习)若不等式2430mx mx +-<对任意实数x 恒成立,则实数m 的取值范围为_______. 【答案】3,04⎛⎤- ⎥⎝⎦【解析】【详解】当m =0时不等式为30-<,显然对于任意实数x 恒成立;当m ≠0时,不等式2430mx mx +-<对任意实数x 恒成立等价于,解得304m -<<, 所以m 的取值范围是3,04⎛⎤- ⎥⎝⎦, 故答案为:3,04⎛⎤- ⎥⎝⎦. 【典例3-4】(2021·福建省南平市高级中学高三阶段练习)命题“x R ∃∈,2290x mx ++<”为假命题,则实数m 的取值范围是___________. 【答案】62,62⎡-⎣【详解】若原命题为假命题,则其否定“x R ∀∈,2290x mx ++≥”为真命题,这等价于2720m =-≤,解得6262m -≤≤故答案为:62,62⎡-⎣.【典例3-5】(2021·黑龙江·嫩江市高级中学高三阶段练习(理))已知函数2()2f x x ax =-+-,[1,3]x ∈ (1)若()0f x <恒成立,求a 的范围.(2)求()f x 的最小值()g a .【答案】(1)22a <(2)3114()34a a g a a a -≤⎧=⎨->⎩.【详解】解:(1)220x ax -+-<,22ax x <+,[1,3]x ∈,22x a x+∴<, 22222x x x x +=+,当且仅当[1,3]x =时成立,∴2min2x x ⎛⎫+=⎪⎝⎭ a ∴<(2)当22a ≤即4a ≤时,min ()(3)311f x f a ==-; 当22a >即4a >时,min ()(1)3f x f a ==-, 综上,3114()34a a g a a a -≤⎧=⎨->⎩.。
不等式的解法(1)
有理不等式的解法
一、解题思想与方法
(1)整式不等式的解法(根轴法).
步骤:正化,求根,标轴,穿线(偶重根打结),定解.
特例① 一元一次不等式ax >b 解的讨论:对ax>b 形式的不等式,当a>0时解集为⎪⎭
⎫ ⎝⎛+∞,a b 当a<0时解集为,b a ⎛⎫-∞ ⎪⎝⎭。
当a=0且b<0时解集为R 当a=0且b ≥0时,解集为Φ;
因未限制a 的符号,故ax<b 可改为-ax>-b 不必另行列出。
②一元二次不等式我们总可化为ax 2+bx+c>0和ax 2+bx+c+<0(a>0)两形式之一,记△=b 2-4ac 。
ax 2+bx+c>0 ax 2+bx+c+<0
△<0 R Φ
△=0 {x|x ∈R 且x 2
b -≠} Φ △>0 ())x x )(,x (x ,2121<+∞⋃∞- ())x x (x ,x 2121<
(2)分式不等式的解法:先移项通分标准化,则
()()0()()0()()0;0()0()
()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩ 二、基础训练:
1、下列不等式与
012≤+x x 同解的是…………………( ) (A) 01≤+x
x (B)0)1(≤+x x (C)0)1lg(≤+x (D)2
1|1|≤+x x 2、不等式(x -2)2·(x -1)>0的解集为 .
3、不等式(x +1) ·(x -1)2≤0的解集为 .
4、不等式x x
<1的解集为 . 三、例题分析:
例1.解不等式:(x -1)·(x -2)·(x -3)·(x -4)>120
例2. 解不等式:0)5)(1)(3()2(2>-+++x x x x
例3. 解不等式:2x x
x 24x x 322-≥-+--
例4.求适合不等式11
)1(02
<+-<x x 的整数x 的值.
四、课后练习:
1、不等式1213≥--x
x 的解集为……………………………( ) (A){x |43≤x ≤2} (B) {x |4
3≤x <2} (C) {x |x >2或者x ≤4
3} (D){x |x <2} 2、不等式21
≥+x x 的解集为 . 五、学习反思(让反思成为习惯,让优秀成为必然) 错题 订正 反思
不等式的解法(2)
无理不等式、含绝对值不等式的解法
一、解题思想与方法
(3)无理不等式:转化为有理不等式求解
○1()0()()()0()()f x f x g x g x f x g x ⎧≥⎫⇒⎪⎬>⇔≥⎨⎭⎪>⎩
定义域 ○2⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ○3⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f
(4)含绝对值不等式
○
1应用分类讨论思想去绝对值; ○2应用数形思想; ○
3应用化归思想等价转化 ⎩
⎨⎧>-<>≤⇔>⎩⎨⎧<<->⇔<)()()()(0)()0)(),((0)()(|)(|)()()(0)()(|)(|x g x f x g x f x g x g x f x g x g x f x g x f x g x g x g x f 或或不同时为
二、基础训练:
1.不等式组⎩⎨⎧>-<-1
)1(log 2|2|22x x 的解集为 ( ) (A) (0,3); (B) (3,2); (C) (3,4);
(D) (2,4)。
2.不等式1|1|3x <+<的解集为( ).
A.(0,2)
B. (2,0)(2,4)-
C. (4,0)-
D. (4,2)(0,2)--
3.不等式(x -1)02≥+x 的解为…………………………………( )
(A )x ≥1 (B )x >1 (C ) x ≥1或者x =-2 (D ) x ≥-2且x ≠1
4.不等式129->-x x 的解集为 ;
三、例题分析:
例1.|x 2-9|≤x+3.
例2.解不等式|x 2─3|x|─3|≤1.
例3.求使不等式|x─4|+|x─3|<a 有解的a 的取值范围。
四、课后练习:
1.不等式1323>--x 的解集是 …………………………( )
(A )φ (B )⎭⎬⎫⎩⎨⎧><≤6232x x x 或 (C ){}6>x x (D )⎭
⎬⎫⎩⎨⎧<≤232x x
五、学习反思(让反思成为习惯,让优秀成为必然) 错题 订正 反思。